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Normal Reflection Subgroups
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Abstract. We study normal reflection subgroups of complex reflection groups. Our
point of view leads to a refinement of a theorem of Orlik and Solomon to the effect
that the generating function for fixed-space dimension over a reflection group is a
product of linear factors involving generalized exponents. Our refinement gives a
uniform proof and generalization of a recent theorem of the second author.

Résumé. Nous étudions les sous-groupes de réflexion normale de groupes de réflexion
complexe. Notre point de vue conduit à une raffinement d’un théorème d’Orlik et
Solomon selon lequel la fonction génératrice de la dimension d’espace fixe sur un
groupe de réflexion est un produit de facteurs linéaires. Notre raffinement donne une
preuve uniforme et généralisation d’un théorème récent du second auteur.
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1 Introduction

Hopf proved that the (singular) cohomology of a real connected compact Lie group G
is an exterior algebra on rank(G) generators of odd degree [7]. Its Poincaré series is
therefore given by

Hilb(H∗(G); q) =
n

∏
i=1

(1 + q2ei+1).

Chevalley presented these ei for the exceptional simple Lie algebras in his 1950 ad-
dress at the International Congress of Mathematicians [4], and Coxeter recognized them
from previous work with real reflection groups [6]. This observation has led to deep
relationships between the cohomology of G, and the invariant theory of the correspond-
ing Weyl group W = NG(T)/T [10, 11]—notably, H∗(G) ' (H∗(G/T)× H∗(T))W '(
S/SW

+ ⊗
∧

V∗
)W . For more information, we refer the reader to the wonderful survey [1].

It turns out that one method to compute the ei is the generating function for the
dimension of the fixed space fix(w) = dim(ker(1− w)) over the Weyl group:

∑
w∈W

qfix(w) =
r

∏
i=1

(q + ei).
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Shephard and Todd [12] verified case-by-case that the same sum still factors when
W is replaced by a complex reflection group G. Let G be a finite complex reflection
group, acting by reflections on V. The ei are now determined by the degrees di of the
fundamental invariants of G on V as ei = di − 1. A case-free proof of this result was
given by Solomon [13], mirroring Hopf’s result: writing S = Sym(V∗) and Λ =

∧
(V∗),

(S⊗Λ)G is a free exterior algebra over the ring of G-invariant polynomials, which gives
a factorization of the Poincaré series

Hilb((S⊗Λ)G ; q, u) =
r

∏
i=1

1 + uqei

1− qdi
. (1.1)

Computing the trace on S⊗Λ of the projection to the G-invariants 1
G ∑g∈G g, specializing

to u = q(1− x)− 1, and taking the limit as x → 1 gives the Shephard-Todd result:

Theorem 1.1 ([12, 13]). For any complex reflection group G,

∑
g∈G

qfix(g) =
r

∏
i=1

(q + ei). (1.2)

More generally, define the fake degree of an m-dimensional (simple) G-module M to be
the polynomial encoding the degrees in which M occurs in the coinvariant ring C[V]G:
fM(q) = ∑i(C[V]iG, M)qi = ∑m

i=1 qei(M).

Let G ⊂ GL(V) be a complex reflection group. We say that N / G is a normal reflection
subgroup of G if it is a normal subgroup of G that is generated by reflections. For Weyl
groups, nontrivial normal reflection subgroups can be constructed using root lengths.
More generally, normal reflection subgroups are constructed by taking the union of
conjugacy classes of reflections. We give the classification of normal reflection subgroups
in Section 4, and tie our work with previous work on their numerology in Section 5.

The following theorem is a special case of results in [2] (where the authors consider
the more general notion of “bon sous-groupe distingué” in lieu of our normal reflection
subgroup N of G). We emphasize that our proof of this result in Section 2 follows the
main ideas in [2], specialized to our more restricted setting.

Theorem 1.2. Let N be a normal reflection subgroup of a complex reflection group G acting on
V. Then the quotient group H = G/N acts as a reflection group on the vector space E = V/N.

In Section 2 we will build on our proof of Theorem 1.2 to prove the following nu-
merological identities.
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Theorem 1.3. Let G, N, H be as in Theorem 1.2. For a suitable choice of indexing of degrees and
exponents, we have the following equalities:

eN
i (V)+eG

i (E) = eG
i (V)

dN
i · dH

i = dG
i

dN
i · eH

i (E) = eG
i (E)

Example 1.4. Take G = W(F4) = G28 and N to be the normal subgroup generated by the
reflections corresponding to short roots. Then N ' W(D4), G/N ' W(A2) = S3 acting
by reflections on C⊕C⊕C2 (trivially on C⊕C), so that Theorem 1.3 gives the equations

(1, 5, 3, 3)+(0, 0, 4, 8) = (1, 5, 7, 11)
(2, 6, 4, 4) · (1, 1, 2, 3) = (2, 6, 8, 12)
(2, 6, 4, 4) · (0, 0, 1, 2) = (0, 0, 4, 8).

The following result simultaneously generalizes the results of [14] and the Shephard-
Todd formula Equation (1.2) from Theorem 1.1. We state a generalized version that
incorporates Galois twists in Section 6.

Theorem 1.5. Let N / G be reflection groups acting by reflections on V, and let E = V/N.
Then

∑
g∈G

qfixV gtfixEg =
r

∏
i=1

(
qt + eN

i (V)t + eG
i (E)

)
.

Example 1.6. The dihedral group G = G(2, 1, 2) =
〈
s, t|s2 = t2 = (st)4 = 1

〉
acts as a

reflection group on V = C2 by s =
[ −1 0

0 1

]
and t =

[
0 1
1 0

]
. Take N to be the normal

subgroup generated by the reflections conjugate to s. Then N ' C2 × C2 is a normal re-
flection subgroup, isomorphic to the direct product of the cyclic group of order two with
itself, with invariants N1 = x2

1 and N2 = x2
2, and G acts on E dual to E∗ = spanC{N1, N2}

as the quotient group G/N ' C2 by s =
[

1 0
0 1

]
and t =

[
0 1
1 0

]
. In this case, Theorem 1.5

expresses the equality

∑
g∈G

qfixV gtfixEg = q2t2 + 2qt2 + 2qt + 2t + t2 = (qt + t)(qt + t + 2).

2 Quotients by Normal Reflection Subgroups

Let V be a complex vector space of dimension r. A reflection is an element of GL(V)
that fixes some hyperplane pointwise. A complex reflection group G is a finite subgroup of
GL(V) that is generated by reflections. A complex reflection group G is called irreducible
if V is a simple G-module; V is then called the reflection representation of G. A (normal)
reflection subgroup of G is a (normal) subgroup of G that is generated by reflections.
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Let S(V∗) be the symmetric algebra on the dual vector space V∗, and write S(V∗)G

for its G-invariant subring. By a classical theorem of Shephard-Todd [12] and Cheval-
ley [5], a subgroup G of GL(V) is a complex reflection group if and only if S(V∗)G is
a polynomial ring, generated by r algebraically independent homogeneous G-invariant
polynomials—the degrees d1 ≤ · · · ≤ dr of these polynomials are invariants of G.

Theorem 2.1 ([12, 5]). Let G ≤ GL(V) be finite. Then G is a complex reflection group if and
only if there exist r homogeneous algebraically independent polynomials G1, . . . , Gr ∈ S(V∗)G

such that S(V∗)G = C[G1, . . . , Gr]. In this case, |G| = ∏r
i=1 di, where di = deg(Gi).

Although Theorem 1.2 is a special case of results in [2] (where they consider the more
general notion of “bon sous-groupe distingué”), the proof is more straightforward in our
restricted setting, and also leads directly to a proof of Theorem 1.3.

Theorem 1.2. Let N be a normal reflection subgroup of a complex reflection group G acting on
V. Then the quotient group H = G/N acts as a reflection group on the vector space E = V/N.

Proof. We claim that there exist homogeneous generators N1, . . . , Nr of S(V∗)N such that
E∗ = spanC{N1, . . . , Nr} is H-stable. By Theorem 2.1, S(V∗)N = C[Ñ1, . . . , Ñr] for some
homogeneous algebraically independent Ñi. Let I+ ⊂ S(V∗)N be the ideal generated
by homogeneous elements of positive degree. Then both I+ and I2

+ are H-stable ho-
mogeneous ideals, and therefore the algebraic tangent space I+/I2

+ to E = V/N at 0
inherits a graded action of H that is compatible with the (graded) quotient map π :
I+ � I+/I2

+. Hence there exists a graded H-equivariant section ϕ : I+/I2
+ → I+. Letting

Ni = ϕ ◦ π(Ñi) we see that N1, . . . , Nr are still homogeneous algebraically independent
generators for S(V∗)N with deg(Ni) = deg(Ñi) and such that E∗ = spanC{N1, . . . , Nr}
is H-stable, as claimed.

Write G1, . . . , Gr for the homogeneous generators of S(V∗)G, again as in Theorem 2.1.
Consider the action of H on E∗ defined by (gN)Ni := gNi. Since S(V∗)G = (S(V∗)N)H =
S(E∗)H, there exist polynomials H1, . . . , Hr ∈ C[N] such that Hi(N) = Gi(x), where
N = {N1, . . . , Nr} and x = {x1, . . . , xr} denote dual bases for E and V, respectively.

Since any algebraic relation f (H1, . . . , Hr) = 0 would result in an algebraic relation
f (G1, . . . , Gr) = 0, the Hi must be algebraically independent. By Theorem 1.2, H is a
complex reflection group.

Remark 2.2. Note that the quotient group H = G/N does not necessarily lift to a
reflection subgroup of G nor even a subgroup of G. A counterexample is given by
G(4, 2, 2) = N / G = G8, so that G/N ' S3.

Remark 2.3. In the course of the proof of Theorem 1.2 we showed that the vector space
E = V/N on which H acts by reflections is dual to E∗ := spanC{N1, . . . , Nr} for a certain
choice of fundamental N-invariants N1, . . . Nr ∈ S(V∗)N such that E∗ is G-stable. The
resulting action of H on E respects the x-grading on the N-invariants Ni(x), and therefore
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there is a choice of fundamental H-invariants H1, . . . , Hr ∈ S(E∗)H = S(V∗)G such that
each Hi(N) = Gi(x) is both x-homogeneous of x-degree =: dG

i and N-homogeneous of
N-degree =: dH

i . Since the action of H on E∗ respects the homogeneous decomposition of
E∗ according to x-degree, the Hi(N) may be chosen such that the N-invariants Nj(x) ∈ N
occurring non-trivially in Hi(N) are all of the same x-degree =: dN

i . This relationship
between the fundamental invariants for N, G, and H acting on their corresponding
reflection representations leads to interesting numerological identities.

The following result motivates some of the theoretical ingredients in our proofs.

Theorem 2.4 ([13]). If G ⊂ GL(V) is a complex reflection group, then (S(V∗)⊗∧V∗)G is a
free exterior algebra over the ring of G-invariant polynomials:(

S(V∗)⊗
∧

V∗
)G
' S(V∗)G ⊗

∧
UG,

where UG = spanC {dG1, . . . , dGs} and dGi = ∑r
j=1

∂Gi
∂xj
⊗ xj.

Theorem 1.3. Let G, N, H be as in Theorem 1.2. For a suitable choice of indexing of degrees and
fake degrees, we have the following equalities:

eN
i (V)+eG

i (E) = eG
i (V)

dN
i · dH

i = dG
i

dN
i · eH

i (E) = eG
i (E)

Proof. Having chosen fundamental N-invariants N1, . . . , Nr ∈ S(V∗)N such that E∗ =
spanC{N1, . . . , Nr} is G-stable as in the proof of Theorem 1.2 and Remark 2.3, we have
fundamental G-invariants Gi(x) = Hi(N) that are x-homogeneous of x-degree dG

i and
N-homogeneous of N-degree dH

i , and where the Nj ∈ N occurring non-trivially in Hi(N)

are all of the same x-degree dN
i . The equality dN

i dH
i = dG

i is immediate.
Let us show that this same choice of indexing of fundamental invariants for N, G,

and H results in the other two equalities. We begin by comparing x-degrees in

dGi =
r

∑
j=1

∂Gi

∂xj
⊗ xj =

r

∑
k=1

∂Hi

∂Nk
· dNk =

r

∑
k=1

r

∑
j=1

∂Hi

∂Nk
· ∂Nk

∂xj
⊗ xj.

Recall that eG
i (V) = dG

i − 1 = degx(dGi) and eN
i (V) = dN

i − 1 = degx(dNi). Similarly,
eH

i (E) = dH
i − 1 = degN(dHi), where this time dHi = ∑r

k=1
∂Hi
∂Nk
⊗ Nk ∈ (S(E∗)⊗ E∗)H.

Since ∂Hi
∂Nk

= 0 whenever degx(Nk) 6= dN
i , it follows that

eG
i (V) = eN

i (V) + dN
i · (dH

i − 1) = eN
i (V) + dN

i · eH
i (E).
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It remains to show that dN
i eH

i (E) = eG
i (E).

The eG
i (E) are known to coincide with the x-degrees of any set of homogeneous

generators for (S(V∗)⊗ E∗)G as a free S(V∗)G-module. Since E∗ consists of N-invariants,

(S(V∗)⊗ E∗)G = ((S(V∗)⊗ E∗)N)H = (S(E∗)⊗ E∗)H ' S(E∗)H ⊗UH = S(V∗)G ⊗UH,

where again UH := spanC{dH1, . . . , dHr} and the non-trivial isomorphism comes from
Theorem 2.4 applied to the reflection representation E of H. Hence (S(V∗) ⊗ E∗)G is
generated by dHi as a free S(V∗)G-module, whence eG

i (E) = degx(dHi) = dN
i eH

i (E).

Remark 2.5. The same argument used in the proof of Theorem 1.3 shows more generally:

(S(V∗)⊗
∧

E∗)G = ((S(V∗)⊗
∧

E∗)N)H = (S(E∗)⊗
∧

E∗)H ' S(V∗)G ⊗
∧

UH.

3 Poincaré Series and Specializations

Our goal in this section is to prove our main result:

Theorem 1.5. Let N / G be reflection groups acting by reflections on V, and let E = V/N.
Then

∑
g∈G

qfixV gtfixEg =
r

∏
i=1

(
qt + eN

i (V)t + eG
i (E)

)
.

We refer to the left-hand side of Theorem 1.5 as the sum side, and to the right-hand
side as the product side. We prove Theorem 1.5 by computing the Poincaré series for
(S(V∗)⊗∧ E∗)G in two different (and standard) ways, keeping track of the supplemental
grading afforded by the x-degrees of N-invariants in E∗ = spanC{N1, . . . , Nr}: one way
corresponds to the product side (Section 3.1), and the other to the sum side (Section 3.2).
A subtlety arises when trying to compute the term-by-term specialization for the sum
side, which is dealt with in Sections 3.3 and 3.4.

A more general version of Theorem 1.5 that incorporates Galois twists is stated in Sec-
tion 6. For technical reasons that arise in that generalization, we will define the shifted
homogeneous decomposition E∗m := spanC{Ni | degx(Ni) = m + 1}, and similarly

(
∧pE∗)m := spanC{Ni1 ∧ · · · ∧ Nip ∈

∧pE∗ | ∑
p
j=1degx(Nij) = m + p}.

Writing S(V∗)` for the homogeneous component of x-degree `, we define the Poincaré
series

P(x, y, u) := ∑
`,m,p≥0

dimC((S(V∗)` ⊗ (
∧pE∗)m)

G)x`ymup. (3.1)

We write EN = {eN
1 (V), . . . , eN

r (V)} for the set of fake degrees of V as an N-representation.
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3.1 Product Side

We first obtain the following product formula for the Poincaré series P(x, y, u) defined
in Equation (3.1) from Theorem 1.3 and Remark 2.5, since dHi ∈ S(V∗)eG

i (E) ⊗ E∗eN
i (V)

.

Lemma 3.1. P(x, y, u) =
r

∏
i=1

1 + xeG
i (E)yeN

i (V)u

1− x
dG

i
i

.

Corollary 3.2. lim
x→1
P
(
x, xt, qt(1− x)− 1

)
=

r

∏
i=1

(
qt + eN

i (V)t + eG
i (E)

)
.

3.2 Sum Side

By taking traces, we now compute a formula for the Poincaré series P(x, y, u) defined in
Equation (3.1) as a sum over elements of G. To simplify notation, we denote by Em the
homogeneous component of E corresponding to the dual of E∗m.

Lemma 3.3. P(x, y, u) = 1
|G| ∑

g∈G

∏m∈EN
det(1 + uymg|Em)

det(1− xg|V)
.

Proof. Since E∗ ' ⊕
m∈EN

E∗m, we have that
∧

E∗ ' ⊗
m∈EN

∧
E∗m as G-modules. hence,

for each g ∈ G,

∑
m,p≥0

tr(g|(∧pE∗)m)ymup = ∏
m∈EN

(
∑
p≥0

tr(g|∧pE∗m)y
pmup

)
.

For each m ∈ EN we have ∑
p≥0

(tr(g|∧pE∗m)y
pmup) = det(1 + ymug|E∗m). Therefore,

P(x, y, u) =

(
∑
`≥0

tr(g|(S(V∗)`)x`
)(

∑
m,p≥0

tr(g|(∧pE∗)m)ymup

)

=
∏m∈EN

det(1 + uymg−1|Em)

det(1− xg−1|V)
.

The result follows after taking the average over G on each side.

The story is not quite so simple as just setting the sum over G from Lemma 3.3 equal
to the product, and then specializing. The trouble is that in this specialized sum over G
from Lemma 3.3, each element of G does not necessarily contribute the “correct amount”
specified by the sum side of Theorem 1.5—in particular, (ng)|E often has larger fixed
space than (ng)|V , which causes many terms in the term-by-term limit to be zero. It
turns out, as we will now show, that the contributions are correct when taken coset-by-
coset.
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3.3 Sum Side, Coset-by-Coset I

Fix some g ∈ G. We find a product formula for Lemma 3.3 restricted to the coset gN.
Define

PgN(x, y, u) :=
1
|N| ∑

n∈N

∏m∈EN
det

(
1 + uym(ng)|E∗m

)
det(1− x(ng)|V∗)

.

Given g ∈ G, we can choose the fundamental N-invariants N1, . . . , Nr ∈ S(V∗)G to
also form a g-eigenbasis for E∗ = spanC{N1, . . . , Nr}, since this space is G-stable and
g has finite order. For g ∈ G, let ε

g
1 , . . . , ε

g
r denote the eigenvalues of g on E∗, so that

gNi = ε
g
i Ni.

Proposition 3.4. PgN(x, y, u) =
r

∏
i=1

1 + ε
g
i uyeN

i (V)

1− ε
g
i xdN

i
.

Proof. First, ∏
m∈EN

det(1 + uym(ng)|E∗m) =
r

∏
i=1

(1 + ε
g
i uyeN

i (V)) uniformly for any n ∈ N,

since E∗m is N-invariant. It remains to show that

1
|N| ∑

n∈N

1
det(1− x(ng)|V∗)

=
r

∏
i=1

1

1− ε
g
i xdN

i
.

Since S(E∗) ' ⊗
m∈EN

Sym(E∗m), where E∗m denotes the span of fundamental N-
invariants having x-degree m + 1 and Sym(E∗m) denotes its symmetric algebra, we have

∑
`≥0

tr
(

g|S(E∗)`
)
x` = ∏

m∈EN

(
∑
`≥0

(
tr(g|Sym`(E∗m))(xm+1)`

)
,

where S(E∗)` := S(E∗) ∩ S(V∗)` and S(V∗)` as before denotes the homogeneous sub-
space of polynomials of x-degree `. On the other hand,

∏
m∈EN

(
∑
`≥0

tr
(

g|Sym`(E∗m)
)
(xm+1)`

)
= ∏

m∈EN

1
det(1− xm+1(g|E∗m))

=
r

∏
i=1

1

1− ε
g
i x

dN
i

i

,

since dN
i = eN

i (V). Therefore, ∑
`≥0

tr
(

g|S(E∗)`
)
x` =

r

∏
i=1

1

1− ε
g
i x

dN
i

i

. Since for each n ∈ N

we have ∑
`≥0

tr
(
ng|S(V∗)`

)
x` =

1
det(1− x(ng|V∗))

, it remains to show that, for each ` ≥ 0,

1
|N| ∑

n∈N

(
tr
(
ng|S(V∗)`

))
= tr

(
g|S(E∗)`

)
.
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To see this, note that the operator 1
|N| ∑

n∈N
ng = g ·

(
1
|N| ∑

n∈N
n

)
= g ◦ prN

` , where prN
` =

1
|N| ∑n∈N n is the projection from S(V∗)` onto its g-stable subspace S(V∗)N

` = S(E∗)`,
whence tr

(
(g ◦ prN

` )|S(V
∗)`
)
= tr

(
g|S(E∗)`

)
.

3.4 Sum Side, Coset-by-Coset II

We next specialize some results of [3] to the case when N is a normal reflection subgroup
of a complex reflection group G. They consider the more general situation when N is
translated by an arbitrary element in the normalizer of N in GL(V). Continue to fix
some g ∈ G.

Proposition 3.5 ([3]). 1
|N| ∑

n∈N

det(1 + u(ng)|V∗)
det(1− x(ng)|V∗)

=
r

∏
i=1

1 + ε
g
i uxeN

i (V)

1− ε
g
i xdN

i

(
= PgN(x, x, u)

)
.

Specializing both sides of Proposition 3.5 to u = q(1− x) − 1 and then taking the
limit x → 1 yields the following simple formula for sums over cosets.

Corollary 3.6 ([3]). ∑
n∈N

qfixV(ng) =

∏
ε

g
i =1

q + eN
i (V)

∏
ε

g
i 6=1

dN
i

 .

Using Corollary 3.6, we obtain the following crucial specialization of Proposition 3.4,
exploiting the fact that Proposition 3.4 gives the series PgN(x, y, u), while Proposition 3.5
gives the series PgN(x, x, u).

Corollary 3.7. limx→1 PgN(x, xt, qt(1− x)− 1) = tfixEg ∑n∈N qfixV(ng).

3.5 Proof of Theorem 1.5

We now prove our main theorem.

Proof of Theorem 1.5. Equating the formulas from Lemmas 3.1 and 3.3 gives

P(x, y, u) = ∑
g∈G

∏m∈EN
det(1 + uymg|Em)

det(1− xg|V)
= |G|

r

∏
i=1

1 + xeG
i (E)yeN

i (V)u

1− x
dG

i
i

. (3.2)

Let {gj}
|H|
j=1 be a set of coset representatives for N in G. By Corollary 3.7, splitting the
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sum side of Equation (3.2) into a sum over the cosets of N and specializing gives

lim
x→1
P(x, xt, qt(1− x)− 1) =

|H|

∑
j=1

lim
x→1
PgN(x, xt, qt(1− x)− 1)

=
|H|

∑
j=1

tfixEgj ∑
n∈N

qfixVngj = ∑
g∈G

qfixV gtfixEg.

The result now follows from Equation (3.2) by equating this specialization of the sum
side with the same specialization of the product side from Corollary 3.2.

4 Classification of Normal Reflection Subgroups

In the interest of space, we restrict our classification of normal reflection subgroups to
rank ≥ 3. In rank 2, there are two connected posets of imprimitive complex reflec-
tion groups ordered by normality: one has maximal element G11 and minimal elements
G(4, 2, 2), G4, and G12, while the other has maximal element G19 and minimal elements
G16, G20, and G22.

Theorem 4.1 ([8, Corollary 2.18]). For r ≥ 3, the normal reflection subgroups of G(ab, b, r)
are (Cd)

r and G(ab, db, r) for d|a, giving quotients G(ab, b, r)/(Cd)
r = G((a/d)b, b, r) and

G(ab, b, r)/G(ab, db, r) = Cd.

As G26 and G28 are the only exceptional reflection groups with more than a single
orbit of reflections, there are three nontrivial exceptional (that is, not imprimitive) ex-
amples of normal reflection subgroups in rank greater than two: G(3, 3, 3) / G26, with
quotient G4; G25 / G26, with quotient C2; and G(2, 2, 4) / G28 'W(F4), with quotient S3.

5 Reflexponents

Fix G a complex reflection group of rank r with reflection representation V. Call an
r-dimensional representation M of G factorizing if M has dimension r and

∑
g∈G

qfixV(g)tfixM(g) =
r

∏
i=1

(
qt + (eG

i (V)−mi)t + mi

)
,

for some nonnegative integers m1, . . . , mr. More generally, call a representation M of G
of dimension dim M ≤ r factorizing if it is factorizing in the above sense after adding in
r− dim M copies of the trivial representation.

We can now give a uniform explanation for certain ad-hoc identities from [14]. Let
H be an orbit of reflecting hyperplanes, write RH for the set of reflections fixing some



Normal Reflection Subgroups 11

L ∈ H, and let NH = 〈RH〉 be the subgroup generated by reflections around hyper-
planes in H. Since these reflections form a conjugacy class in G, NH is a normal re-
flection subgroup of G. Furthermore: the quotient G/NH acts as a reflection group on
the NH-invariants of V; and this action gives a G-representation MH that is factorizing
by Theorem 1.5.

6 Galois Twists

Let V be an r-dimensional complex vector space and G ⊂ GL(V) be a complex reflection
group. It is known that G can be realized over Q(ζG), where ζG is a primitive |G|-
th root of unity, in the sense that there is a basis for V with respect to which G ⊂
GLr(Q(ζG)). For σ ∈ Gal(Q(ζG)/Q), the Galois twist Vσ is the representation of G on
the same underlying vector space V obtained by applying σ to the matrix entries of
g ∈ GL(Q(ζG)). Orlik and Solomon found a beautiful generalization of Equation (1.2)
that takes into account these Galois twists. Below we write λ1(g), . . . , λr(g) for the
eigenvalues of g ∈ G on V.

Theorem 6.1 ([9]). Fix G a reflection group and σ ∈ Gal(Q(ζG)/Q). Then

∑
g∈G

 ∏
λi(g) 6=1

1− λi(g)σ

1− λi(g)

 qfixV g =
r

∏
i=1

(q + ei(Vσ)) .

Definition 6.2. Let IG
+ ⊂ S(V∗) be the ideal generated by homogeneous G-invariant

polynomials of positive degree, and let CG be a G-stable homogeneous subspace of S(V∗)
such that S(V∗) ' IG

+ ⊕ CG as G-modules. For σ ∈ Gal(ζG), define the Orlik-Solomon
space Uσ

G := (CG ⊗ (Vσ)∗)G = spanC{uG
1 , . . . , uG

r }, where the uG
i are homogeneous with

deg(uG
i ) = eG

i (V
σ) and such that

(
S(V∗)⊗ (Vσ)∗

)G ' S(V∗)G ⊗Uσ
G.

We can now state the general form of our main theorem.

Theorem 1.5. Let N / G be reflection groups acting by reflections on V, and let E = V/N. Let
σ ∈ Gal(Q(ζG)/Q) and define the Orlik-Solomon space Uσ

N as in Definition 6.2. Then

∑
g∈G

 ∏
λi(g) 6=1

1− λi(g)σ

1− λi(g)

 qfixV gtfixEg =
r

∏
i=1

(
qt + eN

i (Vσ)t + eG
i ((U

σ
N)
∗)
)

.

Remark 6.3. The Orlik-Solomon space Uσ
N playes the role of E∗ in this generalization

of Theorem 1.5. When σ = 1, a straightforward argument yields a graded G-module
homomorphism (of degree −1) E∗ ' UN. This is why we shifted the obvious x-grading
of E∗ by −1 in Section 3. However, it is not true in general that (Eσ)∗ ' Uσ

N when σ 6= 1.
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