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Abstract. The classical hook-length formula counts the number of standard tableaux of
straight shapes, but there is no known product formula for skew shapes. Okounkov–
Olshanski (1996) and Naruse (2014) found new positive formulas for the number of
standard Young tableaux of a skew shape. We prove various properties of the Okounkov–
Olshanski formula: a reformulation similar to the Naruse formula, determinantal
formulas for the number of terms, and a q-analogue extending the formula to reverse
plane partitions, which complements work by Chen and Stanley for semistandard
tableaux.

Résumé. La formule classique des équerres compte le nombre de tableaux standard
de formes droites, mais il n’existe aucune formule de produit pour les formes gauches.
Okounkov–Olshanski (1996) et Naruse (2014) ont découvert de nouvelles formules
positives pour le nombre de tableaux de Young standard de forme gauche. Nous
prouvons diverses propriétés de la formule d’Okounkov–Olshanski: une reformulation
similaire à la formule de Naruse, des formules déterminantes pour le nombre de termes
et un q-analogue pour les partitions planes inversées, ce qui complète les travaux de
Chen et Stanley pour semi-standard tableaux.

Keywords: standard tableaux, skew shapes, Okounkov–Olshanski formula, skew re-
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1 Introduction

Standard Young tableaux are fundamental objects in algebraic and enumerative com-
binatorics with origins in representation theory and numerous applications elsewhere:
semistandard tableaux, an extension of standard tableaux, are inherent in the representa-
tion theory of the general linear group, and they define Schur functions, which are one
of the key bases of the ring of symmetric functions. A further extension of these ideas
to skew shapes yields a rich theory related to descents of permutations, jeu de taquin,
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and Littlewood-Richardson coefficients, which have further applications to areas such as
Schubert calculus.

In 1954, Frame, Robinson, and Thrall [3] discovered the hook-length formula, a
product formula that counts the number of standard Young tableaux f λ of a certain shape
λ:

f λ =
|λ|!

∏u∈[λ] h(u)
,

where h(u) = λi − i + λ′j − j + 1 is the hook-length of the cell u = (i, j). The structural
simplicity of the formula leads to a wide variety of applications; for instance, the fact
that it involves only products allows analytic methods to be applied, yielding shapes
λ for which f λ is maximized when |λ| is kept fixed [15]. In 1971, Stanley [13] found
a q-analogue of the hook-length formula for the generating function of semistandard
tableaux:

sλ(1, q, q2, . . .) = qb(λ) ∏
u∈[λ]

1
1− qh(u)

,

where b(λ) = ∑i (
λ′i
2 ). A q-analogue for the generating function of reverse plane partitions

that we denote by rppλ(q) can be shown to satisfy the following:

rppλ(q) = ∏
u∈[λ]

1
1− qh(u)

.

Considering skew shapes λ/µ, there is no known product formula that gives the
number f λ/µ of standard Young tableaux of skew shape. However, there are recent
formulas for f λ/µ as nonnegative sums of products indexed by combinatorial objects that
come from rules for equivariant Littlewood–Richardson coefficients. In particular, Okounkov
and Olshanski [12] discovered the following formula, which will be our focus:

Theorem 1.1 (Okounkov–Olshanski [12]).

f λ/µ =
|λ/µ|!

∏u∈[λ] h(u) ∑
T∈SSYT(µ,d)

∏
u∈[µ]

(λd+1−T(u) − c(u)), (OOF)

where c(u) = j− i is the content of the cell u = (i, j), d = `(λ), and SSYT(µ, d) is the set of
SSYT of shape µ with entries ≤ d (see Example 3.16).

Here, in a similar manner to Morales–Pak–Panova’s study [7, 8, 9] of the Naruse hook
length formula, we prove various properties of the Okounkov–Olshanski formula.

1.1 Number of nonzero terms

We examine properties of nonzero terms in the formula, allowing their number, denoted
OOT(λ/µ), to be counted by a determinant.
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Theorem 1.2. The number of nonzero terms of the Okounkov–Olshanski formula is

OOT(λ/µ) = det
[(

λi − µj + j− 1
i− 1

)]d

i,j=1
= det

[(
λ′i

µ′j + i− j

)]µ1

i,j=1

.

These results allow OOT(λ/µ) to be evaluated in certain special cases. Most notably,
in the case of a zigzag skew shape, the number of nonzero terms is given by the Genocchi
numbers denoted by Gn:

Corollary 1.3 (Conjecture by Morales–Pak–Panova, unpublished). For the zigzag σn =
(n, n− 1, . . . , 1)/(n− 2, n− 3, . . . , 1), we have OOT(σn) = Gn.

Moreover, the bijection used in the proof of Theorem 1.2 can be used to give a
formulation of (OOF) in terms of reverse excited diagrams: we start with cells of [λ/µ]
and apply reverse excited moves of λ/µ viewed as shifted skew shape. See Example 3.16.

Corollary 1.4 (Okounkov–Olshanski — excited diagram formulation).

f λ/µ =
|λ/µ|!

∏u∈[λ] h(u) ∑
D∈RE(λ/µ)

∏
u∈B(D)

arm(u), (1.1)

where B(D) are certain cells of [λ/µ] (viewed as a shifted skew shape) associated to D and arm(u)
is the length of the arm of cell u.

1.2 A q-analogue for skew reverse plane partitions

There has also been work to find q-analogues of the Okounkov–Olshanski formula.
Chen and Stanley [1] proved the following result for the generating function of skew
semistandard tableaux:

Theorem 1.5 (Chen–Stanley [1]).

sλ/µ(1, q, q2, . . .)
sλ(1, q, q2, . . .)

= ∑
T∈SSYT(µ,d)

∏
u∈[µ]

qT(u)−d(1− qw(u,T(u))),

where w(u, k) = λd+1−k + c(u).

We announce a q-analogue of the Okounkov–Olshanski formula for skew reverse
plane partitions that is different from the skew SSYT q-analogue for skew shapes. We
sketch a proof using identities. There is another proof using equivariant K-theory of
Grassmannians. This result has a few reformulations and so in order to show similarity
to the Okounkov–Olshanski formula and the Chen–Stanley q-analogue, we give a version
in terms of tableaux. See Example 4.5.
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Theorem 1.6.
rppλ/µ(q)

rppλ(q)
= ∑

T∈SSYT(µ,d)
qp(T) ∏

u∈[µ]
(1− qw(u,T(u))),

where w(u, k) = λd+1−k − c(u), p(T) = ∑u∈[µ],mT(u)≤k<T(u) w(u, k), and mT(u) is the mini-
mum k ≤ T(u) such that replacing T(u) with k still results in a semistandard tableau.

The full version of this abstract will appear in [10].

2 Preliminaries

2.1 Skew partitions and tableaux

A partition is denoted by λ, its size is denoted by |λ| and its Young diagram is denoted
by [λ]. Given a cell u = (i, j) ∈ [λ], define the content c(u) = j− i, the arm arm(u) =
λi − i + 1, and the hook-length h(u) = λi + λ′j − i− j + 1.

A skew partition is denoted by λ/µ for [µ] ⊆ [λ]. For a strict partition λ∗ =
(λ1, λ2, . . . , λd) its Young diagram is denoted by [λ∗]. We can similarly define shifted
skew shapes. Given an ordinary skew shape λ/µ of length d, we denote by λ∗/µ∗ the
shifted skew shape (λ1 + d− 1, λ2 + d− 2, . . . , λd)/(µ1 + d− 1, µ2 + d− 2, . . . , µd).

Given a (possibly skew) partition θ, we denote the set of all reverse plane partitions
of shape θ by RPP(θ). We denote the generating function of RPP of shape λ/µ by
rppθ(q) := ∑T∈RPP(θ) q|T|, where |T| denotes the sum of the entries in T. The set of all
semistandard Young tableaux of shape θ is denoted by SSYT(θ). Let SSYT(θ, L) be the set
of semistandard Young tableaux with all entries at most L. A set-valued semistandard
Young tableau is a filling of θ with nonempty sets of positive integers, such that for every
way to choose an element from the entry of each cell, the chosen elements form a valid
semistandard tableau.

2.2 Schur functions and generalizations

If x = (x1, x2, . . .), sθ(x) denotes the Schur function. If x = (x1, x2, . . . , xk) is a finite
sequence of variables and a = (a1, a2, . . .) is an infinite sequence of variables, define the
factorial Schur function

sθ(x | a) := ∑
T∈SSYT(θ)

∏
u∈[θ]

(xT(u) − aT(u)+c(u)).

Let a⊕ b = a + b− ab and 	a = a
a−1 be the unique value so that a⊕ (	a) = 0.
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(a) (b)

Figure 1: Excited diagrams and reverse excited diagrams with broken diagonals of the
shape λ/µ = 2221/11.

If x = (x1, x2, . . . , xk) is a finite sequence of variables and a = (. . . , a−1, a0, a1, . . .) is an
infinite sequence of variables, define the factorial Grothendieck polynomial [6] to be

Gµ(x | a) := ∑
T
(−1)|T|−|µ| ∏

u∈[µ]
r∈T(u)

(xr ⊕ ar+c(u))

where we sum over all set-valued semistandard tableaux T with all entries at most d.
Given a partition λ = (λ1, λ2, . . . , λd) and an infinite sequence of variables y =

(y1, y2, . . .), define yλ = (yλ1+d, yλ2+d−1, . . . , yλd+1).

2.3 (Reverse) excited diagrams

Fix a skew shape λ/µ. Given a subset D of [λ], consider a subset of D′ obtained from D
by applying the following move to an element of D (represented in blue):

−→ (↘)

(This is only allowed if the white cells on the left side of (↘) are not in D and exist in
[λ].) We call this process an excited move. Then, we define an excited diagram of λ/µ to
be any set of |µ| cells obtained by starting with the cells of [µ] ⊂ [λ] and applying any
number of excited moves. We let E(λ/µ) be the set of excited diagrams of λ/µ.

Next, we define a variant of excited diagrams. Given a skew shape λ/µ, its reverse
excited diagrams are the diagrams obtained by starting with the cells of the shifted skew
shape λ∗/µ∗ and applying reverse excited moves:

−→ −→
, (↖)

(we ignore momentarily the red diagonals on certain cells). We let RE(λ/µ) denote the
set of reverse excited diagrams of λ/µ.

Example 2.1. The skew shape λ/µ = 2221/11 has two excited diagrams and six reverse
excited diagrams as illustrated in Figure 1.
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Lastly, in each reverse excited D diagram of RE(λ/µ) we distinguish |µ| cells of the
complement of D as follows.

Definition 2.2 (Broken diagonals). For the reverse excited diagram [λ∗/µ∗], we define the
diagonals d1, . . . , d`(µ′) so that di contains the cells in [µ∗] with contents c(µ′i, i) = µ′i − i
for i = 1, . . . , `(µ′). Then, iteratively, if D is a reverse excited diagram with broken
diagonals d1(D), . . . , d`(µ′)(D) and D′ is obtained from D by doing the reverse excited
move (i, j)→ (i− 1, j− 1), then (i, j− 1) is in some dt(D) (see the red diagonals in (↖)).
Let

dr(D′) =

{
dr(D) if r 6= t,
dt(D) \ (i, j− 1) ∪ (i, j) if r = t.

We denote by B(D) the cells of the broken diagonals of D1. See Figure 1(b).

2.4 Genocchi numbers

A pistol is a sequence of positive integers a1, a2, . . . , an so that ak ≤ k+1
2 for all 1 ≤ k ≤ n.

A pistol is strictly alternating if ak ≥ ak+1 for k odd and ak < ak+1 for k even, for all
1 ≤ k < n. Let the nth Genocchi number Gn be the number of strictly alternating pistols
of length 2n− 1 [2]. Let the nth median Genocchi number Hn be the number of strictly
alternating pistols of length 2n [16] [11, A110501], [11, A005439].

3 Positive Terms in the Okounkov–Olshanski Formula

3.1 Nonnegativity of the formula

A quick look at the formula (OOF) suggests that there could be negative terms. However,
we next show that every term in the formula is nonnegative.

Proposition 3.1. Every term in the Okounkov–Olshanski formula is nonnegative. Moreover,
every positive term has all weights positive.

Proof. Suppose that there exist i, j so that λd+1−T(i,j) − c(i, j) < 0. It suffices to show that
there exists some i′, j′ so that λd+1−T(i′,j′) − c(i′, j′) = 0.

Since c(i, j) > 0, j > i. For i ≤ k ≤ j, consider the quantity ak = λd+1−T(i,k) −
c(i, k). Note that ak+1 − ak = −1 + λd+1−T(i,k+1) − λd+1−T(i,k) ≥ −1. Thus, since ai =
λd+1−T(i,i) ≥ 0, there must be some k with ak = 0, as desired.

Though all terms are nonnegative, not all of them have a nonzero contribution. The
aim of this section is to examine the properties of the positive terms. We start with a
definition and a reduction which follows from Proposition 3.1.

1The notion of broken diagonals of excited diagrams also appears in [7, Section 7]

http://oeis.org/A110501
http://oeis.org/A110501
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µd−1 − µdµd

d

λd

λd−1 − λd

. . .

· · ·

λ1 − λ2

µ1 − µ2

λ1 − µ1

(a)

µd−1−µdµd

d

λd

λd−1 − λd

. . .

· · ·
µ1 − µ2 λ1 − µ1

λ1 − λ2

(b)

Figure 2: The regions whose lozenge tilings ∇λ/µ and ∇∗λ/µ both correspond to nonzero
Okounkov–Olshanski terms.

Definition 3.2. For a skew shape λ/µ of length d we let OOT (λ/µ) be the set of SSYT
T in SSYT(µ, d) such that c(u) < λd+1−T(u) for all u ∈ [µ].

Corollary 3.3. The nonzero terms in the Okounkov–Olshanski formula for the shape λ/µ

correspond to SSYT T in OOT (λ/µ).

3.2 Enumerating nonzero terms of the formula

In this subsection we prove Theorem 1.2. To do so, it is convenient to define the following
sets of lozenge tilings, tilings of a region in the triangular lattice with tiles of two adjacent
equilateral triangles joined together.

Definition 3.4. Let ∇λ/µ be the set of lozenge tilings of the region shown in Figure 2(a)
corresponding to the skew shape λ/µ. Let ∇∗λ/µ be the set of lozenge tilings of the region
shown in Figure 2(b) corresponding to the shape λ/µ.

The proof of the theorem now proceeds in four steps. We first prove three propositions
establishing a bijection between nonzero Okounkov–Olshanski terms and ∇∗λ/µ, passing
through non-crossing paths and lozenge tilings in ∇λ/µ. Then the theorem follows from
two different applications of the Lindström–Gessel–Viennot lemma.

Throughout this section, we will refer to the following reccurring example:

Example 3.5. We consider the following skew shape λ/µ where λ = (54321), µ = (32100),

and the following SSYT of shape µ: T =
1 2 3
2 5
5

. The associated objects that are in

correspondence with this SSYT can be seen in Figure 3.

Proposition 3.6. The SSYT in OOT (λ/µ) are in bijection with systems of non-crossing lattice
paths from (0, 0) to (µi, d− i) for 1 ≤ i ≤ d which stay within the region x ≤ λd−y.
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(a) (b) (c) (d)

1 1
1 2

2 2
2 3
3

(e)

Figure 3: Constructions related to the bijection described in Section 3.

Sketch of Proof of Proposition 3.6. The result follows by an argument similar to the nonin-
tersecting lattice path poof of the Jacobi-Trudi identity for Schur functions.

Example 3.7. For the SSYT in Example 3.5, the corresponding non-crossing path system
is found in Figure 3(a).

Proposition 3.8. Systems of non-crossing lattice paths from (0, 0) to (µi, d− i) for 1 ≤ i ≤ d
that stay within the region x ≤ λd−y are in bijection with the lozenge tilings in ∇λ/µ.

Proof of Proposition 3.8. Given a path system, one can apply an affine transformation to
the triangular lattice, and expand each path so that the segments turn into lozenges with
border on their SE-NW sides. Because of the x ≤ λd−y condition, the lozenge tilings must
stay inside to the left of the right-side boundary in Figure 2(a). Since thickening the paths
into lozenges pushes the paths about it up, every path must end at the same height, and
at a place that corresponds to the top boundary in Figure 2(a). See Example 3.9 for an
illustration of this bijection.

Example 3.9. In our example, this bijection sends Figure 3(a) to Figure 3(b).

Proposition 3.10. There is a bijection between the lozenge tilings in ∇λ/µ and in ∇∗λ/µ.

Proof. The correspondence is as follows. To go from an element of ∇λ/µ to ∇∗λ/µ, add
vertical lozenges in the triangular gaps on the top border and add a row of lozenges in
the top-right. It is easy to see that this process is reversible.

Example 3.11. In our example, this bijection sends Figure 3(b) to Figure 3(c).

We combine the three propositions above in the following lemma.

Lemma 3.12. For a skew shape λ/µ there is a bijection between the SSYT in in OOT (λ/µ)
and lozenge tilings in ∇∗λ/µ.

Proof sketch of Theorem 1.2. By Lemma 3.12 we have that OOT(λ/µ) = |∇∗λ/µ|. Next,
we use the Lindström–Gessel–Viennot lemma (e.g. see [14, Thm. 2.7.1]) applied to two
different path systems associated with each element of ∇∗λ/µ. For the first determinant,
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one considers paths of lozenges that border along SW-NE sides. Excluding the vertical
lozenges that fit into the triangular gaps, which are forced, from the ith highest SW-NE
edge on the right boundary to the jth rightmost SW-NE edge on the top boundary. A
path must go up i − 1 times out of λi − (µj − (j− 1)) = λi − µj + j− 1 steps in total,

which can be done in (
λi−µj+j−1

i−1 ) ways.
For the second determinant, one considers paths of lozenges that border along hori-

zontal sides, ignoring the last λ1 − µ1 steps from the right, which are clearly forced. To
go from the ith horizontal edge from the left on the bottom to the jth horizontal edge
from the left on the top requires λ′i steps up.

In both cases, the endpoints can be connected in only one way, so the Lindström–
Gessel–Viennot lemma can be applied.

Example 3.13. The blue paths in Figure 3(c) are an instance of the paths counted by the
first determinant. The green paths are an instance of the paths counted by the second
determinant.

3.3 Other objects counted by OOT(λ/µ)

We have given bijections between the SSYT of shape µ indexing nonzero Okounkov
Olshanski terms of the shape λ/µ and lozenge tilings. In this section we give other
objects that are in bijection with the tableaux in OOT (λ/µ).

Theorem 3.14. The SSYT in OOT (λ/µ) are in bijection with each of the following objects:

(a) SSYT of shape λ/µ such that all the entries in row i are at most i,

(b) reverse excited diagrams in RE(λ/µ).

Proof (sketch). By Lemma 3.12 the SSYT of shape µ indexing the nonzero Okounkov–
Olshanski terms for the shape λ/µ are in bijection with lozenge tilings in ∇∗λ/µ. Next we
show a bijection between these lozenge tilings and the SSYT from (a).

Given an element t of ∇∗λ/µ, consider paths of lozenges created by following the
SW-NE side lengths; call the ith path from the northeast corner βi. Similarly, call the jth
path marked by the horizontal edges from the left γj.

There exists a correspondence ψ between cells [λ/µ] and the SW-NE lozenges given by
ψ(i, j) = βi ∩ γj. Now we construct a tableau T from t as follows. Let T(i, j) = ht(ψ(i, j)),
where ht is the distance from a lozenge to the top boundary. (The highest possible lozenge
x has ht(x) = 1, and descending by one level increases ht(x) by one.) By considering
paths βi (γj) the entries in row i (column j) are nondecreasing (increasing). Since βi does
not contain a lozenge x where ht(x) > i, T is a semistandard tableau of shape λ/µ where
the entries in row i are at most i. This map can be reversed.
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Lastly, the reverse excited diagrams in RE(λ/µ) are in bijection with the SSYT of
shape λ/µ in (a) by the expected modification of the map ϕ between excited diagrams
and semistandard tableaux given in [7, Section 3].

Example 3.15. For the lozenge tiling in Figure 3(c), the paths βi are colored in blue and
the paths γj are colored in green. See Figure 3(d) for the corresponding reverse excited
diagram. The corresponding SSYT of shape λ/µ is in Figure 3(e).

We give two corollaries of these bijections, including a reformulation of the Okounkov–
Olshanskii formula.

Proof of Corollary 1.4. The bijection in the proof of Theorem 3.14 goes from the SSYT in
OOT (λ/µ) to lozenge tilings in ∇∗λ/µ and then to reverse excited diagrams in RE(λ/µ).
In the lozenge tiling, the weighted objects are the northwest-southeast rhombi, with a
weight equal to the product of the distance of each rhombi to the right edge of the shape.
Under the correspondence, those rhombi become cells of broken diagonals of the excited
diagram. The weight of each such cell u is the length of the arm arm(u).

Example 3.16. For the shape λ/µ = 2221/11, we have OOT(λ/µ) =
{

3
4

, 2
4

, 2
3

, 1
4

, 1
3

, 1
2

}
.

The reverse excited diagrams of λ/µ = 2221/11 are in Figure 1(b) and include their
respective broken diagonals (in red). The reformulation (1.1) of (OOF) gives

f λ/µ =
5!

2 · 3 · 3 · 4 · 5 (2 · 3 + 2 · 3 + 2 · 3 + 1 · 3 + 1 · 3 + 1 · 3) = 9. (3.1)

Proof of Corollary 1.3. By Theorem 3.14(a), OOT(σn) is the number of SSYT of shape σn
so that the entries in row i are at most i. By considering the reverse row word of such
tableaux (reading entries from the top right to the bottom left), OOT(σn) is the number of
sequences a1, a2, . . . , a2n−1 so that a2i−1 ≥ a2i < a2i+1 for 1 ≤ i < n, a2i−1 ≤ i for 1 ≤ i ≤ n,
and a2i ≤ i for 1 ≤ i < n. These are the strictly alternating pistols of length 2n− 1.

4 q-Analogues of the Okounkov–Olshanski Formula

The aim of this section is to generalize this reverse plane partition result to skew shapes
in a manner similar to the Okounkov–Olshanski formula. We first state a version of such
a result using the language of Grothendieck polynomials. To do so we need the following
notation, let Gλ/µ(y) := Gµ(	yλ | y).

Theorem 4.1.
rppλ/µ(q)
rppλ(q)

= Gλ/µ(1− q−1, 1− q−2, . . .).

Proof sketch of Theorem 4.1. For this section only let [a] := 1− qa, [n]! := ∏n
i=1[i], `i :=

λi + d− i, and mi := µi + d− i.
We write the Grothendieck polynomial in a similar determinantal form as the Jacobi–

Trudi identity for sλ/µ(1, q, . . .).
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Lemma 4.2. Gλ/µ(1− q−1, 1− q−2, . . .) · rppλ(q) = det
[

q`i(j−i)

[`i−mj]!

]d

i,j=1
.

To prove this lemma we use a result of Ikeda–Naruse [4] and a determinantal formula
of Krattenthaler [5, Corollary 8] for rppλ/µ(q). Finally, we combine Lemma 4.2 and a
known determinantal formula for rppλ/µ(q) to prove Theorem 4.1.

To rewrite Theorem 4.1 in a form similar to (OOF), we need a technical result that
categorizes set-valued semistandard tableaux by the maximum entries in each cell.

Definition 4.3. Given a semistandard tableau T of shape µ and a cell u ∈ [µ], let mT(u)
be the minimum k ≤ T(u) such that replacing T(u) with k still results in a semistandard
tableau.

Lemma 4.4. The set of all set-valued tableaux of shape µ can be decomposed as follows:⊔
T0∈SSYT(µ)

{
T | T(u) = Su ∪ {T0(u)}, Su ⊆ [mT0(u), T(u))

}
Here we let [a, b) = {n ∈ Z | a ≤ n < b}.

Finally, by evaluating the Grothendieck polynomial we can obtain Theorem 1.6.

Proof sketch of Theorem 1.6. Since factorial Grothendieck polynomials are symmetric [6]

rppλ/µ(q)

rppλ(q)
= Gµ(1− qλd+1, 1− qλd−1+2, . . . | 1− q−1, 1− q−2, . . .)

= ∑
T
(−1)|µ| ∏

u∈[µ]
∏

r∈T(u)
(qw(u,r) − 1).

We use Lemma 4.4 to rewrite this in terms of SSYT to obtain the desired formula.

Example 4.5. Continuing with Example 3.16 for the shape λ/µ = 2221/11, the reverse
plane partition q-analogue of the Okounkov–Olshanski formula (OOF) gives

rppλ/µ(q)

rppλ(q)
=
(
(q3 + q4 + q1)(1− q2)(1− q3) + (q6 + q3 + 1)(1− q1)(1− q3)

)
. (4.1)
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