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Abstract. We consider the algebraic combinatorics of the set of injections from a k-
element set to an n-element set. In particular, we give a new combinatorial formula
for the spherical functions of the Gelfand pair (Sk × Sn, diag(Sk)× Sn−k). We use this
combinatorial formula to give new LP bounds on the size of codes over injections.
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1 Introduction

Let Sn denote the symmetric group on n elements and let Sk,n denote the set of injections
f from [k] := {1, 2, · · · , k} to [n]. Let Gk,n := Sk × Sn and Kk,n := diag(Sk)× Sn−k. In this
work, we investigate the algebraic combinatorics of Sk,n via the Gelfand pair (Gk,n, Kk,n).
The spherical functions of (Gk,n, Kk,n) have combinatorial significance, as they describe
the eigenvalues of a natural family of graphs defined over Sk,n, i.e., the character table
of the so-called injection association scheme [12, 14]. We begin with a brief overview of
previous work related to the subject.

Diaconis and Shahshahani first observed that (Gk,n, Kk,n) is a Gelfand pair by showing
the double coset algebra C[Kk,n\Gk,n/Kk,n] is commutative [7]. Later, Greenhalgh [10]
found a closed expression for the spherical functions of (Gk,n, Kk,n) evaluated at the
double coset Kk,n\(k, k + 1)/Kk,n, equivalently, the eigenvalues of the graph over Sk,n
where σ, σ′ is an edge if their respective mappings agree on all but one symbol of the
domain. Using this expression, he showed that the mixing time of the uniform random
walk on this graph is approximately (n− k) log n + cn for some constant c > 0 [10].

In quantum computing, the algebraic combinatorics of Sk,n have been used to show
adversarial lower bounds on the time-complexity of the Collision, Set-Equality, and
Index-Erasure problems. These lower bounds are derived from properties of the dual
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characters and Krein parameters of the injection association scheme, which are expressed
in terms of the spherical functions of (Gk,n, Kk,n) [1, 2, 12].

In coding theory, a relaxation of permutation codes known as injection codes was
introduced in [8]. As the name suggests, one considers the problem of packing injections
in Sk,n with respect to Hamming distance. In Section 4, via computing the character table
of the injection scheme, we obtain new upper bounds on small injection codes, and we
point out some connections between injection codes and some problems in design theory.

In his thesis, Greenhalgh [10] posed the question of investigating the spherical func-
tions of (Gk,n, Kk,n), as they quite often correspond to interesting families of orthogonal
polynomials (e.g., special functions). For the case k = n− 1, the so-called "unbalanced"
pair (Sn−1 × Sn, diag(Sn−1)), Strahov [15] showed that many of the classical results in
the theory of symmetric functions have unbalanced analogues. In particular, he gave
a Murnaghan-Nakayama type rule and a Jacobi-Trudi identity for evaluating its spher-
ical functions. Note that the "balanced" pair (Sn × Sn, diag(Sn)) recovers the classical
representation theory of Sn [13].

Such expressions for the cases 2 ≤ k ≤ n − 2 are not known, and to what extent
the classical representation theory of the symmetric group carries over to these cases
is an intriguing question. Indeed, the absence of useful combinatorial formulas for the
spherical functions of (Gk,n, Kk,n) has been a major obstacle in each of the areas above.

We make some progress in this direction by giving a combinatorial formula for the
spherical functions of (Gk,n, Kk,n). The formula is significantly more revealing than the
known formulas, and it is much easier to compute. It can be used to estimate the
eigenvalues and ranks of matrices in the Bose–Mesner algebra of the injection scheme,
in special cases, giving exact closed-form expressions (we do not pursue this direction
in the present abstract), and it also allows us to efficiently compute the character tables
of injection schemes to advance the state-of-the-art on upper bounds for injection codes.

2 Injections and their Representation Theory

Recall that a generalized permutation is a 2×m array of positive integers(
i1 i2 · · · im
j1 j2 · · · jm

)
such that i1 ≤ · · · ≤ im, and if ir = ir+1, then jr ≤ jr+1.

Robinson-Schensted-Knuth Correspondence (RSK) associates a pair of semistandard Young
tableau of the same shape to each generalized permutation, and vice versa. We may
encode an injection 1 7→ j1, 2 7→ j2, · · · , k 7→ jk =: (j1, j2, · · · , jk) as a generalized permu-
tation: (

1 2 · · · k k + 1 · · · k + 1
j1 j2 . . . jk jk+1 · · · jn

)
,
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where jk+1, · · · , jn ∈ [n] \ {j1, · · · , jk} are ordered from least to greatest. It is easy to see
that RSK associates to each injection a standard Young tableau P and a semistandard
Young tableau Q of the same shape λ ` n. The subtableau of cells labeled k + 1 in Q
form a horizontal strip on n− k cells. Removing this horizontal strip results in a standard
Young tableau of shape µ ` k such that λ/µ is a horizontal strip, and so we arrive at the
following theorem.

Theorem 2.1. RSK gives an explicit bijection between Sk,n and pairs (P, Q) where P is a stan-
dard Young tableau of shape λ ` n and Q is a standard Young tableau of shape µ ` k such that
λ/µ is a horizontal strip.

For example, let n = 4 and k = 2. There are 4!/2! = 12 injections from [2] to [4]:

(1, 2), (1, 3), (1, 4), (2, 1), (2, 3), (2, 4),

(3, 1), (3, 2), (3, 4), (4, 1), (4, 2), (4, 3).
Their respective unique pairs (P, Q) of standard Young tableau are listed from left to
right as follows:

1 2 3 4 1 2 × ×
1 2 4
3

1 2 ×
×

1 2 3
4

1 2 ×
×

1 3 4
2

1 × ×
2

1 3 4
2

1 2 ×
×

1 3
2 4

1 2
× ×

1 2 4
3

1 × ×
2

1 4
2
3

1 ×
2
×

1 2
3 4

1 2
× ×

1 2 3
4

1 2 ×
×

1 3
2
4

1 ×
2
×

1 2
3
4

1 ×
2
× .

Corollary 2.2. The number of injections from [k] to [n] can be counted as follows:

|Sk,n| = ∑
µ,λ

f µ f λ

where the sum runs over pairs µ ` k, λ ` n such that λ/µ is a horizontal strip.

This generalizes the well-known identity |Sn| = ∑λ`n
(

f λ
)2 where f λ denotes the num-

ber of standard Young tableaux of shape λ. We now present the corroborating repre-
sentation theory for this count (see [12] for a more detailed discussion). For undefined
terminology concerning association schemes and Gelfand pairs, we refer the reader to [9]
and [13] respectively.

The group Gk,n acts on an injection σ : [k] → [n] as (π, ρ) : σ 7→ ρ ∗ σ ∗ π−1, where
(π, ρ) ∈ G and ∗ denotes the composition of functions. The stabilizer of the identity
injective function with respect to this action is the group Kk,n, i.e., the cosets Gk,n/Kk,n
are in one-to-one correspondence with injective functions. Since (Gk,n, Kk,n) is a sym-
metric Gelfand pair, the action above gives a permutation representation 1 ↑G

K that is
multiplicity-free. By the Littlewood-Richardson rule, we have

1↑Gk,n
Kk,n

∼=
⊕

µ`k,λ`n
λ/µ is a horiz. strip

µ⊗ λ. (2.1)
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The orbitals of Gk,n acting diagonally on Gk,n/Kk,n×Gk,n/Kk,n are in one-to-one corre-
spondence with double cosets Kk,n\Gk,n/Kk,n. Thinking of injections graphically as max-
imum matchings of the complete bipartite graph Kk,n, we observe that the double cosets
and orbitals are in one-to-one correspondence with graph isomorphism classes that arise
from the multiunion of any injection σ ∈ Sk,n with the identity injection e := (1, 2, · · · , k),
i.e., a disjoint union of even paths and even cycles.1 In light of this, we use the notation
(λ|ρ) to denote this isomorphism class, or the index of the orbital or double coset corre-
sponding to this isomorphism class, containing a cycle of length 2λi for all 1 ≤ i ≤ `(λ),
and a path of length 2ρi for all 1 ≤ i ≤ `(ρ).

Let C(λ|ρ) be the set of injections of cycle-path type (λ|ρ). For example, for k = 4 and
n = 8, we have (1, 2, 3, 4) ∈ C(14|04), (2, 1, 3, 5) ∈ C(2,1|03,1), and (5, 6, 7, 8) ∈ C(∅|14). The
following result (see [12]) gives a simple count for the sizes of these sets, analogous to
the well-known formula for determining the size of a conjugacy class in Sn.

Proposition 2.3. For any cycle-path type (λ|ρ), the size of the (λ|ρ)-sphere is

|Cλ|ρ| =
k!(n− k)!

∏k
i=0 i`i`i!ri!

where λ = (0`0 , 1`1 , · · · , k`k), ρ = (0r0 , 1r1 , · · · , krk), and `(ρ) = r1 + · · ·+ rk.

In analogy with Sn, let z(λ|ρ) := ∏k
i=0 i`i`i!ri! where the `i’s and ri’s are as defined above.

The aforementioned orbitals can be represented as a set Ak,n := {A(λ|ρ)} of symmet-
ric matrices, i.e.,

[A(λ|ρ)]i,j =

{
1 if i ∪ j ∼= (λ|ρ);
0 otherwise

for all injections i, j ∈ Sk,n and cycle-path types (λ|ρ). Moreover, these matrices pairwise
commute and sum to the all-ones matrix, hence Ak,n is a symmetric association scheme,
namely, the injection scheme.2 This scheme is of immediate combinatorial interest as it is
a simultaneous generalization of the symmetric group scheme and the Johnson scheme.
Its valencies v(λ|ρ) equal |C(λ|ρ)| and its multiplicities m(λ|ρ) are the dimensions of the
irreducibles corresponding to (λ|ρ). This latter correspondence is described as follows.

Recall that the irreducibles that appear in the aforementioned permutation represen-
tation of Gk,n on Sk,n have the form α⊗ β where β/α is a horizontal strip of size n− k.
Consider a tableau of β such that the cells of β/α are marked ×. Every column of α in
β with a marked cell below it corresponds to a part in ρ whereas an unmarked column
corresponds to a part in λ. For instance, taking α = (2, 1) and n = 7, we have the

1Note that an isolated vertex is an even path of length 0.
2More precisely, the (k, n)-injection scheme, also dubbed the (k, n)-partial permutation scheme.
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following cycle-path types for varying α⊗ β:

× ×
×

×︸ ︷︷ ︸
(∅|2,1,02)

× × ×

×︸ ︷︷ ︸
(1|2,03)

× × ×
×︸ ︷︷ ︸
(2|1,03)

× × × ×︸ ︷︷ ︸
(2,1|04)

.

Recall that if (G, K) be a Gelfand pair such that |K\G/K| = d, then the functions
ω1, ω2, · · · , ωd ∈ C[G/K] defined such that

ωi(g) =
1
|K| ∑

k∈K
χi(g−1k) ∀g ∈ G (2.2)

are called the spherical functions and form an orthogonal basis for the double coset algebra
C[K\G/K]. We call (2.2) the projection formula. Let α⊗ β be the irreducible corresponding
to (λ|ρ). For any (µ|ν), pick a double coset representative of the form ((), σ) ∈ Gk,n of
(µ|ν), which is possible due to the fact that the one-sided action of Sn on Sk,n is transitive.
We may write the (λ|ρ)-spherical function ((α⊗ β)-spherical function) evaluated at (µ|ν)
as the following projection onto the space of Kk,n invariant functions:

ω
(λ|ρ)
(µ|ν) = ω(λ|ρ)(((), σ)) =

1
|Kk,n| ∑

k∈Kk,n

χα⊗β(((), σ)−1k)

=
1
|Kk,n| ∑

(k1,k2)∈Kk,n

χα⊗β((k1, σ−1k1k2))

=
1

k!(n− k)! ∑
k1∈Sk

χα(k1) ∑
k2∈Sn−k

χβ(σ
−1k1k2),

and the character table P of the injection scheme can be written as

P(λ|ρ),(µ|ν) = |C(µ|ν)|ω
(λ|ρ)
(µ|ν) . (2.3)

Note that the entries of the character table of any symmetric association scheme are
algebraic integers, and the characters of the symmetric group are integers; therefore, the
projection formula shows that the entries of P are integers. As an aside, this gives a
much simpler proof of the integrality of the spectrum of so-called (n, k, r)-arrangement
graphs, which live in the Bose–Mesner algebra of the injection scheme (see [4]).

Although the projection formula gives an explicit way of computing the character
table ofAk,n, it is difficult to work with from both a computational and analytical point of
view. It becomes prohibitively difficult to compute the character table of Ak,n using this
formula for even modest values of k, n, and it seems difficult to derive good expressions
for the characters of Ak,n using this formula. In general, we are unaware of any proof
that uses the projection formula for spherical functions to derive tractable expressions
for the character tables of association schemes associated with Gelfand pairs.
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3 A Canonical Basis for Injections

Let (ρ1, V1) and (ρ2, V2) be two representations of a group H, and let φ : V1 → V2 be a
linear map. We say that φ intertwines ρ1 and ρ2 if φρ1(h) = ρ2(h)φ for all h ∈ H.

Lemma 3.1 (Schur’s Lemma). If (ρ1, V1) and (ρ2, V2) are irreducible representations of H and
φ is an intertwining map for ρ1 and ρ2, then either φ is the zero map or it is an isomorphism.

Let C[Sk,n] be space of all complex-valued functions defined over injections Sk,n. Let
{ei} defined such that ei(j) = δi,j for all i, j ∈ Sk,n be the standard basis for this space. For
any λ ` n, let Mλ be permutation representation of Sn acting on the set of all λ-tabloids.
Let {e{t}} defined such that e{t}({s}) = δ{t},{s} for any two λ-tabloids {t}, {s} be the
standard basis for this space. The product Mµ ⊗Mλ is a Gk,n-representation with basis
{e{s} ⊗ e{t}} where {s},{t} range over all µ-tabloids and λ-tabloids respectively.

Let {s} be µ-tabloid and {t} be a λ-tabloid such that µ ` k and λ ` n. We say that
{s}, {t} covers an injection σ ∈ Sk,n if row{s}(i) = row{t}(σ(i)) for all 1 ≤ i ≤ k. For
example, the injections (1, 2, 3, 4, 5) in red and (2, 3, 1, 5, 4) in blue are covered by the
tabloid below, whereas the injection (4, 1, 5, 6, 2) in green is not:

1 1 2 2 3 3 7 8
4 4 5 5
6

1 1 2 2 3 3 7 8
4 4 5 5
6

.

Let 1{s},{t} ∈ C[Sk,n] be the characteristic function of the set of injections covered by
{s}, {t}. For any µ ` k, λ ` n such that λ/µ is a horizontal strip, let φµ,λ : Mµ ⊗Mλ →
C[Sk,n] be the map defined such that

φµ,λ(e{s} ⊗ e{t}) = 1{s},{t} for all ({s}, {t}),

then extending linearly. An injection σ is covered by {s}, {t} if and only if (τ, π)σ is
covered by ({τs}, {πt}) for all (τ, π) ∈ Gk,n. This implies that

φµ,λ(τe{s} ⊗ πe{t}) = (τ, π)φµ,λ(e{s} ⊗ e{t}) for all (τ, π) ∈ Gk,n,

i.e., the linear map φµ,λ intertwines Mµ ⊗Mλ and C[Sk,n].
It is well-known that the λ-isotypic component of Mλ has multiplicity 1, and so the

(µ⊗ λ)-isotypic component of Mµ ⊗ Mλ has multiplicity 1. Let (ρµ,λ, Vµ ⊗ Vλ) be this
Gk,n-irreducible. A basis for ρµ,λ can be obtained by tensoring all pairs of standard
µ-polytabloids and standard λ-polytabloids. For each standard Young tableau t, let et
denote the corresponding standard polytabloid.

We say that an injection σ is aligned with respect to {s}, {t} if row{s}(i) = row{t}(σ(i))
and column{s}(i) = column{t}(σ(i)) for all 1 ≤ i ≤ k. For example, the blue injection
(2, 3, 6, 5, 4) is not aligned with the tabloids above, but the red injection (1, 2, 3, 4, 5) is.
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Lemma 3.2. For each irrep Vµ⊗Vλ of 1↑Gk,n
Kk,n

, there exists a v ∈ Vµ⊗Vλ such that φµ,λ(v) 6= 0.

Proof. Let e be the identity injection. Consider the pair of standard Young tableaux s, t of
shape µ and λ respectively obtained by inserting the numbers 1, 2, · · · , k into the rows
of s from left to right, top to bottom, then taking t to be the standard Young tableau
obtained from s by adding a horizontal strip and labeling the cells k + 1, k + 2, · · · , n
from left to right. For example, if µ = (3, 2, 1) and λ = (4, 3, 2), then s and t are

1 2 3
4 5
6

1 2 3 9
4 5 8
6 7 .

Note that e is aligned with respect to {s}, {t}. Let Cs, Ct denote the column-stabilizers of
s and t respectively. It is clear that

es ⊗ et = ∑
π∈Cs,π′∈Ct

sgn(π) sgn(π′) e{πs} ⊗ e{π′t}.

Let v = es ⊗ et and f = φµ,λ(v). We have

f (e) = ∑
π∈Cs,π′∈Ct

sgn(π) sgn(π′) 1{πs},{π′t}(e).

If π ∈ Cs sends i to j such that 1 ≤ i, j ≤ k, then π′ ∈ Ct must also send i to j, otherwise
{πs}, {π′t} does not cover e. On the other hand, if π′ ∈ Ct sends i to j such that
1 ≤ i ≤ k and k + 1 ≤ j ≤ n, then ({πs}, {π′t}) does not cover e for all π ∈ Cs, which
implies that the cells of the horizontal strip λ/µ are fixed points of every π′ ∈ Ct such
that {πs}, {π′t} covers e. The foregoing implies that sgn(π) sgn(π′) = 1 if and only if
{πs}, {π′t} covers σ. In particular, we have

f (σ) = ∑
π∈Cs,π′∈Ct

sgn(π) sgn(π′) 1{πs},{π′t}(σ) = |Cs|,

thus f = φµ,λ(v) 6= 0, as desired.

Now let fs,t := φµ,λ where s, t are standard Young tableaux of shape µ ` k and λ ` n
such that λ/µ is a horizontal strip. Let F := { fs,t} where s and t range over all such
standard Young tableaux.

Theorem 3.3. The set F is a basis for C[Sk,n] such that 〈 fq,r, fs,t〉 = 0 for all fq,r ∈ Vµ⊗λ and
fs,t ∈ Vµ′⊗λ′ such that λ/µ 6= λ′/µ′.

Proof. By Lemma 3.2, φµ,λ is not the zero map, so by Schur’s Lemma, we have that
φµ,λ is an isomorphism. Since the elements of F are pairwise linearly independent,
Corollary 2.2 implies that F is a basis. as desired.
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It would be interesting to refine the result above to a Fourier basis for C[Sk,n], that is,
further require that basis functions in the same isotypic component are orthogonal. Note
that Young’s orthogonal form furnishes such a basis for the k = n case.

Theorem 3.4 (Frobenius Reciprocity). Let ρ be an irreducible representation of a group H and
let K be a subgroup of H. The multiplicity of the ρ-isotypic component of 1 ↑H

K is the dimension
of the subspace of K-invariant functions of the ρ-isotypic component.

Let Qk,n denote the projection onto the space of Kk,n-invariant functions. For any µ ` k,
define µ! := µ1!µ2! · · · µ`(µ)!.

Lemma 3.5. Let s, t be standard Young tableaux of shape µ ` k and λ ` n such that λ/µ is a
horizontal strip. If Qk,n fs,t 6= 0, then 1

(µ>)! Qk,n fs,t is the (µ⊗ λ)-spherical function.

Proof. By construction, fs,t ∈ C[Sk,n] lives in the irreducible W ≤ C[Sk,n] that is isomor-
phic to Vµ⊗Vλ. Because Qk,n sends W to W, we have that Qk,n fs,t ∈W is a Kk,n-invariant
function. By Frobenius Reciprocity, the space of Kk,n-invariant functions of W has dimen-
sion 1; therefore, if Qk,n fs,t 6= 0, then it is the (µ⊗ λ)-spherical function up to scaling.
To ensure that the (µ, λ)-spherical function is 1 on the Kk,n\()/Kk,n double coset, we
normalize by |Cs| = (µ>)!.

We are now ready to give a proof of our formula for the spherical functions of (Gk,n, Kk,n).
Let s, t be the pair of standard Young tableaux as defined in the proof of Lemma 3.2.

Theorem 3.6. Let ωµ⊗λ be the (µ⊗ λ)-spherical function of the Gelfand pair (Gk,n, Kk,n). Then

ω
µ⊗λ

(γ|ρ) =
1

|C(γ|ρ)|
∑

π∈Ct

sgn(π)|{σ ∈ C(γ|ρ) : {s}, {πt} covers σ}|.

for all cycle-path types (γ|ρ).

Proof. An argument similar to the proof of Lemma 3.2 shows that Qk,n fs,t 6= 0, hence
Qk,n fs,t = ω(µ⊗λ) by the lemma above. In particular, we have

ω
µ⊗λ

(γ|ρ) =
1

(µ>)!|C(γ|ρ)|
∑

π∈Cs,π′∈Ct

sgn(π) sgn(π′)|{σ ∈ C(γ|ρ) : {πs}, {π′t} covers σ}|.

But note that Cs ≤ Ct, which gives us

ω
µ⊗λ

(γ|ρ) =
1

(µ>)!|C(γ|ρ)|
∑

π∈Cs,τπ∈Ctπ

sgn(τ)|{σ ∈ C(γ|ρ) : {πs}, {τπt} covers σ}|.

Since {πs}, {τπt} covers σ if and only if {s}, {τt} covers σ, we may rewrite the above as

ω
µ⊗λ

(γ|ρ) =
1

|C(γ|ρ)|
∑

π∈Ct

sgn(π)|{σ ∈ C(γ|ρ) : {s}, {πt} covers σ}|,

which completes the proof.
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Just to quickly demonstrate our formula’s efficacy, let µ := (µ1 + n− k, µ2, · · · , µ`(µ)) ` n
for any µ ` k, and consider the spherical function ωµ⊗µ. If ρ has more than µ1 non-trivial
paths for any (γ|ρ), then it is not hard to see that ω

µ⊗µ

(γ|ρ) = 0, a fact which is hardly
transparent from the projection formula. Indeed, the (µ⊗ µ)-spherical functions play a
crucial role in [1, 12], and our formula may allow one to improve the results of [12].

4 LP Bounds for Injection Codes

For more details on association schemes and their connections to coding theory, see [9,
6]. Let A = {A0, A1, . . . , Ad} be an association scheme over a set X. For a subset Y ⊆ X,
let φ = φY ∈ {0, 1}X be its characteristic function. Assuming Y 6= ∅, its inner distribution
vector a = aY = (a0, a1, . . . , ad) has entries

ai =
φ>Aiφ

φ>φ
,

representing the relative frequencies of ith associates among pairs of elements of Y.
The following observation is simple, yet has profound consequences.

Theorem 4.1 (Delsarte, [6]). For ∅ 6= Y ⊆ X, its inner distribution vector a satisfies

aQ ≥ 0,

where Q is the dual eigenmatrix.

Using Theorem 4.1, Tarnanen [16] computed LP bounds on permutation codes for
n ≤ 10 and various allowed distance sets. This was extended by Bogaerts [3] to n ≤
14. For the injection scheme Ak,n, using the formula of Theorem 3.6 we implemented
Theorem 4.1 for 3 ≤ k < n ≤ 15, with the exception of a few parameter pairs (k, n) at
the larger end of this triangle, which are presently out of reach.

Following the notation used in [5, 8, 16], we write M(n, k, d) for the maximum size
of an injection code with minimum Hamming distance d. Some basic observations and
bounds on M(n, k, d) can be found in [8]. An easy recursive upper bound is as follows.

Proposition 4.2 (Singleton bound). M(n, k, d) ≤ n!/(n− k + d− 1)! = |Sk−d+1,n|.

Additional bounds on M(n, k, d) are motivated by interest in the permutation code
case, both for applications to powerline communication [5, 11] and as a problem of
independent interest in extremal combinatorics. For example, equality in the Singleton
bound is equivalent [8] to existence of an ordered design, that is, a set of k-tuples of distinct
elements from [n] such that, when restricted to any k− d + 1 positions, every injection
in Sk−d+1,n appears exactly once.
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n k d M ≤
7 6 4 199
8 6 3 1513

7 4 1462
9 7 4 2846

8 4 12096
5 2417

10 7 3 27308
8 4 26206

5 5039
9 4 92418

5 19158
6 4991

11 8 4 52646

n k d M ≤
11 9 4 256682

5 47073
10 4 936332

5 185560
6 42068

12 8 3 602579
9 4 584327

10 4 2699260
5 471981

11 4 10241521
5 1922527
6 411090

13 9 4 1185053

n k d M ≤
13 12 4 123235550

5 23347599
6 4687470
7 910371

14 13 4 1621775700
5 309490273
6 58903464
7 10510496
8 2117618

15 14 4 23358981663
5 4130012797
6 804830167
7 138132435
8 24260981

Table 1: Upper bounds on M(n, k, d) via linear programming.

The case d = k − 1 has special significance for its connection with latin squares.
Colbourn, Kløve and Ling [5] showed that the existence of r mutually orthogonal latin
squares of order n imply a permutation code of length n and minimum distance n− 1.
Here, the code permutations correspond to the n level sets occurring among each of the
r squares. With this same construction, it is easy to see that the existence of r mutually
orthogonal k × n latin rectangles implies M(n, k, k − 1) ≥ rn. It follows that an upper
bound on M(n, k, k− 1) induces an upper bound on the number of mutually orthogonal
k× n latin rectangles.

5 Future Work and Open Questions

As mentioned before, our main open-ended question is to what extent the representation
theory of the symmetric group (i.e., the Gelfand pair (Sn × Sn, diag(Sn))) carries over to
the Gelfand pair (Gk,n, Kk,n). Indeed, we believe there are stronger connections to the
representation theory of the symmetric group yet to be discovered.

For example, following [13, p. I.7] and letting

C′ :=
⊕

k,n : k≤n

C[Kk,n\Gk,n/Kk,n],

one can define a natural bilinear multiplication on C′ so that it is a commutative and as-
sociative graded C-algebra. Classically, the characteristic map ch : C → Λ is an isometric
isomorphism between the commutative and associative graded algebra C generated by
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all irreducible characters of symmetric groups and the ring of symmetric functions Λ. It
would be particularly interesting to find an analogous characteristic map ch’ : C′ → Λ′

to a suitable polynomial ring Λ′ such that its vector space (Λ′)k of degree-k polynomials
has dimension equal to the number of cycle-types of Sk,n.

Finally, we suspect there are other "unbalanced" Lie and q-analogues of (Gk,n, Kk,n)
that might be worth investigating, which would likely require different techniques than
the ones presented here.
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