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Bijective link between Chapoton’s new intervals
and bipartite planar maps
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1LIGM, Univ. Gustave Eiffel, CNRS, Marne-la-Vallée, France

Abstract. In 2006, Chapoton defined a class of Tamari intervals called “new intervals”
in his enumeration of Tamari intervals, and he found that these new intervals are
equinumerous with bipartite planar maps. We present here a direct bijection between
these two classes of objects using a new object called “degree tree”. Our bijection also
gives an intuitive proof of an unpublished equi-distribution result of some statistics on
new intervals given by Chapoton and Fusy.

Résumé. En 2006, Chapoton a défini une classe d’intervalles de Tamari nommés “in-
tervalles nouveaux” dans son travail de comptage des intervalles de Tamari. Il a décou-
vert que ces intervalles nouveaux sont équi-énumérés avec les cartes planaires bipar-
ties. Nous proposons une bijection directe entre ces deux classes d’objets en utilisant
un nouvel objet appelé “arbre des degrés”. Notre bijection donne aussi une preuve in-
tuitive d’un résultat non publié de Chapoton et Fusy sur l’équi-distribution de certains
statistiques sur les intervalles nouveaux.
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On classical Catalan objects, such as Dyck paths and binary trees, we can define the
famous Tamari lattice, first proposed by Tamari [13]. This partial order was later found
woven into the fabric of other more sophisticated objects. A notable example is diagonal
coinvariant spaces, which have led to several generalizations of the Tamari lattice [1, 12],
and also incited the interest in intervals in such Tamari-like lattices. Recently, there is a
surge of interest in the enumeration [3, 4, 8] and the structure [2, 6] of different families
of Tamari-like intervals. In particular, several bijective relations were found between
various families of Tamari-like intervals and planar maps [2, 7, 8]. The current work is a
natural extension of this line of research.

In [3], Chapoton introduced a subclass of Tamari intervals called new intervals, which
are irreducible elements in a grafting construction of intervals. Definitions of these
objects and related statistics are postponed to the next section. The number of new
intervals in the Tamari lattice of order n ≥ 2 was given in [3] as

3 · 2n−2(2n− 2)!
(n− 1)!(n + 1)!
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Figure 1: Our bijections between bipartite planar maps, degree trees and new intervals

This is also the number of bipartite planar maps with n − 1 edges. Furthermore, in a
more recent unpublished result of Chapoton and Fusy (see [9]), a symmetry in three
statistics on new intervals was observed then proven by identifying the corresponding
generating function of new intervals with that of bipartite planar maps recording the
numbers of faces, of black and of white vertices, and those are well-known to be equi-
distributed. These results strongly hint a bijective link between the two classes of objects.

In this article, we give a direct bijection between new intervals and bipartite planar
maps (see Figure 1) explaining the results above. Our bijection also generalizes a bijec-
tion on trees given in [11] in the study of random maps. We have the following theorem.

Theorem 0.1. There is a bijection IM, with MI its inverse, such that, for a bipartite planar map
M with n edges and I = IM(M), which is a new interval of size n + 1, we have

white(M) = c00(I), black(M) = c01(I), face(M) = 1 + c11(I).

Here, black(M), white(M) and face(M) are the number of black vertices, white vertices and
faces of M respectively, while c00(I), c01(I) and c11(I) are some natural statistics on new inter-
vals that we will define in Section 1.

These bijections use a new family of objects called degree trees, and are in the same
line as some previous work of the author [7, 8]. While the symmetry in statistics of
new intervals is known to Chapoton and Fusy [9], our bijection intuitively captures this
symmetry. Due to space limit, some proofs are omitted.

1 Preliminaries

A Dyck path P is a lattice path of up steps u = (1, 1) and down steps d = (1,−1),
starting from (0, 0), ending on the x-axis without falling below. The size (also called the
semilength) of P is half of its length. We denote by Dn the set of Dyck paths of size n.
A rising contact of P is an up step on the x-axis. We can also see P as a word in {u, d}
whose prefixes all have at least as many up steps than down steps.
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Figure 2: An example of Chapoton’s new interval with bracket vectors for both paths
and related statistics.

We now define the Tamari lattice as a partial order on Dn in the spirit of [10]. Given a
Dyck path P seen as a word, its i-th up step ui matches with a down step dj if the factor Pi
of P strictly between ui and dj is a Dyck path. Clearly, there is a unique match for every
ui. We define the bracket vector VP of P by taking VP(i) to be the size of Pi. The Tamari
lattice of order n is the partial order � on Dn where P � Q if and only if VP(i) ≤ VQ(i)
for all i. See Figure 2 for an example. A Tamari interval of size n can be viewed as a pair
of Dyck paths [P, Q] of size n with P � Q.

In [3], Chapoton defined a subclass of Tamari intervals called “new intervals”. Orig-
inally defined on pairs of binary trees, this notion can also be defined on pairs of Dyck
paths (see [9]). The example in Figure 2 is also a new interval. Given a Tamari interval
[P, Q], it is a new interval if and only if the following conditions hold:

(i) VQ(1) = n− 1;

(ii) For all 1 ≤ i ≤ n, if VQ(i) > 0, then VP(i) ≤ VQ(i + 1).

We denote by In the set of new intervals of size n ≥ 1.
We now define some statistics on new intervals. Given a Dyck path P of size n, its

type Type(P) is a word w such that, if the ith up step ui is followed by an up step in P,
then wi = 1, otherwise wi = 0. Since the last up step is always followed by a down step,
we have wn = 0. Note that our definition here is slightly different from that in, e.g., [8],
where the last letter is not taken into account. Given a new interval I = [P, Q] ∈ In, if
Type(P)i = 1 and Type(Q)i = 0, then we have VP(i) > 0 = VQ(i), violating the condition
for Tamari interval. Hence, we have only three possibilities for (Type(P)i, Type(Q)i).
We define c00(I) (resp. c01(I) and c11(I)) to be the number of indices i such that
(Type(P)i, Type(Q)i) = (0, 0) (resp. (0, 1) and (1, 1)). Figure 2 also shows such statistics
in the example. We define the generating function FI ≡ FI(t; u, v, w) of new intervals as

FI(t; u, v, w) = ∑
n≥1

tn ∑
I∈In

uc00(I)vc01(I)wc11(I). (1.1)

For the other side of the bijection, a bipartite planar map M is a drawing of a bipartite
graph on a plane (in which all edges link a black vertex to a white one), defined up to
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Figure 3: Left: an example of bipartite map. Right: an example of degree trees and the
corresponding edge labels (zeros are omitted). Both with related statistics.

continuous deformation, such that edges intersect only at their ends. Edges in M cut the
plane into faces, and the outer face is the infinite one. The size of M is its number of edges;
a map of size zero consists of only one black vertex. In the following, we only consider
rooted bipartite planar maps, which have a distinguished corner c called the root corner
of the outer face on a black vertex, called the root vertex. See the left part of Figure 3 for
an example. We denote byMn the set of (rooted) bipartite planar maps of size n.

We now define the generating function FM ≡ FM(t; u, v, w) of bipartite planar maps
recording these statistics by

FM ≡ FM(t; u, v, w) = ∑
n≥0

tn ∑
M∈Mn

ublack(M)vwhite(M)wface(M). (1.2)

It is well-known that black(M), white(M), face(M) are jointly equi-distributed in Mn,
meaning that FM is symmetric in u, v, w. This can be seen with the bijection between
bipartite maps and bicubic maps by Tutte [14].

To describe our bijection, we propose an intermediate class of objects called “degree
tree”. An example is given in the right part of Figure 3. We can also see degree trees as
a variant of description trees (see [5]). A degree tree is a pair (T, `), where T is a plane
tree, and ` is a labeling function defined on nodes of T such that

• If v is a leaf, then `(v) = 0;

• If v is an internal node with k children v1, v2, . . . , vk, then `(v) = k − a + `(v1) +
`(v2) + · · ·+ `(vk), where 0 ≤ a ≤ `(v1).

We observe that the leftmost child of a node v is special when computing `(v). This is
different from the case of description trees. The size of a degree tree (T, `) is the number
of edges. We denote by Tn the set of degree trees (T, `) of size n.

Given a degree tree (T, `), we can replace ` by a labeling function on edges. More
precisely, for an internal node v, we label its leftmost descending edge (i.e., the edge to
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its leftmost child) by the value a used in the computation of `(v), and all other edges by
0. We denote this edge labeling function by Λ(`). It is clear that Λ is an injection. Given
λ = Λ(`), the vertex labeling ` can be easily recovered.

We also define several natural statistics on degree trees, illustrated in Figure 3, using
its edge labeling. Let (T, `) be a degree tree with λ = Λ(`), and v a node in T. If v is a
leaf, then it is called a leaf node. Otherwise, let e be the leftmost descending edge of v. If
λ(e) = 0, then v is a zero node, otherwise it is a positive node. We denote by lnode(T, `),
znode(T, `) and pnode(T, `) the number of leaf nodes, zero nodes and positive nodes in
(T, `) respectively. If T ∈ Tn, we have lnode(T, `) + znode(T, `) + pnode(T, `) = n + 1.

Lemma 1.1. Let (T, `) be a degree tree, and λ = Λ(`) the related edge labeling. We have

1. If v has m descendants, then `(v) = m−∑e∈Tv λ(e), with Tv the subtree induced by v;

2. `(v) ≥ 0, and `(v) = 0 if and only if v has no descendant.

Proof sketch. We proceed by induction on the size of induced subtrees.

2 Degree trees and bipartite maps

Our bijection from bipartite maps to new intervals is relayed by degree trees, in which
the related statistics are transferred. We start by the bijection from maps to trees.

2.1 From bipartite maps to degree trees

In [11], Janson and Stefánsson described a bijection between plane trees with n nodes
and k leaves and plane trees with n nodes in which k of them are of even depth, giving
another interpretation of Narayana numbers. We now introduce a bijection betweenMn
and Tn, which can be seen as a generalization of the bijection in [11].

We first define a transformation TM fromMn to Tn for all n. Let M ∈ Mn. If n = 0,
we define TM(M) to be the tree with one node. Otherwise, we perform the following
exploration procedure to obtain a tree T with a labeling λ on its edges. In this procedure,
we distinguish edges in M, which will be deleted one by one, and edges in T that we
add. We start from the root vertex, with the edge next to the root corner in clockwise
order as the pending edge. Suppose that the current vertex is u and the pending edge
is eM, which is always in M. We repeat two steps, advance and prepare, until termination.
The advance step comes in the following cases illustrated in Figure 4:

(A1) If eM is a bridge to a vertex v of degree 1, then we delete eM in M and add eT = eM
in T. The new current vertex is u′ = u, and we define λ(eT) = 0.
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Figure 4: Cases in the advance step of TM and an example of the bijection TM. Nodes
in the same shaded pack come from the same vertex in the map.

(A2) If eM is a bridge to a vertex v of degree at least 2, let e1 be the edge adjacent to v
next to eM in clockwise order, and w the other end of e1. We draw a new edge eT
in T from u to w such that eM, e1, eT form a face with u, v, w in counter-clockwise
order. The next current vertex is u′ = w. We delete eM, and define λ(eT) = 0.

(A3) If eM is not a bridge, we split u into uM and uT, with uT taking all edges in T and
uM taking the rest. We add a new edge eT in T from uM to uT. Since eM is not
a bridge, by planarity, it is between the outer face and a face of degree 2m with
m > 0. We define λ(eT) = m and delete eM. The next current vertex is u′ = uT.

In the prepare step, let u′ be the new current vertex, which is adjacent to the new edge eT.
The next pending edge is the next remaining edge in M starting from eT in the clockwise
order around u′. If no such edge exists, we backtrack in the tree T until finding a vertex
u′′ with such an edge e′′M, and we set u′′ as the current vertex, and e′′M the pending edge.
If no such vertex exists, the procedure terminates, and we shall obtain a tree T with an
edge label function λ. We define TM(M) as the degree tree (T, Λ−1(λ)). See Figure 4
for an example of TM. The bijection in [11] is simply TM applied to a plane tree, where
Case (A3) never applies, and the degree tree (T, `) obtained has λ = 0 for all edges.

We now prove that TM(M) is well-defined. We start by describing the structure of
the map in intermediate steps. The leftmost branch of a tree is the path starting from the
root node and taking the leftmost descending edge at each node till a leaf.

Lemma 2.1. Let M ∈ Mn and T = TM(M). Let M+
i be the map after the i-th prepare step,

with ui the current vertex and ei the pending edge. We denote by Ti the partially constructed T
in M+

i , and by Mi the remaining of M. Clearly Ti and Mi form a partition of edges in M+
i .
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For every i, Ti is a tree, and M+
i is Ti with connected components of Mi attached to the left

of nodes on the leftmost branch of Ti, one component to only one vertex, with ui the deepest such
vertex and ei its first edge in Mi in clockwise order from the leftmost branch of Ti.

Sketch of proof. We proceed by induction on i. It clearly holds when i = 0, and we check
that the properties are kept for each case of each step in the procedure of TM.

We now prove that trees obtained in TM are degree trees.

Proposition 2.2. Given M ∈ Mn, then (T, `) = TM(M) is a degree tree of size n.

Proof sketch. By Lemma 2.1, T is a tree of size n, and the first time a node u is explored,
there is a component Mu of remaining edges in M attached to u. We prove by induction
and case checking that the outer face of Mu is of degree 2`(u), hence (T, `) ∈ Tn.

The transformation TM transfers some statistics fromMn to Tn as follows.

Proposition 2.3. Given M ∈ Mn, let (T, `) = TM(M). We have

white(M) = lnode(T, `), black(M) = znode(T, `), face(M) = 1 + pnode(T, `).

Proof. By the definition of TM, all leaves in T are from white vertices, which are never
split. Hence white(M) = lnode(T, `). Then at each occurrence of Case (A3), we lost a
face but gain a positive node in T, thus face(M) = 1 + pnode(T, `), with 1 for the outer
face. Now for black(M) = znode(T, `), we note that a new black vertex in M is reached
only in Case (A2), which leads to a zero edge.

2.2 From degree trees to bipartite maps

We now define a transformation MT from Tn to Mn. Let (T, `) ∈ Tn and λ = Λ(`).
We now perform a procedure that deals with nodes in T in postorder (i.e., first visit the
subtrees induced by children from left to right, then the parent). For each node u, let u∗

be its parent and eu the edge between u and u∗. By construction, when we deal with u,
its induced subtree has already been dealt with and transformed into a bipartite planar
map Mu attached to u. We have three cases, illustrated in Figure 5.

• Case (A1’): If u is a leaf, then we delete eu from T and add it to M.

• Case (A2’): If u is not a leaf but λ(eu) = 0, let e′ be the edge next to eu around
u in counterclockwise order, and v the other end of e′. As Mu is bipartite, v 6= u.
We add a new edge eM from u∗ to v such that the triangle formed by eu, e′, eM has
vertices u∗, u, v in clockwise order, without any edge inside. We then delete eu.
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Figure 5: Cases in the procedure of MT , and an example of MT

• Case (A3’): If λ(eu) > 0, let d be the degree of the outer face of Mu. If 2λ(eu) ≥ d,
then the procedure fails. Otherwise, we start from the corner of Mu to the right
of eu and walk clockwise along edges for 2λ(eu)− 1 times to another corner, and
we connect the two corners by a new edge eM in M, making a new face of degree
2λ(eu). The component remains planar and bipartite. We finish by contracting eu.

In the end, we obtain a planar bipartite map M with the same root corner as T. We
define MT (T, `) = M. We see that (A1’), (A2’) and (A3’) are exactly the opposite of (A1),
(A2), (A3) in the definition of TM.

Proposition 2.4. Given (T, `) a degree tree, for a node u ∈ T, let Mu be the map obtained in
the procedure of MT (T, `) from the subtree Tu induced by u. Then the degree of the outer face of
Mu is 2`(u), and the procedure never fails.

Proof sketch. We proceed by induction on u in reverse postorder with case checking.

Proposition 2.5. For (T, `) a degree tree, M = MT (T, `) is a bipartite planar map.

Proof. Planarity is easily checked through the definition of MT . Faces in M are only
created in Case (A3’), thus all even. Along with planarity, M is bipartite.

It is also clear that MT is the inverse of TM.

Proposition 2.6. The transformation TM is a bijection fromMn to Tn, with MT its inverse.

Proof sketch. By Propositions 2.2 and 2.5, we only need to prove that MT is the inverse
of TM. It is clear from definitions that TM ◦MT = idT . To show that MT ◦ TM = idM,
the only case to check is Case (A2) of TM. However, by planarity, there is only one way
to revert Case (A2) by creating a face, which is exactly Case (A2’) in MT .
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3 Degree trees and new intervals

We now relate degree trees to new intervals, which also explains the conditions of new
intervals in terms of trees.

3.1 From degree trees to new intervals

Given (T, `) ∈ Tn, let λ = Λ(`). We define a transformation IT from degree trees to new
intervals by constructing a new interval [P, Q] from (T, `). We first introduce a classical
bijection between plane trees and Dyck paths. Given the plane tree T, to get a Dyck path
Q′, we perform a preorder traversal (parent first, then subtrees from left to right) of T, and
append u (resp. d) to Q′ each time we move away from (resp. closer to) the root. This
is a bijection. We then take Q = uQ′d. For P, we first assign to every node a certificate.
We process nodes in T, initially all colored black, in the reverse order of the preorder of
T. At the step for a node v, if v is a leaf, then its certificate is itself. Otherwise, we visit
nodes after v in preorder, and color each visited black node by red, stopping at some
node w just before the (λ(e) + 1)-st black node, where e is the leftmost descending edge
of v. We take w as the certificate of v. When λ(e) = 0, we take w = v. We now define
a certificate function c on vertices of T similar to those in [7, 8], with c(w) the number of
nodes with w as certificate. The path P is given by concatenation of udc(v) for all nodes
v in preorder. We then define IT (T, `) = [P, Q]. See an example of IT in Figure 6.

To prove that IT (T, `) is a new interval, we start by some properties of certificates.

Lemma 3.1. Let (T, `) be a degree tree of size n. For a node v ∈ T, let w be the certificate of v.
Then either w = v, or w is a descendant of v in the leftmost subtree T∗ of v. In the latter case, w
is not the last node of T∗ in preorder.

Proof sketch. We proceed by induction on nodes in the reverse preorder. The base case is
a leaf, thus trivial. For the induction step, Lemma 1.1 ensures that, at the process step of
each node, there are enough black vertices in the leftmost subtree to color.
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Lemma 3.2. Let (T, `) be a degree tree, and v, v′ two distinct nodes in T with w, w′ their
certificates respectively. Suppose that v precedes v′ in the preorder. Then w cannot be strictly
between v′ and w′ in the preorder. Furthermore, if v′ 6= w′, then w 6= v′.

Proof. We only need to consider the case v 6= w and v′ 6= w′, as other cases are trivial.
In the coloring process, since v precedes v′ in the preorder, v′ is treated before v. By
construction, in the coloring process, after the step for v′, the nodes between v′ to w′

(excluding v′ but including w′) are all colored red. Therefore, in the process step for
v, the visit will not stop strictly between v′ and w′, nor at v′, as such a stop requires a
succeeding black node. Hence, w is not strictly between v′ and w′, and w 6= v′.

Note that in the lemma above, we can have w = v′ when v′ = w′.

Proposition 3.3. Let (T, `) ∈ Tn. Then [P, Q] = IT (T, `) is a new interval in In+1.

Proof sketch. Q is clearly a Dyck path. P is a Dyck path since a node never comes after
its certificate in preorder by Lemma 3.1. Let vi be the i-th node in preorder in T. VQ(i)
is the size of the subtree Ti induced by vi. The case VQ(i) = 0 is trivial. Suppose that
VQ(i) > 0. By Lemma 3.2, steps in VP(i) are generated by nodes from after vi till its
certificate, which is in the subtree induced by the first child of vi if VQ(i) > 0, and this
child is the (i + 1)-st node in preorder. We thus have VP(i) ≤ VQ(i + 1) < VQ(i).

We also have the following property of a new interval obtained via IT .

Proposition 3.4. For a degree tree (T, `) with λ = Λ(`), let I = [P, Q] = IT (T, `). For an
internal node v ∈ T, let e be the edge linking v to its leftmost child v′. Let Pv be the subpath of P
strictly between the up step contributed by v in P and its matching down step. Then the number
of rising contacts in Pv as a Dyck path is λ(e).

3.2 From new intervals to degree trees

We now define a transformation TI for the reverse direction. Let I = [P, Q] ∈ In+1 be a
new interval. Since VQ(1) = n, we can write Q = uQ′d. We first construct a plane tree T
of size n from Q′ with the classic bijection described at the beginning of Section 3.1. Now,
let v1, . . . , vn+1 be the nodes of T in preorder. VQ(i) is the size of the subtree induced by
vi. We now define an edge labeling λ of T. If e is the left-most descending edge of vi,
then we take λ(e) the number of rising contacts in Pi, with Pi the subpath of P strictly
between the i-th up step and its matching down step. Otherwise, we take λ(e) = 0. Let
` = Λ−1(λ). We define TI(I) = (T, `). An example of TI is given in Figure 7.

Proposition 3.5. Let I = [P, Q] ∈ In+1, then (T, `) = TI(I) is a degree tree of size n.

Proof sketch. Let λ = Λ(`). Suppose that the j-th node vj of T in preorder is not a leaf. By
the conditions of new intervals, the steps counted in VP(j) are all in the leftmost subtree
of vj. We thus check that (T, `) satisfies the conditions of degree trees.



Bijective link between Chapoton’s new intervals and bipartite planar maps 11

≡

I = [P,Q]

u1

u2
3

2 2
2u4

u8u1

u2

u4

u8 Q

P
TI(I)

0

0 0

2

1

3

6

6

0

00 0

2

2

5
1

v1

v2

v4 v8

3

2

2 2

Figure 7: Example of the bijection TI on a new interval I = [P, Q]

Proposition 3.6. Given I = [P, Q] ∈ In+1, let (T, `) = TI(I). We have

c00(I) = lnode(T, `), c01(I) = znode(T, `), c11(I) = pnode(T, `).

Proof. Let vi be the i-th node of T in preorder. By the definition of TI , the node vi is a leaf
if and only if Type(Q)i = 0. Hence, c00(I) = lnode(T, `). Moreover, if vi is an internal
node, then Type(P)i = 0 if and only if λ(ei) = 0, where ei is the leftmost descending
edge of vi, and λ = Λ(`). We thus conclude for the other equalities.

Using Proposition 3.4, we check that IT and TI are bijections.

Proposition 3.7. IT is a bijection from Tn to In+1 for any n ≥ 0, with TI its inverse.

4 Symmetries and structure

With the bijections in Sections 2 and 3, we construct the bijections in our main result.

Proof of Theorem 0.1. We take IM = IT ◦ TM and MI = MT ◦ TI , valid by Proposi-
tions 2.6 and 3.7. The equalities of statistics come from Propositions 2.3 and 3.6.

Corollary 4.1. The generating functions FI and FM are related by tFM = wFI . In particular,
the series wFI is symmetric in u, v, w.

Proof. The equality is a direct translation of Theorem 0.1 in generating functions. The
symmetry of wFI comes from that of FM.

As mentioned before, the symmetry in c00, c01, c11 was already known to Chapoton
and Fusy, and a proof was outlined in [9], using recursive decompositions of new inter-
vals [3, Lemma 7.1] and bipartite planar maps. Our bijective proof can be seen as a direct
version of that proof, as degree trees are canonical descriptions of both decompositions.
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