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Beyond Göllnitz’ Theorem I: A Bijective Approach
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Abstract. In 2003, Alladi, Andrews and Berkovich proved an identity for partitions
where parts occur in eleven colors: four primary colors, six secondary colors, and
one quaternary color. Their work answered a longstanding question of how to go
beyond a classical theorem of Göllnitz, which uses three primary and three secondary
colors. Their main tool was a deep and difficult four parameter q-series identity. In
this extended abstract, we take a different approach. Instead of adding an eleventh
quaternary color, we introduce forbidden patterns and give a bijective proof of a ten-
colored partition identity lying beyond Göllnitz’ theorem. Using a second bijection, we
show that our identity is equivalent to the identity of Alladi, Andrews, and Berkovich.
From a combinatorial viewpoint, the use of forbidden patterns is more natural and
leads to a simpler formulation. In fact, in Part II following the full paper, we show
how our method can be used to go beyond Göllnitz’ theorem to any number of primary
colors.
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1 Introduction and Statements of Results

1.1 History

A partition of a positive integer n is a non-increasing sequence of positive integers whose
sum is equal to n. For example, the partitions of 7 are

(7), (6, 1), (5, 2), (5, 1, 1), (4, 3), (4, 2, 1), (4, 1, 1, 1), (3, 3, 1), (3, 2, 2), (3, 2, 1, 1),

(3, 1, 1, 1, 1), (2, 2, 2, 1), (2, 2, 1, 1, 1), (2, 1, 1, 1, 1, 1) and (1, 1, 1, 1, 1, 1, 1) ·
The study of partition identities has a long history, dating back to Euler’s proof that
there are as many partitions of n into distinct parts as partitions of n into odd parts. The
corresponding identity is

(−q; q)∞ =
1

(q; q2)∞
, (1.1)

where (x; q)m = ∏m−1
k=0 (1− xqk), for any m ∈N∪ {∞} and x, q such that |q| < 1.

One of the most important identities in the theory of partitions is Schur’s theorem
[11].

*konan@irif.fr.

mailto:konan@irif.fr


2 Isaac Konan

Theorem 1.1 (Schur 1926). For any positive integer n, the number of partitions of n into distinct
parts congruent to ±1 mod 3 is equal to the number of partitions of n where parts differ by at
least three and multiples of three differ by at least six.

There have been a number of proofs of Schur’s result over the years, including a
q-difference equation proof of Andrews [3] and a simple bijective proof of Bressoud [5].

Another important identity is Göllnitz’ theorem [6].

Theorem 1.2 (Göllnitz 1967). For any positive integer n, the number of partitions of n into
distinct parts congruent to 2, 4, 5 mod 6 is equal to the number of partitions of n into parts
different from 1 and 3, and where parts differ by at least six with equality only if parts are
congruent to 2, 4, 5 mod 6.

Like Schur’s theorem, Göllnitz’s identity can be proved using q-difference equations
[4] and an elegant Bressoud-style bijection [10, 12].

Seminal work of Alladi, Andrews, and Gordon in the 90’s showed how the theorems
of Schur and Göllnitz emerge from more general results on colored partitions [1].

In the case of Schur’s theorem, we consider parts in three colors {a, b, ab} and the
partitions with colored parts different from 1ab and satisfying the minimal difference
conditions in the table

λi\λi+1 a b ab
a 1 2 1
b 1 1 1
ab 2 2 2

· (1.2)

Here, the part λi with color in the row and the part λi+1 with color in the column
differ by at least the corresponding entry in the table. An example of such a partition
is (7ab, 5b, 4a, 3ab, 1b). The Alladi-Gordon refinement of Schur’s partition theorem [2] is
stated as follows:

Theorem 1.3. Let u, v, n be non-negative integers. Denote by A(u, v, n) the number of partitions
of n into u distncts parts with color a and v distinct parts with color b, and denote by B(u, v, n)
the number of partitions of n satisfying the conditions above, with u parts with color a or ab, and
v parts with color b or ab. We then have A(u, v, n) = B(u, v, n) and the identity

∑
u,v,n≥0

B(u, v, n)aubvqn = ∑
u,v,n≥0

A(u, v, n)aubvqn = (−aq; q)∞(−bq; q)∞ · (1.3)

Note that a transformation implies Schur’s theorem :{
dilation : q 7→ q3

translations : a, b 7→ q−2, q−1 · (1.4)

In fact, the minimal difference conditions given in (1.2) give after these transformations
the minimal differences in Schur’s theorem.
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In the case of Göllnitz’ theorem, we consider parts that occur in six colors {a, b, c, ab,
ab, bc} and the partitions with colored parts different from 1ab, 1ac, 1bc and satisfying the
minimal difference conditions in

λi\λi+1 a b c ab ac bc
a 1 2 2 1 1 2
b 1 1 2 1 1 1
c 1 1 1 1 1 1

ab 2 2 2 2 2 2
ac 2 2 2 1 2 2
bc 1 2 2 1 1 2

· (1.5)

The Alladi–Andrews–Gordon refinement of Göllnitz’s partition theorem can be stated
as follows:

Theorem 1.4. Let u, v, w, n be non-negative integers. Denote by A(u, v, w, n) the number of
partitions of n into u distncts parts with color a, v distinct parts with color b and w distinct parts
with color c, and denote by B(u, v, w, n) the number of partitions of n satisfying the conditions
above, with u parts with color a, ab or ac, v parts with color b, ab or bc and w parts with color
c, ac or bc. We then have A(u, v, w, n) = B(u, v, w, n) and the identity

∑
u,v,w,n≥0

B(u, v, w, n)aubvcwqn = ∑
u,v,w,n≥0

A(u, v, w, n)aubvcwqn = (−aq; q)∞(−bq; q)∞(−cq; q)∞ ·

(1.6)

Note that a transformation implies Göllnitz’ theorem :{
dilation : q 7→ q6

translations : a, b, c 7→ q−4, q−2, q−1 · (1.7)

Observe that while Schur’s theorem is not a direct corollary of Göllnitz’ theorem, The-
orem 1.3 is implied by Theorem 1.4 by setting c = 0. Therefore Göllnitz’ theorem may
be viewed as a level higher than Schur’s theorem, since it requires three primary colors
instead of two.

Following the work of Alladi, Andrews, and Gordon, it was an open problem to
find a partition identity beyond Göllnitz’ theorem, in the sense that it would arise from
four primary colors. This was famously solved by Alladi, Andrews, and Berkovich [7].
To describe their result, we consider parts that occur in eleven colors {a, b, c, d, ab, ab,
ad, bc, bd, cd, abcd}. We now take the partitions with the length of the secondary parts
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greater than one and satisfying the minimal difference conditions in

λi\λi+1 ab ac ad a bc bd b cd c d
ab 2 2 2 2 2 2 2 2 2 2
ac 1 2 2 2 2 2 2 2 2 2
ad 1 1 2 2 2 2 2 2 2 2
a 1 1 1 1 2 2 2 2 2 2
bc 1 1 1 1 2 2 2 2 2 2
bd 1 1 1 1 1 2 2 2 2 2
b 1 1 1 1 1 1 1 2 2 2
cd 1 1 1 1 1 1 1 2 2 2
c 1 1 1 1 1 1 1 1 1 2
d 1 1 1 1 1 1 1 1 1 1

, (1.8)

and such that parts with color abcd differ by at least 4, and the smallest part with color
abcd is at least equal to 4 + 2τ − χ(1a is a part), where τ is the number of primary and
secondary parts in the partition. The theorem of Alladi, Andrews, and Berkovich is then
stated as follows.

Theorem 1.5. Let u, v, w, t, n be non-negative integers. Denote by A(u, v, w, t, n) the number
of partitions of n into u distncts parts with color a, v distinct parts with color b, w distinct
parts with color c and t distinct parts with color d, and denote by B(u, v, w, t, n) the number
of partitions of n satisfying the conditions above, with u parts with color a, ab, ac, ad or abcd,
v parts with color b, ab, bc, bd or abcd, w parts with color c, ac, bc, cd or abcd and t parts with
color d, ad, bd, cd or abcd. We then have A(u, v, w, t, n) = B(u, v, w, t, n) and the identity

∑
u,v,w,t,n≥0

B(u, v, w, t, n)aubvcwdtqn = (−aq; q)∞(−bq; q)∞(−cq; q)∞(−dq; q)∞ · (1.9)

Note that the result of Alladi–Andrews–Berkovich uses four primary colors, the full
set of secondary colors, along with one quaternary color abcd. When d = 0, we recover
Theorem 1.4. Their main tool was a difficult q-series identity.

In this extended abstract (for the full paper, see [8]), we present a bijective proof of
Theorem 1.5. Our proof is divided into two steps. First we prove Theorem 1.6 below,
which arises more naturally from our methods than Theorem 1.5. Instead of adding
a quaternary color, we lower certain minimum differences and add some forbidden
patterns. Then, we show how Theorem 1.6 is equivalent to Theorem 1.5.

The general result beyond Göllnitz’s theorem for an arbitrary number of primary
colors is given in paper two of this series [9].

1.2 Statement of Results

Suppose that the parts occur in only primary colors a, b, c, d and secondary colors
ab, ac, ad, bc, bd, cd. Let us now consider the partitions with the length of the secondary
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parts greater than one and satisfying the minimal difference conditions in (1.8), where
we allow the patterns

(kcd, kab), ((k + 1)ad, kbc) , (1.10)

while avoiding the following forbidden patterns for k ≥ 3 :

(kcd, kab, (k− 2)c), (kcd, kab, (k− 2)d), ((k + 1)ad, kbc, (k− 1)a) · (1.11)

An example of such a partition is

(11ad, 10bc, 8a, 7cd, 7ab, 4c, 3ad, 2bc, 1a) ·

We can now state the main theorem of this paper.

Theorem 1.6. Let u, v, w, t, n be non-negative integers. Denote by A(u, v, w, t, n) the number
of partitions of n into u distinct parts with color a, v distinct parts with color b, w distinct
parts with color c and t distinct parts with color d, and denote by B(u, v, w, t, n) the number
of partitions of n satisfying the conditions above, with u parts with color a, ab, ac or ad, v parts
with color b, ab, bc or bd, w parts with color c, ac, bc or cd and t parts with color d, ad, bd or cd.
We then have A(u, v, w, t, n) = B(u, v, w, t, n), and the corresponding q-series identity is given
by

∑
u,v,w,t,n∈N

B(u, v, w, t, n)aubvcwdtqn = (−aq; q)∞(−bq; q)∞(−cq; q)∞(−dq; q)∞ · (1.12)

By specializing the variables in Theorem 1.6, one can deduce many partition identi-
ties. For example, by considering the following transformation in (1.12){

dilation : q 7→ q12

translations : a, b, c, d 7→ q−8, q−4, q−2, q−1 , (1.13)

we obtain a corollary of Theorem 1.6.

Corollary 1.7. For any positive integer n, the number of partitions of n into distinct parts
congruent to −23,−22,−21,−20 mod 12 is equal to the number of partitions of n into parts
not congruent to 1, 5 mod 12 and different from 2, 3, 6, 7, 9, such that the difference between
two consecutive parts is greater than 12 up to the following exceptions:

• λi − λi+1 = 9 =⇒ λi ≡ ±3 mod 12 and λi − λi+2 ≥ 24,

• λi − λi+1 = 12 =⇒ λi ≡ −23,−22,−21,−20 mod 12,

except that the pattern (27, 18, 4) is allowed.
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For example, with n = 49, the partitions of the first kind are

(35, 10, 4), (34, 11, 4), (28, 11, 10), (23, 22, 4),

(23, 16, 10), (22, 16, 11) and (16, 11, 10, 8, 4)

and the partitions of the second kind are

(35, 14), (34, 15), (33, 16), (45, 4), (39, 10), (38, 11) and (27, 18, 4) ·

Corollary 1.1 may be compared with Theorem 3 of [7], which is Theorem 1.5 trans-
formed by (1.13) but with the dilation q 7→ q15 instead of q 7→ q12.

The extended abstract is organized as follows. In Section 2, we will present some
tools that will be useful for the bijections. After that, in Section 3, we will give the
bijection for Theorem 1.6. Finally, in Section 4, we will present the bijection between the
partitions with forbidden patterns considered in Theorem 1.6 and the partitions with
quaternary parts given in Theorem 1.5.

2 The setup

Denote by C = {a, b, c, d} the set of primary colors and Co = {ad, ab, ac, bc, bd, cd} the set
of secondary colors, and recall the order on C t Co:

ab < ac < ad < a < bc < bd < b < cd < c < d · (2.1)

We can then define the strict lexicographic order � on colored parts by

kp � lq ⇐⇒ k− l ≥ χ(p ≤ q) · (2.2)

Explicitly, this gives the order

1ab ≺ 1ac ≺ 1ad ≺ 1a ≺ 1bc ≺ 1bd ≺ 1b ≺ 1cd ≺ 1c ≺ 1d ≺ 2ab ≺ · · · · (2.3)

We denote by P the set of positive integers with primary color. We can easily see that
for any pq ∈ Co, with p < q, and any k ≥ 1, we have that

(2k)pq = kq + kp (2.4)
(2k + 1)pq = (k + 1)p + kq · (2.5)

Here, the sum of two parts with primary colors consists of a part whose size and color are
respectively the sum of the sizes and the commutative product of colors of the primary
colored parts. One can check that any part greater than 1 with a secondary color pq can
be uniquely written as the sum of two consecutive parts in P with colors p and q. We
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then denote by S the set of secondary parts greater than 1, and define the functions α

and β on S by

α :
{

2kpq 7→ kq
(2k + 1)pq 7→ (k + 1)p

and β :
{

2kpq 7→ kp
(2k + 1)pq 7→ kq

, (2.6)

respectively named upper and lower halves.
By considering the lexicographic order �, the minimal differences described in the

table (1.8) can be viewed as an order . on P t S defined by the relation

kp . lq ⇐⇒
{

kp � (l + 1)q if p or q ∈ C
kp � (l + 1)q if p and q ∈ Co

· (2.7)

We recall that the table (1.8) and the minimal differences for Theorem 1.6 differ only
when we have a pair (p, q) of secondary colors such that (p, q) ∈ {(cd, ab), (ad, bc)}. In
these cases, the difference for Theorem 1.6 is one less. We then define in the same way a
relation� on P t S , for the minimal differences of Theorem 1.6, and obtain by (2.7)

kp � lq ⇐⇒


kp � (l + 1)q if p or q ∈ C
kp � (l + 1)q if p and q ∈ Co and (p, q) /∈ {(cd, ab), (ad, bc)}
kp � lq if (p, q) ∈ {(cd, ab), (ad, bc)}

·

(2.8)
We denote by O the set of partitions with parts in P and well-ordered by �. We then
have that λ ∈ O if and only if there exist λ1 � · · · � λt ∈ P such that λ = (λ1, . . . , λt).
We set c(λi) to be the color of λi in C, and C(λ) = c(λ1) · · · c(λt) as a commutative
product of colors in < C >. In the same way, we denote by E the set of partitions
with parts in P t S and well-ordered by � and set colors c(νi) ∈ C t Co depending on
whether νi is in P or S , and we also define C(ν) = c(ν1) · · · c(νt) seen as a commutative
product of colors in C. In fact, a secondary color is just a product of two primary colors.
For both kinds of partitions, their size is the sum of their part sizes. We also denote by
E1 the subset of partitions of E with the forbidden patterns,

((k + 2)cd, (k + 2)ab, kc), ((k + 2)cd, (k + 2)ab, kd), ((k + 2)ad, (k + 1)bc, ka) , (2.9)

except the pattern (3ad, 2bc, 1a) which is allowed. We finally define E2 as the subset of
partitions of E with parts well-ordered by . in (2.7), and we observe that E2 is indeed a
subset of E1.

Finally, in what follows, adding an integer to a colored part only changes its size and
does not affect its color.

3 Bressoud’s algorithm

Here we adapt the algorithm given by Bressoud in his bijective proof of Schur’s partition
theorem [5]. The bijection is easy to describe and execute, but its justification is more
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subtle and is given in Section 4 of the full paper [8].

3.1 From O to E1

Let us consider the following machine Φ:

Step 1: For a sequence λ = λ1, . . . , λt, take the smallest i < t such that λi, λi+1 ∈ P and
λi � λi+1 but λi 6� λi+1, if it exists, and replace

λi � λi + λi+1 as a part in S
λj ← λj+1 for all i < j < t

(3.1)

and move to Step 2. We call such a pair of parts a troublesome pair. We observe
that λ loses two parts in P and gains one part in S . The new sequence is
λ = λ1, . . . , λt−1. Otherwise, exit from the machine.

Step 2: For λ = λ1, . . . , λt, take the smallest i < t such that (λi, λi+1) ∈ P × S and
λi 6� λi+1 if it exists, and replace

(λi, λi+1)# (λi+1 + 1, λi − 1) ∈ S ×P (3.2)

and redo Step 2. We say that the parts λi, λi+1 are crossed. Otherwise, move to
Step 1.

Let Φ(λ) be the resulting sequence after putting any λ = (λ1, . . . , λt) ∈ O in Φ. This
transformation preserves the size and the commutative product of primary colors of
partitions. Below, we apply this machine on the partition

(11c, 8d, 6a, 4d, 4c, 4b, 3a, 2b, 2a, 1d, 1c, 1b, 1a).

11c
8d
6a
4d
4c
4b
3a
2b
2a
1d
1c
1b
1a

�

11c
8d
6a
8cd
4b
3a
2b
2a
1d
1c
1b
1a

#

11c
8d
9cd
5a
4b
3a
2b
2a
1d
1c
1b
1a

#

11c
10cd
7d
5a
4b
3a
2b
2a
1d
1c
1b
1a

�

11c
10cd
7d
9ab
3a
2b
2a
1d
1c
1b
1a

#

11c
10cd
10ab
6d
3a
2b
2a
1d
1c
1b
1a

�

11c
10cd
10ab
6d
5ab
2a
1d
1c
1b
1a

�

11c
10cd
10ab
6d
5ab
3ad
1c
1b
1a

�

11c
10cd
10ab
6d
5ab
3ad
2bc
1a

·



Beyond Göllnitz’ Theorem I 9

3.2 From E1 to O
Let us consider the following machine Ψ:

Step 1: For a sequence ν = ν1, . . . , νt, take the greastest i ≤ t such that νi ∈ S if it exists.
If νi+1 ∈ P and β(νi) 6� νi+1, then replace

(νi, νi+1)# (νi+1 + 1, νi − 1) ∈ P × S (3.3)

and redo Step 1. We say that the parts νi, νi+1 are crossed. Otherwise, move to
Step 2. If there are no more parts in S , exit from the machine.

Step 2: For ν = ν1, . . . , νt, take the the greatest i ≤ t such that νi ∈ S . By Step 1, it
satisfies β(νi) � νi+1. Then replace

νj+1 ← νj for all t ≥ j > i
(νi) ⇒ (α(νi), β(νi)) as a pair of parts in P ,

(3.4)

and move to Step 1. We say that the part νi splits. We observe that ν gains two
parts in P and loses one part in S . The new sequence is ν = ν1, . . . , νt+1.

Let Ψ(ν) be the resulting sequence after putting any ν = (ν1, . . . , νt) ∈ E1 in Ψ. This
transformation preserves the size and the product of primary colors of partitions. For
example, applying this to (11c, 10cd, 10ab, 6d, 5ab, 3ad, 2bc, 1a) gives

11c
10cd
10ab
6d
5ab
3ad

1c + 1b
1a

⇒

11c
10cd
10ab
6d
5ab

2a + 1d
1c
1b
1a

⇒

11c
10cd
10ab
6d

3a + 2b
2a
1d
1c
1b
1a

⇒

11c
10cd

5b + 5a
6d
3a
2b
2a
1d
1c
1b
1a

#

11c
10cd
7d

5a + 4b
3a
2b
2a
1d
1c
1b
1a

⇒

11c
5d + 5c

7d
5a
4b
3a
2b
2a
1d
1c
1b
1a

#

11c
8d

5c + 4d
5a
4b
3a
2b
2a
1d
1c
1b
1a

#

11c
8d
6a

4d + 4c
4b
3a
2b
2a
1d
1c
1b
1a

⇒

11c
8d
6a
4d
4c
4b
3a
2b
2a
1d
1c
1b
1a

·

4 Bijective proof of Theorem 1.5

In this section, we will describe a bijection for Theorem 1.5. For brevity, we refer to the
partitions in Theorem 1.5 as quaternary partitions.

4.1 From E1 to quaternary partitions

We consider the patterns ((k + 1)ad, kbc), (kcd, kab) and we sum them as follows :

(k + 1)ad + kbc = (2k + 1)abcd

kcd + kab = 2kabcd · (4.1)
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Let us now take a partition ν in E1. We then identify all the patterns (Mi, mi) ∈ {((k +
1)ad, kbc), (kcd, kab)} and suppose that

ν = ν1, . . . , νx, M1, m1, νx+1, . . . , νy, M2, m2, νy+1, . . . , Mt, mt, . . . , νs ·

As long as we have a pattern νj, Mi, mi, we cross the parts by replacing them using

νj, Mi, mi 7−→ Mi + 1, mi + 1, νj − 2 · (4.2)

At the end of the process, we obtain a final sequence

N1, n1, N2, n2, . . . , Nt, nt, ν′1, . . . , ν′s ·

Finally, the associated pair of partitions is set to be (K1, . . . , Kt), ν′ = (ν′1, . . . , ν′t), where
Ki = Ni + ni according to (4.1). To sum up the previous transformation, we only remark
that, for each quaternary part Ki obtained by summing of the original pattern Mi, mi,
we add twice the number of the remaining primary and secondary parts in ν to the left
of the pattern that gave Ki, while we subtract from these parts two times the number of
quaternary parts obtained by patterns that occur to their right.

With the example 11c, 10cd, 10ab, 6d, 5ab, 3ad, 2bc, 1a,

11c
10cd
10ab
6d
5ab
3ad
2bc
1a

7→

11c
10cd, 10ab

6d
5ab

3ad, 2bc
1a

7→

11cd, 11ab
9c
6d
5ab

3ad, 2bc
1a

7→

11cd, 11ab
9c
6d

4ad, 3bc
3ab
1a

7→

11cd, 11ab
9c

5ad, 4bc
4d
3ab
1a

7→

11cd, 11ab
6ad, 5bc

7c
4d
3ab
1a

·

we obtain [(22abcd, 11abcd), (7c, 4d, 3ab, 1a)].

4.2 From quaternary partitions to E1

Recall by (4.1) that Kabcd splits as follows :

(k + 1)ad + kbc = (2k + 1)abcd

kcd + kab = 2kabcd

Let us then consider partitions (K1, . . . , Kt) and ν = (ν1, . . . , νs) ∈ E2, with quaternary
part Ku such that Kt ≥ 4 + 2s− χ(1a ∈ ν) and Ku − Ku+1 ≥ 4. We also set Ku = (ku, lu)
the decomposotion according to (4.1). We then proceed as follows by beginning with Kt

and ν1,
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Step 1: If we do not encounter Ku+1 = (ku+1, lu+1) and νi 6= 1a and νi + 2 . ku − 1, then
replace

νi 7−→ νi + 2
(ku, lu) 7−→ (ku − 1, lu − 1)

and move to i + 1 and redo Step 1. Otherwise, move to Step 2.

Step 2 If we encounter Ku+1 = ku+1 � lu+1, then split (ku, lu) into ku � lu. If not, it
means that we have met νi such that νi + 2 6 . ku − 1. Then we split ku � lu. We
can now move to Step 1 with u− 1 and i = 1.

With the example [(22abcd, 11abcd), (7c, 4d, 3ab, 1a)], we obtain

11cd, 11ab
6ad, 5bc

7c
4d
3ab
1a

7→

11cd, 11ab
9c

5ad, 4bc
4d
3ab
1a

7→

11cd, 11ab
9c
6d

4ad, 3bc
3ab
1a

7→

11cd, 11ab
9c
6d
5ab

3ad, 2bc
1a

7→

11cd, 11ab
9c
6d
5ab
3ad
2bc
1a

7→

11c
10cd, 10ab

6d
5ab
3ad
2bc
1a

7→

11c
10cd
10ab
6d
5ab
3ad
2bc
1a

·
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