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Abstract. With C. Monical (2018), we introduced a notion of K-crystals and con-
jectured they exist for all rectangular shapes A. Here, we establish this conjecture,
yielding the first combinatorial formula (as the sum over flagged set-valued tableaux)
for the Lascoux polynomials L,,,. We then prove corresponding cases of conjectures of
Ross—Yong (2015) and Monical (2016).
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1 Introduction

In classical Schubert calculus, we can study the cohomology ring of the Grassmannian
Gr(k, n), the set of k-dimensional subspaces of C", using the basis of Poincaré duals of
the Schubert varieties X, that decompose Gr(k,n). The cohomology classes [X,] can
be represented by Schur polynomials s, where the partition A sits inside a k x (n — k)
rectangle. A more modern approach is to use connective K-theory, where the Schubert
class [X,] is given as the push-forward of the class for any Bott-Samelson resolution of
X). Here, representatives are symmetric (or stable) B-Grothendieck polynomials [3].

We can describe s, combinatorially as a generating function for semistandard (Young)
tableaux of shape A and representation-theoretically as the character of the highest
weight representation V(A) of the Lie algebra sl, of traceless n x n matrices. We can
also compute s, by applying a product of Demazure operators 71y, for the reverse per-
mutation wy to the monomial x* := xi‘l .-~ xp". We can refine s, to the key polynomials
Kpp = X" for any permutation w, which are characters of Demazure modules V;,(A).

Combinatorially, A. Buch [1] showed the symmetric Grothendieck polynomial &,
is the generating function for semistandard set-valued tableaux of shape A. A. Las-
coux [7] deformed the Demazure operators to Demazure-Lascoux operators @y, so that
®) = @u,x*. The analogous deformation of key polynomials, the so-called Lascoux
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polynomials L, = @,x", remain mysterious as currently there is no known geometric,
representation-theoretic, or combinatorial interpretation, despite recent work [17, 5, 13,
15]. Yet, combinatorial formulas have been conjectured [13, 17, 5].

One way to connect the combinatorics and representation theory associated to key
polynomials is using M. Kashiwara’s crystal bases (see, e.g., [2, 4]). Indeed, Kashiwara
showed that the Demazure module V;,(A) has a crystal basis and can be described as a
subcrystal By, (A)(called a Demazure crystal) of the highest weight crystal B(A) [4]. For
the quantum group Uj(sl,), the crystal B(A) may be realized as the set of semistandard
tableaux of shape A and the subcrystal By, (A) is characterized by key tableaux [10].

In our previous paper with C. Monical [14], we initiated an analogous approach to
Demazure crystals for Lascoux polynomials. We first gave a U, (s, )-crystal structure to
semistandard set-valued tableaux. Then we proposed an enriched crystal structure with
the property that the Lascoux polynomials appear as the characters of our K-theoretic
analogs of Demazure subcrystals. We coined this enriched structure a K-crystal. We
established the existence of K-crystals for single rows and columns, but we discovered
that no such structure exists for general shapes. Nonetheless, we conjectured [14, Con-
jecture 7.12] that K-crystals exist for all rectangular shapes. Our first main result is a
proof of this conjecture. Our proof gives rise to a combinatorial formula for the class
of Lascoux polynomials indexed by a weight in the Weyl group orbit of a multiple of
a fundamental weight (i.e., a rectangular shape partition). We then use this formula to
establish the corresponding cases of Ross—Yong—Kirillov and Monical conjectures.

Let us remark on why our proposed K-crystal structure exists only for rectangular
shapes. With C. Monical [14], we proposed a slightly weaker structure for general A
that depends on a choice of a reduced expression for wy. The key distinction appears
to be that in the rectangular case the minimal-length coset representatives that index
Lascoux polynomials are all fully-commutative (i.e., all reduced words differ only by
commutations). However, for more general shapes, such as A = (2,1) in [14, Figure 6,
7], one needs to apply the braid relations s;s;;1s; = s; ;155,11 to get all possible reduced
expressions. Subsequently, we believe that, in general, K-crystal structures depend on
choosing a commutation class of the reduced words for the appropriate parabolic wy
(see also [14, §7.3]). This fact seems related to a similar dependence for Schubert classes
in cohomology theories more general than connective K-theory (see, e.g., [11]). In the
rectangular case, we have a flagging condition to characterize the tableaux in the K-
Demazure crystal, and we expect a key tableau condition to work for general shapes.

This extended abstract of [16] (Where we refer the reader to for more details) is or-
ganized as follows. In Section 2, we recall the necessary background. In Section 3, we
construct a K-crystal structure on set-valued tableaux of rectangular shapes. In Section 4
(resp. Section 5), we prove the conjectural combinatorial interpretation of Lascoux poly-
nomials for rectangular shapes due to Ross—Yong—Kirillov (resp. Monical). In Section 6,
we describe our conjecture for key tableaux of set-valued tableaux and their relationship
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with Lascoux polynomials.

2 Background

Let S, be the symmetric group with simple transpositions {s; | 1 < i < n} and longest
element wy = [n,...,2,1]. Let v < w be the (strong) Bruhat order, which means there is a
reduced word for v that is a subword of a reduced word for w. Let x = (x1, x, x3,...) be
a countable vector of indeterminants. For a tuple & = (a1, a,...), define x* = xi‘lxgz .

We use the English convention for both partitions and tableaux. Consider a partition
A as a word of length n by appending 0’s as necessary, whence it carries a natural S;-
action. Let Stab,(A) = {w € S, | wA = A} denote the stabilizer of A. Let S} denote the
set of minimal length coset representatives {|w| | w € S, } of S,/ Stab,,(A).

A (semistandard) set-valued tableau of shape A is a filling T of the boxes of A by finite
nonempty sets of positive integers so that for every set A to the left of a set B in the
same row, we have max A < min B, and for C below A in the same column, we have
max A < minC. We say an integer a € T if there exists a box of T containing a set A
with a € A. A set-valued tableau is a semistandard Young tableau if all sets have size 1.
Let SV"(A) denote the set of all set-valued tableaux of shape A with entries at most #.

We recall the crystal structure on SV"(A) from [14]. We refer to [2] for more details
on crystals. First, we recall the crystal operators e;, fi: SV"(A) — SV"*(A) LU {0}, where
iel:={1,...,n—1}. Begin by constructing a sequence by writing + (resp. —) above
each column of T containing i but not i 41 (resp. i + 1 but not i) and canceling ordered
pairs —+. If every + (resp. —) thereby cancels, then f;T = 0 (resp. ¢;T = 0). Otherwise,

e if there exists a box b’ immediately to the right (resp. left) of b that contains an i
(resp. i + 1), then remove the i (resp. i + 1) from b’ and add an i + 1 (resp. i) to b;

e otherwise replace the i in b with an i + 1 (resp. i + 1 in b with an i);

where b is the box of the rightmost uncanceled + (resp. leftmost uncanceled —), and the
result is f;T (resp. ¢;T). See Figure 1 for an example.

Identifying Z" with the multiplicative group generated by (x, ..., x,), we define the
weight function wt: SV"(A) — Z" by wt(T) = [/ x;', where ¢; is the number of A € T
such that i € A. Define |wt(T)| = Y1 ; c;.

Theorem 2.1 ([14, Theorem 3.9]). SV"*(A) is isomorphic to a direct sum of highest weight
crystals.

For 1 <i < n, the Demazure—Lascoux operator @; acts on Z|[B][x1, ..., xn| by

@if = 7 ((1+ Bxit1) - f) = mif + B~ mi(xiz1 - f), where m;f = & .{ci_—x;jl‘ Sif,
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is the Demazure operator. The Demazure-Lascoux operators (and Demazure operators)
satisfy the braid relations. Thus for any w € S;;, one may unambiguously define @, :=
@j, - -+ @;,, where s;, - - -s;, is some reduced expression for w (and similarly for 77;).

Since @, does not depend on the choice of reduced expression, we can define the
Lascoux polynomials [7] for any a € Z~ ; as

where A is the sorting of a to a partition and w € S} is the unique element such that
a = wA. The symmetric Grothendieck polynomial can be defined as the n variable truncation
of Ly,a(x; B) and is known [1, Theorem 3.1] to be given combinatorially by

Lopr(x:B) = ). wtg(T), where wtg(T) := BIUDI=IM\wt(T) is the B-weight.
TESV" (M)
(2.1)
We now recall two conjectural combinatorial descriptions of Lascoux polynomials.

The first conjectural combinatorial rule was introduced in [17]. To state it, we begin
by recalling the notion of a K-Kohnert diagram to be a subset D of Z” ,, which we realize
as boxes, and a subset M C D of boxes that are marked. Now start with some a =
(a1,...,a,) € Z", and draw the initial K-Kohnert diagram as a skyline diagram by putting
a box at each position {(i,y) | i € [n],1 <y < a;} (in Cartesian coordinates), marking no

boxes. Then we successively apply any sequence of the following operations.

Kohnert move: Move any unmarked box at the top of a column into the rightmost open
position to its left and in the same row so that it does not pass over a marked box.'

K-Kohnert move: Perform a Kohnert move but leave a marked box behind.

Let D, denote the resulting set of K-Kohnert diagrams obtainable from the original
skyline diagram for a. Define the p-weight of D € D, by wtg(D) := B°[]}L; x;, where e
(resp. c;) is the number of marked boxes (resp. boxes in column i) in D.

Conjecture 2.2 ([17, Conjecture 1.4],[5, Fn. 14]). We have L,(x; B) = Ypep, Wtg(D).

The second conjectural combinatorial rule is from [13]. We fill a skyline diagram with
tinite nonempty sets of positive integers that satisfy the following conditions. Call the
largest entry in a box the anchor and the other entries free. (S.1): Entries do not repeat in
arow. (5.2): If B is below A, then min B > max A (i.e., the columns are weakly increasing
top-to-bottom in the set-valued sense). (S.3): For every triple of boxes of the form

’C‘...A A---\C\
B B
right column weakly taller left column strictly taller

1n [17], it is misstated that a Kohnert move could move the unmarked box over a marked box.
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the anchors a,b,c of A, B, C, respectively, must satisfy either c < a or b < c. (5.4): Every

free entry is in the leftmost cell of its row such that (S.2) is not violated. (S.5): Anchors

in the bottom row equal their column index. We call such a tableau a (semistandard) set-

valued skyline tableau, and let SLT, denote those of shape a. We define the weight, excess,

and B-weight for a set-valued skyline tableau the same way as for a set-valued tableau.
Let @; = @; — 1. Define the Lascoux atom to be Ly, (x; B) := @ypx™.

Conjecture 2.3 ([13, Conjecture 5.2]). We have L) = Yscsrt,,, Wig(S).

Note Conjeture 2.3 is equivalent to [13, Conjecture 5.3] by [15]. Also from [13, Theo-
rem 5.1],

Lw)\(X; .B) = Z Zv)\(x} AB)’ (2.2)

v<w

where the inequality is (strong) Bruhat order on permutations.

3 K-crystals for rectangular shapes

We aim to prove the proposed K-theory analog of crystals from [14] exists on SV"(A)
when A is a rectangle. Recall that a Uj(sl,)-crystal B is called a K-crystal if it is enhanced
with K-crystal operators, eX, fX: B — B LI {0} that satisfy the following properties:

(K.1) The set B is generated by a unique element u € B that satisfies e;u = 0 and efu =0
for all i € I. The element u is called the minimal highest weight element.
(K.2) The K-Demazure crystal By, := {b € B | (ef\)™ e - - (ef)™™¢"™p = u} does not

depend on the choice of reduced expression w = s;, - - - s;,. Moreovet, By, = B.

(K.3) Let A = wt(u). The B-character chg(By) := Ypep, BIVHOIIAxWHE) = L) (x; B).

Our construction of the K-crystal operators are based off the heuristics given in [14],
which come from the following K-theory analog of the decomposition of a crystal into
i-strings (i.e., restricting to the action of e¢; and f; for a fixed i € I) based on the definition
of the Demazure-Lusztig operators. Indeed, by considering only the action of a fixed
i € I, the K-crystal is expected to decompose into (maximal) subcrystals of the form

i i i i i

o -
[
[
[ J
[ )

where the solid (resp. dashed) arrow represents the f; (resp. fX) action. Such a subcrystal
was coined an i-K-string in [14]. We say an i-K-string has length ¢ := max{k | fkb # 0}.
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1)1 2 1)1 2 111 2 1)1 L R 1 12””2”:: 112
23| 3 2 (23 2|2 213 2|3 23| 3
N / N\ |
2
1
112 2 112 111 . 1 (1,2
23| 3 213 3|3 3|3
\ / ll
2 1
2] 2 112 12] 2
-
3131 13]3 313

Figure 1: The K-crystal for SV° ( ) with the K-crystal operators as dashed lines.

Note that ff_l Kb # 0and f/fKb = 0. 1t is easy to see that for b such that e;b = 0, the
B-character of the i-K-string starting at b equals @; wt(b).

Lemma 3.1. Let A be an r x s rectangle. For any w € S}, there exists a reduced word of w equal
to (s, -+ - Sp—kt15r—k) = - (Siy = - - 5¢Sr—1) (Siy = - Sp418y) for some k < rand i < --- <ip < n.

Definition 3.2. Let T € SV"(A) and fix some i € I.

fK: 1Ifi ¢ Tore;T # 0, then fXT = 0. Otherwise, let b be the rightmost box that contains
an i corresponding to an unpaired +. If i and i 4+ 1 are both in a box weakly to the
right of b, then fXT = 0. Otherwise, define fXT by adding an i +1 to b.

ek: If there does not exist a box with both an i and i+ 1 or ¢;T # 0, then efT = 0.
Otherwise, let b be the rightmost box that has both an i and 7 + 1. If there exists an
i corresponding to an unpaired + strictly to the right of b, then eXT = 0. Otherwise,
define elKT by removing the i 4- 1.

For an example, see Figure 1; additional examples may be found in [14]. Note that it
is clear that if fXT # 0 (resp. eXT # 0), then fXT € SV"(A) (resp. ekT € SV"(A)).

Lemma 3.3. Let A be an r x s rectangle. Let T, T' € SV"(A). We have eXT' = T if and only if
T" = fKT. Moreover, for any i € I, we have that SV"(A) is a union of i-K-strings.

Consider some w € S}, and let iy < --- < iy be from the reduced expression of w
given by Lemma 3.1. For all k < j < r, define i; = r — j. Define F(A;w) to be the subset
of SV"(A) such that row r — j has all entries at most i; + 1. We call such a set-valued
tableau a flagged set-valued tableau. This flagging characterizes the K-Demazure crystal.
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Lemma 3.4. Let A be an r X s rectangle. For w € S, then SV}, (A) = SV J(A) =F(A; |w]).

lw
Theorem 3.5. Let A be an r X s rectangle. Then SV"* (M) is a K-crystal.
We also have the following K-theoretic analog of [4, Proposition 3.3.4].

Corollary 3.6. Let A be an r x s rectangle. Consider an i-K-string S of SV"(A), and let b be the
highest weight element of S. Then, the set SV}, (A) N S is either empty, S, or {b}.

We also have the following interpretation of certain Lascoux polynomials as instances
of (B-)Grothendieck polynomials, which recall from [6, 8, 9, 3] are defined by

3B B n—1 1 .0 pe_ (L+Pxi)-f— (14 Pxiv1) -sif
Bugs--si, = 0j, * ~-81.£x;Z - Xp_1X,, whered!f = ! pa——— ! L
Corollary 3.7. Let A be an r x s rectangle. Let w = (S -+ -$251) =+ * (Sk4r—1 * * - Sr+15r) for some
k> 1, and let W = Sy_1(Sm—25m—1) ** (Sr41**Sm—1)(Sr -+ Sk—1) -+ (51" Sk-1) € Sm
where m = s + k + 1. Then, we have Lyp (%; B) = &, 5-1(% ).

The permutations wow ! appearing in Corollary 3.7 are vexillary (i.e., 2143-avoiding).
Since the greatest term of L (x;0) in reverse lexicographic order is x** and the greatest
term of &,, 5-1(x;0) in the same order is the Lehmer code of wow !, we see wA is the
Lehmer code of wow~!. Hence, wow ! are Grassmannian, and so the Grothendieck
polynomials from Corollary 3.7 are actually symmetric Grothendieck polynomials, but

symmetric only in some initial segment of the variables x.

Example 3.8. For A be a 2 x 2 rectangle, Lg;s5,1 (X B) = Gy (5,5, )5 (s55)s4 (X1, - - -, X5 B), and
Lsysis55,0 (% B) = G (s35251) (5352) (555453) (5554)55 (x1,.-., X6; B).

The Lascoux polynomials from Corollary 3.7 are are not the only ones equal to a

Grothendieck polynomial; e.g., Ls,1(%;8) = By (sys455,) (X1, - -, X5; B) for A = L,

Yet, this is the only such coincidence when A is a rectangle. T. Matsumura and S. Sugimo-
to have informed the authors [12, Theorem 3.3] can be extended to show every flagged
Grothendieck polynomial is a Lascoux polynomial and will appear in their future work.

4 Bijection with K-Kohnert diagrams

Recall that there is a natural bijection between the set of semistandard Young tableaux
of shape 1" with entries at most n and the collection of subsets of {1,...,n} of size
r. For row i (starting from the bottom row and going up) of a K-Kohnert diagram D,
consider the subset of {1,...,n} given by the horizontal coordinates of the unmarked
boxes. Construct column i (from right to left) of a tableau T by applying the natural
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bijection given above to this subset. Now, for every marked box in position (x,i) of D,
there is a rightmost unmarked box (x',7) to the left of (x,i). Insert x into the cell of
column i containing x’. In other words, we insert x into the topmost possible cell of
column i such that the column is semistandard. Write ¢(D) for the resulting tableau T.

It is straightforward to see that the map ¢ is invertible and p-weight preserving. We
will show below that ¢(D) is in fact always a semistandard set-valued tableau.

Proposition 4.1. Let A be an r x s rectangle. For any w € S}, ¢ restricts to a B-weight
preserving bijection ¢: Dy,y — SVI,(A).

Example 4.2. Consider A be a 2 X 2 square and w = sp. Under ¢ described above,
11 111 111 11 1|1

313 213 2,3| 3 212 22,3

where we have shaded in the selected boxes and put a e in the marked boxes.
We continue to w’ = s;5, to obtain all of SV3,(A) = SV?(A) under ¢:

212 112 1,2| 2 112 112 11,2 11,2 11,2

313 313 3|3 2|3 2,3| 3 313 2|3 2,3| 3

To prove Proposition 4.1, we construct (K-)Kohnert moves on set-valued tableaux.

Definition 4.3. Let T € SV"*()A). Consider x € Z such that x € T. Let C be the leftmost
column of T containing an x in box b. Let x’ be minimal such that x’ +1,x"+2,...,x € C,
and let b’ be the box in C containing x” + 1. If {x’ +1},...,{x — 1} are not in C (i.e., the
corresponding boxes only have 1 entry), ¥’ = 0, or x # minb, then we do not have a
(K-)Kohnert move. Otherwise, define the Kohnert move on T to remove x from b, moving
all entries x' +1,...,x — 1 down one row (which inserts x — 1 into b), and inserting x’
into b’. A K-Kohnert move is the same as before except we leave x € b.

Lemma 4.4. Let T € SV*()). Applying any (K-)Kohnert move to T results in T' € SV"(A).

Now we prove Proposition 4.1 by using our flagging characterization of K-Demazure
crystals from Lemma 3.4 and showing that ¢ intertwines the (K-)Kohnert moves on K-
Kohnert diagrams with the (K-)Kohnert moves on set-valued tableaux.
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Example 4.5. Let A = 32 be a 2 x 3 rectangle and consider n = 4. We exhibit the sequence
of (K-)Kohnert moves described in the proof of Proposition 4.1 to obtain the element

1212 ¢ SVglsm(/\) from the initial tableau | 2|2 |2 | (below is the diagram under ¢~1):
23[3 34 4]4]4

12)2], [1p2[2], [1[22], [1[22], [1]2[2], [1]2]2], [2]2]2

231334 2313 |4 2314 |4 3144 4144

Remark 4.6. The proof of the intertwining of (K-)Kohnert moves did not require A to be
a rectangle, but ¢ does require it as otherwise the image might not be a partition.

Theorem 4.7. The Ross—Yong—Kirillov Conjecture (Conjeture 2.2) holds for L, when a is any
weak composition with a unique nonzero part size; i.e., Lo(x; B) = Ypep, Wtg(D).

5 Bijection with set-valued skyline tableaux

Conjeture 2.3 is equivalent to showing that

Lyn = chy (W’;(A)) , where SV (A) := SV (A)\ | SVZ(A), (.1)

o<w

with the union taken over all v strictly less that w in Bruhat order, by inclusion-exclusion,
applying Mdbius inversion on (strong) Bruhat order, and Equation (2.2)

Proposition 5.1. Let A be an r x s rectangle. For any w € S}, there exists a B-weight preserving
bijection p: SLT,) — SV, (A).

We prove Proposition 5.1 by explicitly defining the bijection as follows. Consider
some S € SLT,, and define T := ¢(S) by (1) sorting the anchor entries in each row in
increasing order left to right; (2) placing each free entry f in the leftmost box of its row
such that f is less than the anchor entry; (3) constructing the i-th column of T from the
(r +1 — i)-th row of the result from the previous step, as in Section 4.

Example 5.2. Let A be a 2 x 2 rectangle and n = 3. Then the set-valued skyline tableaux
SLT;,, and their corresponding elements in sz (A) under ¥ are given by

3 1)1 1]1-12 1]1 1]-123 1)1 1]1-12 1|1
1-13 313 1(-13 2|3 1(-13 2,3| 3 11123 2123

Theorem 5.3. Monical’s Skyline Conjecture (Conjeture 2.3) holds for L, when a is any weak
composition with a unique nonzero part size; i.e., Ly = Ysesrr, Wtg(S).
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6 K-key tableaux

A key tableau K is a semistandard tableau such that the entries in the j-th column of K
are a subset of those in the (j — 1)-st column of K. Every semistandard tableau T has a
unique (right) key tableau k(T) associated with it, and a Demazure atom can be computed
as a generating function for all semistandard tableaux T with k(T) = Ky, [10]. Let <
denote the partial order on semistandard tableaux of shape A such that T < T’ if and
only if every entry of T is at most the corresponding entry in T’. A Demazure character
Kpp can be given by summing over all semistandard Young tableaux T of shape A such
that k(T) < Ky, where Ky, is the unique key tableau of shape A and weight wA [10].

Based on the bijection from Proposition 5.1 and the (K-)Kohnert moves on set-valued
tableaux (Definition 4.3), the following is a natural possible extension of key tableaux
to the K-theory setting. For T € SV"(A), define K(T) := k(max(T)), where max(T)
is semistandard tableau obtained by taking the greatest entry in each box of T. Thus
Theorem 3.5 and Lemma 3.4 imply that for A and r x s rectangle

Loa(xB) =), wig(T), Loa(xB)= ) wig(T), (6.1)
TeSV (M) TeSV* (M)
K(T) =Ky K(T)=Kqr

or equivalently summed over SV” (1) and SV, (1) respectively. However, these formulas

1 1,2,3‘ 13

do not work for general A as, for example, K , but it can only

2,3 3

contribute to the Lascoux polynomial/atom corresponding to wpA, where A = 21, as it

has an excess of 3. Moreover, the weak K-crystal in [14, Figure 7] does not decompose
1
3

Instead, we conjecture that (6.1) modifies as follows. Recall that the Lusztig involu-
tion on the highest weight crystal B(u) is defined by sending the highest weight element
U to the lowest weight element U* and extending to B(u) by

the K-crystal into atoms, as 23] should not be in the atom for to wy.

ei(T") = (fu—iT)", fi(T7) = (en—iT)", wt(T*) = wowt(T).  (6.2)

We can extend this naively to SV"(A) by acting on each irreducible component B(u).
Define the (right) K-key tableau of a set-valued tableau T € SV"(A) by

K(T) := k(min(T*)*),

where min(T) is obtained from T by taking the least entry in each box of T.
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Conjecture 6.1. Let A be a partition. Define the sets

n

SV (A) i= {T € SV'(A) | K(T) 2 Kan},  SVi(A) i= {T € SV'(A) | K(T) = Kun ).

Then we have Ly (x; B) = Lresvr(n) Wtg(T), and Ly (x; B) = Lresv (\) wig(T).

We show (6.1) establishes Conjeture 6.1 when A is a rectangle by constructing a K-
Lusztig involution x: SV*(A) — SV"(A) that also satisfies (6.2). However, it is a twist
of the Lusztig involution by permuting the connected U,(sl;)-components of SV"(A).
Let A be a rectangle and T € SV"(A). Define T* to be the set-valued tableau obtained
by rotating the tableau 180° and then replacing each i — n +1 —i. We note this is a
well-known description of the Lusztig involution on semistandard tableaux of shape A.

Proposition 6.2. Let A be a rectangle. The K-Lusztig involution x satisfies (6.2). For T &
SV"(A) as a tensor product of rows T = Ry ® - - - ® Ry, we have T* = R{ ® - - - ® R.

This also suggests that Conjeture 6.1 holds for a definition of a (right) K-key tableau
K'(T) := k(min(T")*), where T" is constructed from T according to any automorphism
of SV"(A) such that wt(T") = wowt(T). However, given a (weak) K-crystal structure
on SV"(A), it would be preferable to have a T' construction that matches the labeling
of tableaux T by K-keys K'(T) with the decomposition of the K-crystal by K-Demazure
subcrystals, as is the case with our K-Lusztig involution T*. Furthermore, it is likely that
in general we want T* = R; ® - - - ® R] as in Proposition 6.2, but this would require an
appropriate K-rectification or insertion scheme in order to obtain a result back in SV"(A).
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