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1 Introduction

Configuration spaces – the spaces of tuples of distinct, distinguishable points in a topo-
logical space – are important in numerous applications, from dynamical systems to com-
puter science. The topology of such configuration spaces is relatively well understood
for manifolds, but for spaces with singularities, the recorded knowledge is still quite
limited.

In this note we will generalize several existing results dealing with the Euler charac-
teristics of certain (generalized) configuration spaces.

1.1 Precursors

We start with quoting some of those results.

1.1.1 Configuration spaces of simplicial complexes

Let X be (the geometric realization of) a finite simplicial complex

X = qασα,

where σα are the (relative)-open simplices of the triangulation.
For a finite set N = {1, . . . , n} of size n, denote by Conf(X, N) the conventional

configuration space of n distinct points, that is

Conf(X, N) := XN −∪k 6=l∆kl,
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where ∆kl = {x = (x1, . . . , xn) ∈ XN : xk = xl} are the big diagonals in XN .
For this setup, [3] proves the following

Theorem 1.1 (S. Gal). The exponential generating function for the sequence of Euler charac-
teristics of the configuration spaces of X is given by

∑
n≥0

χ(Conf(X, N))
zn

n!
= ∏

α

(
1 + (−1)d(α)(1− χ(L(α)))z

)(−1)d(α)

, (1.1)

where the product is taken over all simplices of X, d(α) is the dimension, and L(α) is the link of
the simplex σα.

(Here the link of a simplex σα is (the geometric realization of) the simplicial complex
formed by all simplices of X properly containing α, or, equivalently, is the base of the
cone obtained by the intersection of piece-wise linearly embedded X with a small ball
in a linear subspace transversally intersecting α at a single point, around that point.)

1.1.2 No-k-equal spaces

Exponential generating function for Euler characteristics appeared also in the following
setting.

Take the real line as X = R1, and consider the no-k-equal configuration spaces,

Confk(R
1, N) = Rn −∪I=(i1<...<ik)∆I , (1.2)

where ∆I = {xi1 = xi2 = . . . = xik}, are k-diagonals (of codimension (k − 1)), and the
union is taken over all such diagonals. In other words, the no-k-equal configuration
space is obtained by forbidding all configurations of n points in R that have k or more
points coinciding.

These spaces appeared as an useful testing ground for topological lower bounds of
complexity of linear decision trees, and were investigated intensely since their introduc-
tion (mostly from the viewpoint of the linear subspace arrangements theory).

One of the results of [2] can be formulated as follows:

Theorem 1.2 (A. Björner, L. Lovasz). The exponential generating function for the Euler char-
acteristics of no-k-equal spaces Confk(R

1, N) is given by

∑
n≥0

χ(Confk(R
1, N))

zn

n!
=

1
1− z + z2/2− . . . + (−z)k−1/(k− 1)!

. (1.3)

1.2 Colored configuration spaces

The main result of this paper generalizes both theorems above. We work with colored
configuration spaces.
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1.2.1 Colors and Ideals

Fix a finite set C of colors of size c. The vectors in NC will be referred to as color counts.
A subset of color counts I ∈ NC is an ideal if for any m = (m1, . . . , mc) ∈ I and

m′ ≤ m (this notation shorthands for m′1 ≤ m1, . . . , m′c ≤ mc), the point m′ also lies in I .
We will be assuming that all the basis vectors of NC are in I .

We will be considering finite collections of distinct colored points in X numbered by
the elements of N. If I ⊂ N, we will denote the corresponding color counts of points in
I as c(I).

1.2.2 Ideals and Their Configuration Spaces

Fix an ideal I (of permissible collisions).

Definition 1.3. For a collection N of colored points, the configuration space ConfI(X, N)
is defined as

ConfI(X, N) = XN −
⋃

I:c(I) 6∈I
∆I . (1.4)

As the configuration spaces for the collections of points with the same color count are
natuarally equivalent, we will denote them sometimes as ConfI(X, n), with n = c(N),

In words, the configuration space ConfI prevents any collection of points in the con-
figuration from coinciding if their color counts are outside of the ideal I of permissible
collisions.

Example 1.4. If c = 1, and I = {1}, we have the conventional configuration spaces. If
I = {1, 2, . . . , k− 1}, we have the no-k-equal configuration spaces.

The bi-colored (c = 2) ideal with I = {(m, 0), (0, m), m = 0, 1, . . .} forbids any points
of different colors to collide, but allows that for any number of points of the same color
(the “apartheid” ideal).

Definition 1.5. The counting function of the ideal I is

ΦI(z) = ∑
m∈I

zm

m!
; (1.5)

here z = (z1, . . . , zc); zm = ∏c
k=1 zmk

k and m! = ∏(mk!).

Example 1.6. For no-k-equal configuration space, ΦI(z) = 1+ z+ z2/2+ . . .+ zk−1/(k−
1)!.

For the “apartheid ideal”, ΦI(z1, z2) = exp(z1) + exp(z2)− 1.
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1.3 Main result

To formulate our main result we need a few more definitions.

1.3.1 Constructible Functions

Let X be a compact subanalytic set in RD, with (finite) Whitney stratification

X = qαXα. (1.6)

We will refer to the functions constant on the strata of X as constructible (for a back-
ground on constructible functions, see [6]).

1.3.2 Constructible Euler Characteristic

Definition 1.7. If X is a subanalytic triangulated set in RD, we will refer to the alternating
sum of the numbers of simplices of each dimension as its constructible Euler characteristic,
denoted χc(X). Equivalently, χc is the Euler characteristic computed as alternated sum
of ranks of Borel-Moore cohomologies.

It is well known that χc is independent of the choice of triangulation, is therefore
additive on subanalytic sets (i.e. χc(A) = χc(A− B) + χc(B) for subanalytic B ⊂ A), and
matches the standard (homotopy-invariant) Euler characteristic on compact subanalytic
sets.

One can define the integral of a constructible function with compact support with
respect to χc as ∫

f dχc = ∑
s

sχc( f−1(s)),

where the sum is taken over the (finite) range of f , or, equivalently, as the evaluation of
the direct image of the integrand under the mapping of X to a point – see, e.g. [5].

Definition 1.8. For a constructible function f , its dual f ◦ is defined as

f ◦(x) =
∫

X
1B(x,ε) f dχc,

where 1B(x,ε) is the indicator function of the open Euclidean ball of radius ε > 0 around
x in RD, and the integral is with respect to Euler characteristic (the integral stabilizes
when ε is small enough, and thus is well-defined) .

For such a subanalytic space X we set 1 = 1X to be the indicator function of X. This
is a constructible function, and its dual,

1◦(x) = χ(X∩ Bε(x)) (1.7)
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can be mundanely interpreted as the (constructible) Euler characteristic of the open ball
of small enough radius ε around a point x intersected with X (again, this Euler char-
acteristics stabilizes for small ε). This, again, is a constructible function, i.e. is constant
along the strata of X. It is easy to see that 1◦ is supported by X.

1.3.3 Main Result

We have the following formula for the (standard, homotopy-invariant) Euler character-
istic of the generalized configuration spaces:

Theorem 1.9. The exponential generating function for the Euler characteristic of I-configuration
spaces is given by

∑
m

χ(ConfI(X, m))
zm

m!
= ∏

α

ΦI(1◦(α)z)(−1)d(α)χ(α), (1.8)

where the product is taken over all strata of X, 1◦(α) is the common value 1◦(x) for the points of
the stratum α, d(α) is the dimension, and χ(α) is the Euler characteristic of the stratum Xα.

Equivalently,

Corollary 1.10.

∑
m

χ(ConfI(X, m))
zm

m!
= ∏

α

ΦI(1◦(α)z)χc(α), (1.9)

where χc(α) is the constructible Euler characteristic of the stratum Xα.

1.4 Plan

We start with a few examples of applications of the main result. In Section 3 we will
present an outline of the proof, drawing on the combinatorial and geometric results
excised for space reasons. The full proof is available for now in a preprint form [7].

2 Examples

2.1 Gal’s formula

If X is a triangulated space, embedded into some Euclidean space so that it is linear on
each simplex. We consider X as stratified by these simplices. For a point in a simplex of
dimension d, the intersection of an open small ball with X is homeomorphic to Rd × K,
where K is the open cone with the base L(x), the link of X at x. Hence,

1◦(x) = (−1)d(1− χ(L(x))). (2.1)
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For “conventional” configuration spaces, I = {0, 1}, and ΦI(z) = 1 + z. Substituting
these identities into (1.6) leads to

∑
n

χ(Conf(X, N)
zn

n!
= ∏

α

(1 + (−1)d(α)(1− χ(L(α)))z)(−1)d(α)
, (2.2)

i.e. Gal’s formula.

2.2 No-k-equal configuration spaces

For no-k-equal spaces, the counting function is ΦI(z) = 1 + z + . . . + zk−1/(k − 1)! =:
ek(z).

If X is a d-dimensional disk, 1◦ = (−1)d in the interior of the disk, and 0 on the
boundary. This implies

∑
n

χ(Confk(R
d, N))

zn

n!
= ek((−1)dz)(−1)d

, (2.3)

recovering, in particular, the formula (1.3).

2.3 Graphs

If X is a graph, i.e. geometric realization of a one-dimensional simplicial complex, one
has, for any ΦI ,

∑
n

χ(ConfI(X, n))
zn

n!
=

∏α∈V(X) ΦI((1− v(α))z)

Φ|E(X)|
I (−z)

, (2.4)

where the product is taken over the vertices α, and v(α) stands for the degree of α; E is
the set of the edges in the graph. (For conventional configuration spaces on graphs, see
e.g. [4].)

We remark, in particular, that the leaf vertices do not contribute, and each degree 2
vertex cancels one edge (as it should, to maintain the invariance of ConfI with respect
to homeomorphisms).

2.4 Manifolds

If X is a compact manifold of dimension d, one has but one stratum, and

∑
n

χ(ConfI(X, n))
zn

n!
= ΦI((−1)dz)(−1)dχ(X). (2.5)

In particular, for finite ideals I and even-dimensional manifolds, χ(ConfI(X, n)) = 0 for
large enough n (and is ≡ 0 for odd-dimensional manifolds).
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2.5 Bicolored spaces

Consider now an example of configuration spaces with infinite ideals: the bi-colored
apartheid ideal, with ΦI = exp(z1) + exp(z2)− 1. Using equation (2.5), we obtain

∑
n1,n2

χ(ConfI(S2, (n1, n2)))
zn1

1 zn2
2

n1!n2!
= (exp(z1) + exp(z2)− 1)2. (2.6)

In particular, all Euler characteristics χ(ConfI(S2, (n1, n2))) = 2 if n1, n2 ≥ 1.

3 Proving the Main Result

3.1 Setting the Stage

Fix a finite set N with colors attached to each of the points in N; set n = c(N) =
(n1, . . . , nc) to be the vector of color counts of N.

3.1.1 Partitions

We will denote the set of partitions of N as Part(N). (A partition is an unordered
collection of disjoint subsets of N exhausting it.)

Partitions of N, or, more generally, of any finite set S, are partially ordered by refine-
ment: here we write σ ≺ π if σ is a refinement of π, or π is a coarsening of σ, that is if
each bloc of σ is contained entirely within a block of π.

The minimal (with respect to this refinement order) partition of S, consisting of sin-
gletons, will be denoted as 0S, or just 0, when the context is clear.

The join of a family of partitions is the minimal common coarsening of the partitions
in the family.

The maximal element for the poset Part(S), denoted as 1S is the partition with one
block, (S).

3.1.2 Diagonals

For each partition π = (π1)(π2) . . . (πk) of N into k blocks, we will form the diagonal

∆(π) = {x : xk = xl if k, l are in the same block of π}. (3.1)

(Clearly, the diagonals form a lattice isomorphic to the lattice of partitions of N with
reversed order.)

Definition 3.1. We define the collection PartFI(N) of forbidden partitions π as such that
for at least one block, the color count of this block is not in I .
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Then, by definition,

ConfI(X, n) = XN − ∆PartFI
, where ∆PartFI

=
⋃

π∈PartFI (N)

∆(π). (3.2)

3.1.3 Enabling Additivity

One certainly can find the (constructible) Euler characteristic of ConfI using (3.2) via
additivity and some form of inclusion-exclusion principle. However this constructible
χc is not equal to χ as ConfI is not compact.

To circumvent this problem, we replace the diagonals in (3.2) by their appropriately
chosen open vicinities (“fattenings”) in XN . If the compact constructible complement
to those vicinities is homotopy equivalent to the corresponding configuration space, we
can use additivity of χc to compute χ(ConfI).

3.1.4 Combinatorics and Geometry

The combinatorial component of the computation is rather standard, and amounts to the
manipulations of Möbius function for the poset of partitions of colored sets of points.
These computations allow one to reduce the problem to finding the constructible Euler
characteristics of fattenings of diagonals.

The geometric part of the proof involves definitions of the fattenings of the diagonals
and computations of their Euler characteristics. Details are contained in the full version
of this paper; here we will just formulate the relevant results.

3.2 Proof of the Main Theorem

We start with straightening the geometry of X.

3.2.1 Cubical embedding

Namely, it will be convenient to cubulate the space X. Let I = [0, 1] be the unit interval.

Proposition 3.2. There exists a refinement of the stratification of X which is homeomorphic to a
subcomplex of the natural cubical complex of the unit cube ID in some Euclidean space.

From now on, we will assume that X is a cubical subcomplex of ID, equipped with
the metric induced from the sup norm on RD.
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3.2.2 Deformation Retract

For x ∈ XN , we define the partition π(x, ε) as the partition into the classes of equivalence
defined by the transitive closure of the relation

xk ∼ xl ⇔ |xk − xl| < ε.

Definition 3.3. We define (ε-)fattening of ∆ε(π) as the set of configurations x ∈ XN :
π � π(x, ε), and

∆ε(I) :=
⋃

π∈PartFI (N)

∆ε(π).

Clearly, ∆ε(I) is an open vicinity of ∆PartFI
.

Consequently,
Confε

I(X, N) = XN − ∆ε(I) (3.3)

is a compact subset of ConfI(X, N).

Proposition 3.4. Under the assumptions of Section 3.2.1, Confε
I(X, N) is a deformation retract

of ConfI(X, N).

3.2.3 Inclusion-Exclusion Formulae

Proposition 3.5. There exists a function cI of partitions of N such that

∑
σ4π

cI(σ) =
{

0 if π ∈ PartFI(N),
1 otherwise

(3.4)

For single blocks, this function depends only on the color content cI(N) = cI(c(N)), and is
multiplicative, in the sense that

cI((π1) . . . (πk)) = ∏
l

cI(c(πl)). (3.5)

Lemma 3.6. For sufficiently small ε, the intersection lattice generated by the sets ∆ε(π), π ∈
Part(N) is isomorphic to the partition lattice on N: for any family of partitions {πλ}, λ =
1, . . . , Λ, the fattening of their join π = π1 ∧ . . . ∧ πΛ equals the intersection of the fattenings
of the partitions in the family:

∆ε(π) =
⋂

∆ε(πk). (3.6)

Proof. This follows directly from the definition of fattenings ∆ε(π).

We remark that this implies that ∆ε(π) ⊂ ∆ε(π′) for any refinement π′ or π.
Proposition 3.5 and Lemma 3.6 allow us to represent the (topological) Euler charac-

teristics in terms of the (constructible) Euler characteristics of the diagonal fattenings.
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Proposition 3.7.
χ(ConfI(X, n)) = ∑

π∈Part(n)
cI(π)χc(∆

ε(π)). (3.7)

Proof. For x ∈ XN denote by π(x) the coarsest partition π for which x ∈ Nε(π) (it exists
by Lemma 3.6). Then

∑
σ∈Part(n)

cI(σ)1∆ε(σ)(x) = ∑
σ�π(x)

cI(σ) (3.8)

which is 1 exactly when x ∈ XN − ⋃π∈PartFI (N) ∆ε(π). Invoking the additivity of the
constructible Euler characteristics completes the proof.

3.2.4 Computations

We will need also the multiplicativity of the Euler characteristics of ∆ε(π):

Lemma 3.8. If (π1) . . . (πp) are the blocks of the partition π, then

χc(∆
ε(π)) = ∏

l
χc(∆

ε(πl)).

(Here the notation ∆ε(πl) is used to denote the fattening of the main diagonal in Xπi - remark
that it depends only on the size of the block πl.)

Proof. The fact that a subset I = (k1, . . . , kp) of N belongs to a part of π(x, ε) depends
only on the points xk1 , . . . , xkp implies that the set ∆ε(π) is a product of its projections to
Xπk , over all parts of π = (π1) · · · (πp).

3.2.5 Partitions and Exponents

The following Lemma is standard:

Lemma 3.9. Let κ : NC → C be an arbitrary valuation such that κ(0) = 0. Then

exp

(
∑
m

zm

m!
κ(m)

)
= ∑

n

zn

n! ∑
π∈Part(n)

π=(π1)...(πk)

k

∏
l=1

κ(n(πl)).

Proof. See discussion of partitional composites of structures in [1].

Using Proposition 3.7 we can transform the exponential generating function as

F(z) = ∑
n

zn

n!
χ(ConfI(X, n)) = ∑

n

zn

n! ∑
π∈Part(n)

π=(π1)...(πk)

k

∏
l=1

cI(n(πl))χc(∆
ε(πl)). (3.9)
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Lemma 3.10.

F(z) = exp

(
∑

m>0

zm

m!
cI(m)χc(∆

ε(|m|))
)

. (3.10)

Proof. Denoting
κ(m) := cI(m)χc(∆

ε(|m|)),
and using Lemma 3.9 as

exp

(
∑

m>0

zm

m!
κ(m)

)
= ∑

n

zn

n! ∑
π∈Part(n)

π=(π1)...(πk)

k

∏
l=1

κ(n(πl))

we arrive at the claim.

3.2.6 Euler Characteristic of Fattenings

In view of Lemma 3.8, let us turn to χ(∆ε(S)), where S ⊂ N has size |S| =: s.

Proposition 3.11. The constructible Euler characteristic of ∆ε(S) is

χc(∆
ε(S)) = ∑

faces σ of X

(−1)dim(σ)χc(Bσ)
s = ∑

faces σ of X

χc(σ)χc(Bσ)
s,

where the sum is taken over all open cubes σ of the cubulation of X, and Bσ is the intersection of
small enough ball centered at a point of σ with X.

Corollary 3.12. The Euler characteristic of ∆ε(S) is

χ(∆ε(S)) = ∑
strata Xβ of X

(−1)dim(Xβ)1◦(Xβ)
s, (3.11)

where the sum is taken over all strata of X.

Proof. Follows from Proposition 3.11 and the immediate fact that along a stratum, the
constructible Euler characteristic of the intersection of a small ball with the subanalytic
space X does not depend on the simplex of a triangulation compatible with the stratifi-
cation.

3.2.7 Final Strokes

Substituting (3.11) into (3.10) we obtain

∑
m

zm

m!
κ(m) = ∑

m
cI(m)

zm

m!

 ∑
strata Xβ

(−1)dim(Xβ)1◦(Xβ)
|m|

 , (3.12)
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which after swapping the order of summations becomes

∑
strata Xβ

(−1)dim(Xβ)

(
∑
m

cI(m)
(1◦(Xβ)z)m

m!

)
. (3.13)

Proposition 3.13. Under the assumptions on the ideal I ,

∑
m>0

cI(m)
zm

m!
= log

(
1 + ∑

n∈I

zn

n!

)
. (3.14)

Finishing the proof of the Main Theorem: Plugging (3.14) into (3.10), we obtain Corollary 1.10.
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