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Higher order Turán inequalities for k-regular
partitions
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Abstract. Nicolas (in 1978) and DeSalvo and Pak (in 2015) proved that the partition
function p(n) is log concave for n ≥ 25. In 2019, Chen, Jia and Wang proved that
p(n) satisfies the third order Turán inequality, and that the associated degree 3 Jensen
polynomials are hyperbolic for n ≥ 94. More recently, Griffin, Ono, Rolen and Zagier
proved more generally that for all d, the degree d Jensen polynomials associated to
p(n) are hyperbolic for sufficiently large n. In this paper, we prove that the same result
holds for the k-regular partition function pk(n) for k ≥ 2. In particular, for any positive
integers d and k, the order d Turán inequalities hold for pk(n) for sufficiently large n.
The case when d = k = 2 proves a conjecture by Neil Sloane that p2(n) is log concave.
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1 Introduction and Statement of results

The Turán inequality (or sometimes called the Newton inequality) arises in the study of
real entire functions in the Laguerre-Pólya class which is closely related to the study of
the Riemann hypothesis [4], [12]. It is well known that the Riemann hypothesis is true if
and only if the Riemann Xi function is in the Laguerre-Pólya class, where the Riemann
Xi function is the entire order 1 function defined by
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A necessary condition for the Riemann Xi function being in the Laguerre-Pólya class is
that the Maclaurin coefficients of the Xi function satisfy both the Turán and higher order
Turán inequalities [11, 4].

A sequence {am}∞
m=0 is log concave if it satisfies the (second order) Turán inequality

a2
m ≥ am−1am+1 for all m ≥ 1. The sequence {am}∞

m=0 satisfies the third order Turán
inequality if for m ≥ 1, we have

4(a2
m − am−1am+1)(a2

m+1 − amam+2) ≥ (amam+1 − am−1am+2)
2.
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Nicolas [8] and DeSalvo and Pak [3] proved that the partition function p(n) is log concave
for n ≥ 25, where p(n) is the number of partitions of n. Recall that a partition of a
positive integer n with r parts is a weakly decreasing sequence of r positive integers that
sums to n. We set p(0) = 1. Chen [1] conjectured that p(n) satisfies the third order Turán
inequality for n ≥ 95 which is proved by Chen, Jia and Wang [2]. Their result also shows
that the cubic polynomial

3

∑
k=0
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k

)
p(n + k)xk

has only real simple roots for n ≥ 95. They also conjectured that for d ≥ 4, there exists a
positive integer N(d) such that the Jensen polynomials Jd,n

p (X) for p(n) as defined in (1.1)
have only real roots for all n ≥ N(d). Note that the case for d = 1 is trivial with N(1) = 1,
and the log concavity of p(n) for n ≥ 25 proves the case for d = 2 with N(2) = 25. Chen,
Jia and Wang [2] proved the case for d = 3 with N(3) = 94. Larson and Wagner [7]
proved the minimum value of N(d) for d ≤ 5 and gave an upper bound for all other
N(d). The conjecture was proven for all d ≥ 1 in a recent paper by Griffin, Ono, Rolen
and Zagier [5] where they proved the hyperbolicity of the Jensen polynomials associated
to a large family of sequences. Given an arbitrary sequence α = (α(0), α(1), α(2), · · · ) of
real numbers, the associated Jensen polynomial Jd,n

α (X) of degree d and shift n is defined by

Jd,n
α (X) :=

d

∑
j=0

(
d
j

)
α(n + j)X j. (1.1)

The Jensen polynomials also have a close relationship to the Riemann Hypothesis. In-
deed, Pólya [10] proved that the Riemann Hypothesis is equivalent to the hyperbolicity
of all of the Jensen polynomials Jd,n

γ (X) associated to the Taylor coefficients {γ(j)}∞
j=0 of
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. Griffin, Ono, Rolen and Zagier [5] proved that for each d ≥ 1, all but finitely

many Jd,n
γ (X) are hyperbolic, which provides new evidence supporting the Riemann

Hypothesis.
There is a classical result by Hermite that generalizes the Turán inequalities using

Jensen polynomials. Let

f (x) = xn + an−1xn−1 + · · ·+ a1x + a0

be a polynomial with real coefficients. Let β1, β2, · · · , βn be the roots of f and denote
S0 = n and

Sm = βm
1 + βm

2 + · · ·+ βm
n , m = 1, 2, 3, · · ·
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their Newton sums. Let M( f ) be the Hankel matrix of S0, · · · S2n−2, i.e.

M( f ) :=


S0 S1 S2 · · · Sn−1
S1 S2 S3 · · · Sn
S2 S3 S4 · · · Sn+1
...

...
...

...
...

Sn−1 Sn Sn+1 · · · S2n−2

 .

Hermite’s theorem [9] states that f is hyperbolic if and only if M( f ) is positive semi-
definite. Recall that a polynomial with real coefficients is called hyperbolic if all of its
roots are real. It is well known that Sm can be expressed in terms of the coefficients
a0, · · · , an−1 of f for m ≥ 1, and a matrix is positive semi-definite if and only if all its
principle minors are non-negative. Thus Hermite’s theorem provides a set of inequality
conditions on the coefficients of a hyperbolic polynomial f :

∆1 = S0 = n, ∆2 =

∣∣∣∣S0 S1
S1 S2

∣∣∣∣ ≥ 0, · · · , ∆n =

∣∣∣∣∣∣∣∣∣∣∣

S0 S1 S2 · · · Sn−1
S1 S2 S3 · · · Sn
S2 S3 S4 · · · Sn+1
...

...
...

...
...

Sn−1 Sn Sn+1 · · · S2n−2

∣∣∣∣∣∣∣∣∣∣∣
≥ 0.

For a given sequence α(n), when Hermite’s theorem is applied to Jd,n
α (X) then the con-

dition that all minors ∆k of the Hankel matrix M(Jd,n
α (X)) are non-negative gives a set

of inequalities on the sequence α(n), and we call them the order k Turán inequalities. In
other words, Jd,n

α (X) is hyperbolic if and only if the subsequence {α(n + j)}∞
j=0 satisfies

all the order k Turán inequalities for all 1 ≤ k ≤ d. In particular, the result in [5] shows
that for any d ≥ 1, the partition function {p(n)} satisfies the order d Turán inequality
for sufficiently large n.

For a positive integer k ≥ 2, let the k-regular partition function pk(n) be defined as the
number of partitions of n in which none of the parts are multiples of k. For any fixed
integer k ≥ 2, it is well known that the generating function for the sequence {pk(n)}∞

n=0
is given by

∑
n≥0

pk(n)qn =
∞

∏
n=1

(1− qkn)

(1− qn)
.

Sloane conjectured that the sequence of partitions of n with distinct parts, is log concave
for sufficiently large n. It is well known that the number of k-regular partitions is equal
to the number of partition with parts appearing at most k − 1 times. In particular, 2-
regular partitions are equinumerous with partitions in which all parts are distinct is
also famously known as Euler’s Odd-Distinct theorem. Therefore, Sloane’s conjecture is
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equivalent to the log-concavity of p2(n) for sufficiently large n. In this paper, we prove
Sloane’s conjecture, and in fact we prove the more general result that for any d, the
k-regular partition functions pk(n) satisfy the order d Turán inequality for sufficiently
large n.

As has been done for other sequences, we can define the Jensen polynomials Jd,n
pk (X)

of degree d and shift n for the sequence pk(n) by setting α = pk in (1.1). In the spirit of
much other work on the Turán inequalities, we may reframe the conjecture in terms of
the hyperbolicity of the associated Jensen polynomials:

Conjecture. Let d ≥ 1, k ≥ 2 be integers. There exists a positive integer N(d) such that the
degree d Jensen polynomial Jd,n

pk (X) associated to pk(n) are hyperbolic for all n ≥ N(d).

For a natural number d, we define the Hermite polynomials Hd(X) by the generating
function

e−t2+Xt =
∞

∑
d=0

Hd(X)
td

d!
= 1 + Xt + (X2 − 2)

t2

2
+ (X3 − 6X)

t3

6
+ · · · ,

orthogonal with respect to the given measure, which is a slightly different normalization
than is standard (see Remark 1.3). In view of these definitions, we can now state our
main results.

Theorem 1.1. If k ≥ 2 and d ∈ Z+, then

lim
n→∞

Ĵd,n
pk

(X) = Hd(X),

uniformly for X in compact subsets of R, where Ĵd,n
pk (X) are renormalized Jensen polynomials for

pk(n) as defined in (2.2).

Corollary 1.2. If k ≥ 2 and d ∈ Z+, then Jd,n
pk (X) is hyperbolic for sufficiently large n.

Remark 1.3. There are two widely used definitions of Hermite polynomials (the so-called
“physicists” and “probabilists” Hermite polynomials):

The “physicists’ Hermite polynomials” are defined as

Hen(X) := (−1)ne
X2
2

dn

dXn e−
X2
2 .

The “probabilists’ Hermite polynomials” are defined as

Hpr
n (X) := (−1)nex2 dn

dXn e−x2
.

The relation between these definitions and ours is as follows:

Hn(2X) = Hpr
n (X) = 2

n
2 Hen(

√
X).
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2 Sketch of Proof of Theorem 1.1

2.1 Polya-Jensen method

In 1927, Pólya [10] demonstrated that the Riemann hypothesis is equivalent to the hy-
perbolicity of the Jensen polynomials for ζ(s) at its point of symmetry. This approach to
the Riemann hypothesis had not received much significant work until the recent work
of Griffin, Ono, Rolen and Zagier [5], in which the hyperbolicity of these polynomials is
proved for all d ≥ 1 for sufficiently large n. The primary method utilized by this paper
can be stated as follows:

Theorem 2.1 (Theorem 3 & Corollary 4, [5]). Let {α(n)}, {A(n)}, and {δ(n)} be sequences
of positive real numbers such that δ(n) → 0 as n → ∞. Suppose further that for a fixed d ≥ 1
and for all 0 ≤ j ≤ d, we have

log
(

α(n + j)
α(n)

)
= A(n)j− δ(n)2 j2 + o

(
δ(n)d) as n→ ∞.

Then the renormalized Jensen polynomials

Ĵd,n
α (X) =

δ(n)−d

α(n)
Jd,n
α

(
δ(n)X− 1
exp(A(n))

)
satisfy lim

n→∞
Ĵd,n
α (X) = Hd(X) uniformly for X in any compact subset of R. Furthermore, this

implies that the polynomials Jd,n
α (X) are hyperbolic for all but finitely many values of n.

Because the conditions for this result are so general, the method can be utilized in
a wide variety of circumstances. For instance, it is shown in Theorem 7 of [5] that if
a f (n) are the (real) Fourier coefficients of a modular form f on SL2(Z) holomorphic
apart from a pole at infinity, then there are sequences A f (n) and δ f (n) such that α(n) =
a f (n) satisfies the required conditions. What we prove can then be regarded as a first
instance of the Polya-Jensen method for modular forms on congruence subgroups, since
the sequences pk(n) are coefficients of weight zero weakly holomorphic modular forms
on proper subgroups of SL2(Z).

2.2 Explicit Formula of pk(n)

Hagis [6] proved an explicit formula for pk(n) similar to Rademacher’s explicit formula
for p(n), and this explicit formula as well as the asymptotic behavior of this formula will
play an important role in our proof. In order to state Hagis’ results, we must first make
preliminary definitions, most important the quantities A(m, t, n, s, D) and L(m, t, n, s, D),
which are Kloosterman-type sums and multiples of Bessel functions respectively.
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Let D divide t + 1, J = J(t, D) :=
t
D − D
24D

, and a = a(t) =
t

24
, and denote by I1 the

order one modified Bessel function. Then the quantity L(m, t, n, s, D) is defined by

L(m, t, n, s, D) :=
D3/2

m

√
J − s
n + a

· I1

(
4πD

m

√
(J − s)(n + a)

t + 1

)
.

The quantity A(m, t, n, s, D) is a modified Kloosterman sum, and requires additional
definitions. We denote by g = g(m) the value gcd(3, m) if m is odd and 8 gcd(3, m)

when m is even. We define the ratios M = M(m, D) :=
m
D

and f = f (m) :=
24
g

. Define

r = r(m) to be any integer satisfying f r ≡ 1 (mod gm). In a manner analogous to
g, we define G = G(m, D) := gcd(3, M) for odd M and 8 gcd(3, M) for M even. Set
B = B(m, D) :=

g
G

and define A as any integer satisfying AB ≡ 1 (mod GM). We

also define T = T(t, D) :=
t + 1

D
, choosing T′ = T′(t, D) satisfying TT′ ≡ 1 (mod GM).

The quantities U = U(t, m, D) and V = V(t, m, D) are defined by V := ABT′D− 1 and
U := 1− (t + 1)AB. Hagis also defines particular roots of unity, w(h, t, m, D), which
satisfy

w(h, t, m, D) = C(h, t, m, D) exp(2πi(rUh + rVh′)/gm),

where the C(h, t, m, D) satisfy |C(h, t, m, D)| = 1 and are defined independently of h if m
is odd or if m is even and h ≡ d (mod 8) for some odd d. Then the quantity A(m, t, n, s, D)
to be the Kloosterman sum with multiplier system given by the formula

A(m, t, n, s, D) := ∑
h(mod m)

gcd(h,m)=1

w(h, t, m, D) exp(−2πi(nh− DT′sh′)/m),

where hh′ ≡ 1 (mod gm). Define also the value P(s) as in Euler’s pentagonal number

theory to have P(s) = (−1)j if s is a pentagonal number, that is, s is in the form
3j2 ± j

2
,

and 0 otherwise. Using the notation so far developed, Hagis proved [6, Theorem 3] that

pk(n) =
2π

k ∑
D|k

D<
√

k

∞

∑
m

gcd(k,m)=D

∑
s<J(k,D)

P(s)A(m, k− 1, n, s, D)L(m, k− 1, n, s, D).

Hagis found this formula by the Hardy-Ramanujan circle method, though the same
formula may also be derived by computing a generating function for pk(n) by quotients
of the Dedekind eta function and expanding this by Poincare series. Using this explicit
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formula, Hagis also proved [6, Corollary 4.1] that as n→ ∞ we have

pk(n) = 2π

√
mk

k(n + kmk)
· I1

(
4π
√

mk(n + kmk)

)
(1 + O(−cn1/2)), (2.1)

where I1 is a modified Bessel function, c = c(k) is a constant, and mk = (k− 1)/24k.
Fix d ≥ 1 and k ≥ 2, and let the sequences Ak(n), δk(n) be defined by

Ak(n) = 2π
√

mk/n +
3
4

b3d/4c

∑
r=1

(−1)r

rnr and δk(n) =
(
−

∞

∑
r=2

4π
√

mk(
1/2

r )

nr−1/2

)1/2

.

Define the renormalized Jensen polynomials Ĵd,n
pk (X) by

Ĵd,n
pk

(X) :=
δk(n)−d

pk(n)
Jd,n
pk

(
δk(n)X− 1
exp(Ak(n))

)
. (2.2)

By application of the Pólya-Jensen method, in order to prove Theorem 1.1, it suffices to
show that for any fixed d and all 0 ≤ j ≤ d,

log
(

pk(n + j)
pk(n)

)
= Ak(n)j− δk(n)2 j2 + o

(
δk(n)d) as n→ ∞ (2.3)

which follows by using (2.1).
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