The minimal excludant and colored partitions

Cristina Ballantine*¹ and Mircea Merca†²

¹Department of Mathematics, College of The Holy Cross, Worcester, MA, USA
²Department of Mathematics, University of Craiova, Craiova, Romania and Academy of Romanian Scientists, Bucharest, Romania

Abstract. The minimal excludant of a partition \(\lambda \), \(\text{mex}(\lambda) \), is the smallest positive integer that is not a part of \(\lambda \). For a positive integer \(n \), \(\sigma \text{mex}(n) \) denotes the sum of the minimal excludants of all partitions of \(n \). Recently, Andrews and Newman obtained a new combinatorial interpretation for \(\sigma \text{mex}(n) \). They showed, using generating functions, that \(\sigma \text{mex}(n) \) equals the number of partitions of \(n \) into distinct parts using two colors. We give a purely combinatorial proof of this result and derive its generalization to the sum of least \(r \)-gaps. We introduce several new identities connecting the function \(\sigma \text{mex}(n) \) to the number of partitions with colored parts satisfying certain congruences.

Keywords: Partitions, minimal excludant, least gap in partitions, colored partitions.

1 Introduction

The minimal excludant or mex-function of a set \(S \) of positive integers is the least positive integer not in \(S \). The history of this notion goes back to at least the 1930s when it was applied to combinatorial game theory [9, 8].

Recently, Andrews and Newman [3] considered the mex-function applied to integer partitions. They defined the minimal excludant of a partition \(\lambda \), \(\text{mex}(\lambda) \), as the smallest positive integer that is not a part of \(\lambda \). Then, for each positive integer \(n \), they defined

\[
\sigma \text{mex}(n) := \sum_{\lambda \in \mathcal{P}(n)} \text{mex}(\lambda),
\]

where \(\mathcal{P}(n) \) is the set of all partitions of \(n \). Elsewhere in the literature, the minimal excludant of a partition \(\lambda \) is referred to as the least gap or smallest gap of \(\lambda \). An exact and asymptotic formula for \(\sigma \text{mex}(n) \), as well as its generating function, is given in [7]. In [5] we studied a generalization of \(\sigma \text{mex}(n) \) and its connection to polygonal numbers.

Let \(\mathcal{D}_2(n) \) be the set of partitions of \(n \) into distinct parts using two colors and let \(\mathcal{D}_2(n) = |\mathcal{D}_2(n)| \). We denote the colors of the parts of partitions in \(\mathcal{D}_2(n) \) by 0 and 1. For example, \(\mathcal{D}_2(4) = \{4_0, 4_1, 3_0 + 1_0, 3_0 + 1_1, 3_1 + 1_0, 3_1 + 1_1, 2_1 + 2_0, 2_1 + 1_1 + 1_0, 2_0 + 1_1 + 1_0 \} \), and thus \(\mathcal{D}_2(4) = 9 \). In [3], the authors give two proofs of the following theorem.

*cballant@holycross.edu.
†mircea.merca@proinfo.edu.ro.
Theorem 1.1. Given an integer \(n \geq 0 \), we have \(\sigma \text{mex}(n) = D_2(n) \).

In Section 2, we provide a bijective proof of Theorem 1.1. We make use of the fact that

\[
\sigma \text{mex}(n) = \sum_{j \geq 0} p(n - j(j + 1)/2),
\]

where, as usual, \(p(n) \) denotes the number of partitions of \(n \). A combinatorial proof of (1.1) is given in [5, Theorem 1.1]. The same argument is also described in the second proof of [3, Theorem 1.1]. In fact, the result proven in [5] is a generalization of (1.1) to \(\sigma_r \text{mex}(n) \), the sum of \(r \)-gaps in all partitions of \(n \). The \(r \)-gap of a partition \(\lambda \) is the least positive integer that does not appear \(r \) times as a part of \(\lambda \). In Section 3, we give two generalizations of Theorem 1.1 to \(\sigma_r \text{mex}(n) \).

In [1], the authors considered a restricted mex function. They defined \(M_k(n) \) to be the number of partitions \(\lambda \) of \(n \) with \(\text{mex}(\lambda) = k \) and more parts \(> k \) than parts \(< k \). When \(k = 1 \), \(M_1(n) \) is the number of partitions of \(n \) with smallest part greater than 1. Thus, if \(n > 0 \), we have \(M_1(n) = p(n) - p(n-1) \), and from (1.1), we obtain

\[
\sigma \text{mex}(n) - \sigma \text{mex}(n-1) - \delta(n) = \sum_{j=0}^{\infty} M_1(n - j(j + 1)/2),
\]

where \(\delta \) is the characteristic function of the set of triangular numbers.

We generalize (1.2) in Section 4 where we give further connections between \(\sigma \text{mex}(n) \) and restricted mex functions or partitions and overpartitions. In Section 5 we present connections with partitions with colored odd parts.

2 Combinatorial Proof of Theorem 1.1

To prove the theorem, we adapt Sylvester’s bijective proof of Jacobi’s triple product identity [10]. Given \(\lambda \in D_2(n) \), let \(\lambda^{(i)} \), \(i = 0, 1 \), be the (uncolored) partition whose parts are the parts of color \(i \) in \(\lambda \). Then, \(\lambda^{(1)} \) and \(\lambda^{(2)} \) are partitions with distinct parts.

Example 2.1. If \(\lambda = 4_1 + 3_0 + 3_1 + 2_0 + 1_0 \in D_2(13) \), then \(\lambda^{(0)} = 3 + 2 + 1 \) and \(\lambda^{(1)} = 4 + 3 \).

Denote by \(\eta(j) \) the staircase partition \(\eta(j) = j + (j - 1) + \cdots + 2 + 1 \), with \(\eta(0) = \emptyset \). We write \(\ell(\lambda) \) for the number of parts in partition \(\lambda \). The conjugate of a Ferrers diagram \(\nu \) (not necessarily the diagram of a partition) is obtained by reflecting \(\nu \) across the main diagonal. The sum, \(\alpha + \beta \), of two composition \(\alpha = (a_1,a_2,\ldots) \) and \(\beta = (b_1,b_2,\ldots) \), is the composition whose parts are \(a_i + b_i \) (appropriately using 0 as parts at the end of the shorter composition).
Definition 2.2. Given a diagram of left justified rows of boxes (not necessarily the Ferrers diagram of a partition), the *staircase profile* of the diagram is a zig-zag line starting in the upper left corner of the diagram with a right step and continuing in alternating down and right steps until the end of a row of the diagram is reached.

Example 2.3. Let α be the composition $\alpha = (1, 2, 3, 7, 7, 6, 6, 4, 2)$.

![Figure 1: Staircase profile for α and the conjugate of α.](image)

The *shifted Ferrers diagram* of a partition λ with distinct parts is the Ferrers diagram (with boxes of unit length) of λ with row i shifted $i - 1$ units to the right.

We create a map $\varphi : \bigcup_{j \geq 0} \mathcal{P}(n - j(j + 1)/2) \to \mathcal{D}_2(n)$ as follows. Start with $\lambda \in \mathcal{P}(n - j(j + 1)/2)$ for some $j \geq 0$. Append a diagram with rows of lengths $1, 2, \ldots, j$ (i.e., the diagram of $\eta(j)$ rotated by 90° counterclockwise) at the top of the diagram of λ. We obtain a diagram with n boxes. Draw the staircase profile of the new diagram. Let α be the partition whose parts are the length of the columns to the left of the staircase profile and β be the partition whose parts are the length of the rows to the right of the staircase profile. Then α and β are partitions with distinct parts. Moreover, $j \leq \ell(\alpha) - \ell(\beta) \leq j + 1$. Color the parts of α with color $j \pmod{2}$ and the parts of β with color $(j + 1) \pmod{2}$. Then $\varphi(\lambda)$ is defined as the 2-color partition of n whose parts are the colored parts of α and β.

Conversely, start with $\mu \in \mathcal{D}_2(n)$. Let $\ell_i(\mu), i = 0, 1$, be the number of parts of color i in μ and set $r = \ell_0(\mu) - \ell_1(\mu)$. Let

$$\varepsilon = \begin{cases} 0 & \text{if } r \geq 0 \\ 1 & \text{if } r < 0, \end{cases} \quad \text{and} \quad j = |r| + \frac{(-1)^{|r|+\varepsilon} - 1}{2}.$$

Remove the top j rows (i.e., the rotated diagram of $\eta(j)$) from the conjugate of the shifted diagram of $\mu^{(\varepsilon)}$ to obtain a composition γ. Define $\varphi^{-1}(\mu) = \gamma + \mu^{(s)}$ where $s \neq \varepsilon$. Then, $\varphi^{-1}(\mu) \in \mathcal{P}(n - j(j + 1)/2)$.
Example 2.4. Let \(n = 38, j = 3 \), and let \(\lambda = 7 + 7 + 6 + 6 + 4 + 2 \) be a partition of \(n - j(j + 1)/2 = 32 \). We add the rotated diagram of \(\eta(3) \) to the top of the diagram of \(\lambda \) and draw the staircase profile (see Figure 1). Then \(\alpha = 9 + 8 + 6 + 5 + 3 + 2 \) and \(\beta = 3 + 2 \). Since \(j \) is odd, we have \(\varphi(\lambda) = 9_1 + 8_1 + 6_1 + 5_1 + 3_1 + 3_0 + 2_1 + 2_0 \).

Conversely, suppose \(\mu = 9_1 + 8_1 + 6_1 + 5_1 + 3_1 + 3_0 + 2_1 + 2_0 \in \mathcal{D}(38) \). Then \(\ell_0(\mu) = 2 \) and \(\ell_1(\mu) = 6 \). We have \(r = \ell_0(\mu) - \ell_1(\mu) = -4 \) and \(j = 3 \). We remove the first 3 rows from the conjugate of the shifted diagram of \(\mu^{(1)} \) (which is precisely the diagram below the staircase profile in Figure 1) and add the resulting composition \(\gamma \) to \(\mu^{(0)} = (3, 2) \). We obtain \(\varphi^{-1}(\mu) = 7 + 7 + 6 + 6 + 4 + 2 \in \mathcal{P}(32) \).

3 Generalizations of Theorem 1.1 to r-gaps

Recall that the \(r \)-gap of a partition \(\lambda \) is the least positive integer that does not appear \(r \) times as a part of \(\lambda \). In [5], we proved combinatorially that

\[
\sigma_r \text{ mex}(n) = \sum_{j \geq 0} p(n - rj(j + 1)/2). \tag{3.1}
\]

We can employ a transformation similar to that in the combinatorial proof of Theorem 1.1 to prove its generalization to sums of \(r \)-gaps.

Let \(\tilde{D}_3^{(r)}(n) \) be the number of partitions \(\lambda \) of \(n \) into distinct parts using three colors, 0, 1, and 2, such that:

(i) The set of parts of color 2 is either empty or \(\{t(r-1) \mid 1 \leq t \leq j\} \) for some \(j \geq 1 \).

(ii) \(\ell_{j(\text{mod} \ 2)}(\lambda) - \ell_{j+1(\text{mod} \ 2)}(\lambda) \in \{j,j+1\} \), where \(j = 0 \) if \(\lambda^{(2)} = \emptyset \).

Theorem 3.1. Let \(n, r \) be integers with \(r > 0 \) and \(n \geq 0 \). Then \(\sigma_r \text{ mex}(n) = \tilde{D}_3^{(r)}(n) \).

Proof. For a sketch of the proof see [6]. \(\square \)

In [5] we give the generating function for \(\sigma_r \text{ mex}(n) \), namely

\[
\sum_{n=0}^{\infty} \sigma_r \text{ mex}(n)q^n = \frac{(q^{2r};q^{2r})\infty{(q^r;q^{2r})\infty}}{(q;q)\infty{(q^r;q^r)\infty}}, \tag{3.2}
\]

where \((a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k) \) if \(n > 0 \), \((a;q)_n = 1 \) if \(n = 0 \), and \((a;q)\infty = \lim_{n \to \infty} (a;q)_n \).

Denote \(\tilde{D}_2^{(r)}(n) \) the number of partitions \(\lambda \) of \(n \) using two colors, 0 and 1, such that:

(i) \(\lambda^{(0)} \) is a partition into distinct parts divisible by \(r \).

(ii) \(\lambda^{(1)} \) is a partition with parts repeated at most \(2r - 1 \) times.

The following generalization of Theorem 1.1 is immediate from (3.2).

Theorem 3.2. Let \(n, r \) be integers with \(r > 0 \) and \(n \geq 0 \). Then \(\sigma_r \text{ mex}(n) = \tilde{D}_2^{(r)}(n) \).
4 Identities involving restricted mex-functions

In this section we introduce identities relating $\sigma \text{mex}(n)$ and restricted mex functions for partitions and overpartitions.

4.1 $\sigma \text{mex}(n)$ and $M_k(n)$

We have the following generalization of (1.2).

Theorem 4.1. Let k, n be integers with $k \geq 1$ and $n \geq 0$. Then,

$$(-1)^{k-1} \left(\sum_{j=-(k-1)}^{k} (-1)^j \sigma \text{mex}(n - j(3j - 1)/2) - \delta(n) \right) = \sum_{j=0}^{\infty} M_k(n - j(j + 1)/2).$$

The following infinite family of linear inequalities involving σmex is immediate.

Corollary 4.2. Let k be a positive integer. Given an integer $n \geq 0$, we have

$$(-1)^{k-1} \left(\sum_{j=-(k-1)}^{k} (-1)^j \sigma \text{mex}(n - j(3j - 1)/2) - \delta(n) \right) \geq 0,$$

with strict inequality if $n \geq k(3k + 1)/2$.

Analytic proof of Theorem 4.1. In [1], the authors gave the following truncated Euler’s pentagonal number theorem.

$$(-1)^{k-1} \sum_{n=-(k-1)}^{k} (-1)^j q^n (3j - 1)/2 = (-1)^{k-1} + \sum_{n=k}^{\infty} \frac{q(j)^2 + (k+1)n}{(q; q)_n} \left[\frac{n-1}{k-1} \right], \quad (4.1)$$

where

$$\left\lfloor \frac{n}{k} \right\rfloor = \begin{cases} \frac{(q; q)_n}{(q; q)_k(q; q)_{n-k}}, & \text{if } 0 \leq k \leq n, \\ 0, & \text{otherwise}. \end{cases}$$

Multiplying both sides of (4.1) by

$$\frac{(q^2, q^2)_\infty}{(q, q^2)_\infty} = \sum_{n=0}^{\infty} q^{n(n+1)/2},$$

and using (3.2) with $r = 1$ and the generating function for $M_k(n)$ [1],

$$\sum_{n=0}^{\infty} M_k(n) q^n = \sum_{n=k}^{\infty} \frac{q(j)^2 + (k+1)n}{(q; q)_n} \left[\frac{n-1}{k-1} \right],$$
we obtain
\[
(-1)^{k-1} \left(\sum_{n=0}^{\infty} \sigma \text{mex}(n)q^n \right) \left(\sum_{n=-(k-1)}^{k} (-1)^{j}q^{n(3n-1)/2} \right) - \sum_{n=0}^{\infty} q^{n(n+1)/2} \right)
\]
\[
\left(\sum_{n=0}^{\infty} q^{n(n+1)/2} \right) \left(\sum_{n=0}^{\infty} M_k(n)q^n \right).
\]

The proof follows easily using Cauchy’s multiplication of two power series.

Combinatorial proof of Theorem 4.1. The statement of Theorem 4.1 is equivalent to identity (1.2) together with
\[
\sigma \text{mex} \left(n - \frac{k(3k+1)}{2} \right) - \sigma \text{mex} \left(n - \frac{k(3k+5)}{2} - 1 \right)
\]
\[
= \sum_{j=0}^{\infty} \left(M_k(n-j(j+1)/2) + M_{k+1}(n-j(j+1)/2) \right).
\]

Using (1.1), identity (4.2) becomes
\[
\sum_{j=0}^{\infty} \left(p \left(n - \frac{j(j+1)}{2} - \frac{k(3k+1)}{2} \right) - p \left(n - \frac{j(j+1)}{2} - \frac{k(3k+5)}{2} - 1 \right) \right)
\]
\[
= \sum_{j=0}^{\infty} \left(M_k(n-j(j+1)/2) + M_{k+1}(n-j(j+1)/2) \right).
\]

Identity (4.3) was proved combinatorially in [11]. Together with the combinatorial proof of (1.1), this gives a combinatorial proof of Theorem 4.1.

Next, we give a combinatorial interpretation for \(\sum_{t=0}^{\infty} M_k(n-t(t+1)/2) \). For integers \(k, n \) such that \(k \geq 1 \) and \(n \geq 0 \), we denote by \(D_3^{(k)}(n) \) the number of partitions \(\mu \) of \(n \) into distinct parts using three colors and satisfying the following conditions:

(i) \(\mu \) has exactly \(k \) parts of color 2 and, if \(k > 1 \), twice the smallest part of color 2 is greater than largest part of color 2.

(ii) With \(r \) and \(j \) as in the combinatorial proof of Theorem 1.1, the largest part of color \(j \mod 2 \) must equal \(j \) more that the smallest part of color 2.

Proposition 4.3. For integers \(k, n \) such that \(k \geq 1 \) and \(n \geq 0 \), we have
\[
\sum_{t=0}^{\infty} M_k(n-t(t+1)/2) = D_3^{(k)}(n).
\]
The minimal excludant and colored partitions

Proof. See [6]. □

Combining Theorems 1.1 and 4.1, and Proposition 4.3 we obtain the following corollary which, by the discussion above, has both analytic and combinatorial proofs.

Corollary 4.4. For integers k, n such that $k \geq 1$ and $n \geq 0$, we have

$$(-1)^{\max(0,k-1)} \left(\sum_{j=-\max(0,k-1)}^{k} (-1)^j \sigma \text{mex}(n-j(3j-1)/2) - \delta(n) \right) = D_3^{(k)}(n).$$

Note that, if $k = 0$, the statement of the corollary reduces to Theorem 1.1.

4.2 $\sigma \text{mex}(n)$ and overpartitions

Overpartitions are ordinary partitions with the added condition that the first appearance of any part may be overlined. There are eight overpartitions of 3:

$$3, \overline{3}, 2 + 1, \overline{2} + 1, 2 + \overline{1}, \overline{2} + \overline{1}, 1 + 1 + 1, \overline{1} + 1 + 1.$$

As usual, we denote by $p(n)$ the number of overpartitions of n. The generating function for $p(n)$ is

$$\sum_{n=0}^{\infty} p(n)q^n = \frac{(-q; q)_{\infty}}{(q; q)_{\infty}}.$$

We have the following identity relating $\sigma \text{mex}(n), \overline{p}(n)$ and $M_k(n)$.

Theorem 4.5. Let k be a positive integer. Given an integer $n \geq 0$, we have

$$(-1)^{k-1} \left(\sum_{j=-(k-1)}^{k} (-1)^j \overline{p}(n-j(3j-1)) - \sigma \text{mex}(n) \right) = \sum_{j=0}^{\lfloor n/2 \rfloor} M_k(j) \sigma \text{mex}(n-2j).$$

Proof. By (4.1), with q replaced by q^2, we obtain

$$\frac{(-1)^{k-1}}{(q^2; q^2)_{\infty}} \left(\sum_{n=-(k-1)}^{k} (-1)^j q^{n(3j-1)} - 1 \right) = \sum_{n=k}^{\infty} M_k(n)q^{2n}. \quad (4.5)$$

Multiplying both sides of (4.5) by the generating function for $\sigma \text{mex}(n)$, we obtain

$$(-1)^{k-1} \left(\sum_{n=0}^{\infty} \overline{p}(n)q^n \right) \left(\sum_{n=-(k-1)}^{k} (-1)^j q^{n(3j-1)} \right) - \sum_{n=0}^{\infty} \sigma \text{mex}(n)q^n
= \left(\sum_{n=0}^{\infty} \sigma \text{mex}(n)q^n \right) \left(\sum_{n=0}^{\infty} M_k(n)q^{2n} \right).$$

The proof follows by equating the coefficients of q^n in this identity. □
The limiting case \(k \to \infty \) of Theorem 4.5 reads as follows.

Corollary 4.6. For \(n \geq 0 \), \(\sigma \text{mex}(n) = \sum_{j=-\infty}^{\infty} (-1)^j \overline{p}(n - j(3j - 1)) \).

Remark 4.7. Since it is known that \(\overline{p}(n) \) is odd if and only if \(n = 0 \), it follows that \(\sigma \text{mex}(n) \) is odd if and only if \(12n + 1 \) is a square.

In [2], the authors denoted by \(M_k(n) \) the number of overpartitions of \(n \) in which the first part larger than \(k \) appears at least \(k + 1 \) times. We have the following identity.

Theorem 4.8. For integers \(k, n > 0 \), we have

\[
(-1)^k \left(\sigma \text{mex}(n) + 2 \sum_{j=1}^{k} (-1)^j \sigma \text{mex}(n - j^2) - \delta'(n) \right) = \sum_{j=-\infty}^{\infty} (-1)^j M_k(n - j(3j - 1)),
\]

where \(\delta'(n) = (-1)^m \) if \(n = m(3m - 1), m \in \mathbb{Z} \) and \(\delta'(n) = 0 \) otherwise.

Proof. The proof, given in [6], follows from a truncated theta series identity [2]. \qed

There is a substantial amount of numerical evidence to conjecture the following inequality.

Conjecture 4.9. For \(k, n > 0 \),

\[
\sum_{j=-\infty}^{\infty} (-1)^j M_k(n - j(3j - 1)) \geq 0,
\]

with strict inequality if \(n \geq (k + 1)^2 \).

A combinatorial interpretation for the sum in this conjecture would be interesting.

4.3 \(\sigma \text{mex}(n) \) and partitions into distinct parts

To keep notation uniform, let \(D_1(n) \) be the number of partitions of \(n \) into distinct parts. Set \(D_1(x) = 0 \) if \(x \) is not a positive integer. For proof of the next theorem see [6].

Theorem 4.10. For any integer \(n \geq 0 \), we have

\[
\sum_{j=0}^{\infty} (-1)^{(j+1)/2} \sigma \text{mex}(n - j(j + 1)/2) = \sum_{j=0}^{\infty} D_1 \left(\frac{n - j(j + 1)/2}{2} \right).
\]

Let \(D_2^+(n) \) be the number of partitions of \(n \) with distinct parts using two colors such that: (i) parts of color 0 form a gap-free partition (staircase) and (ii) only even parts can have color 1. Then, we have the following identity of Watson type [4] which gives a combinatorial interpretation for the right hand side of (4.6). For its proof see [6].
Proposition 4.11. For $n \geq 0$,
\[\sum_{j=0}^{\infty} D_1 \left(\frac{n - j(j + 1)/2}{2} \right) = D_2^*(n). \]

In [2], the authors denoted by $MP_k(n)$ the number of partitions of n in which the first part larger than $2k - 1$ is odd and appears exactly k times. All other odd parts appear at most once. We have the following truncated form of Theorem 4.10.

Theorem 4.12. For integers $n, k > 0$,
\[(-1)^{k-1} \left(\sum_{j=0}^{2k-1} (-1)^{j(j+1)/2} \sigma \text{mex}(n - j(j + 1)/2) - D_2^*(n) \right) = \sum_{j=0}^{n} MP_k(j) D_2^*(n - j). \]

Proof. The proof, given in [6], follows from the truncated theta series identity of [2].

A combinatorial interpretation for $\sum_{j=0}^{n} MP_k(j) D_2^*(n - j)$ would be very welcome.

The following corollary of Theorem 4.12 is immediate.

Corollary 4.13. For integers $n, k > 0$,
\[(-1)^{k-1} \left(\sum_{j=0}^{2k-1} (-1)^{j(j+1)/2} \sigma \text{mex}(n - j(j + 1)/2) - D_2^*(n) \right) \geq 0, \]
with strict inequality if $n \geq k(2k + 1)$.

A second corollary involves the function $\text{pod}(n)$, the number of partitions of n in which odd parts are not repeated, i.e.,

Corollary 4.14. For $n \geq 0$, $\sigma \text{mex}(n) = \sum_{j=0}^{n} \text{pod}(j) D_2^*(n - j)$.

5 $\sigma \text{mex}(n)$ and partitions with colored odd parts

In this section we present several identities relating $\sigma \text{mex}(n)$ with the number of partitions of n in which odd parts are colored in with j colors, $j = 2, 3, 4$. Elsewhere in the literature, colored partitions are referred to as vector partitions. Due to space restrictions, we will present the proofs of all theorems in this section in a future article.
5.1 Three colors for the odd parts

Let \(C_3(n) \) be the number of partitions of \(n \) using 3 colors for the odd parts and let \(C'_3(n) \) be the number of partitions of \(n \) into parts not congruent to 2 mod 4 using 3 colors for the odd parts. The generating functions for \(C_3(n) \) and \(C'_3(n) \) are respectively

\[
\sum_{n=0}^{\infty} C_3(n)q^n = \frac{1}{(q^2;q^2)_\infty(q;q^2)_\infty^3} \quad \text{and} \quad \sum_{n=0}^{\infty} C'_3(n)q^n = \frac{1}{(q^4;q^4)_\infty(q;q^2)_\infty^3}.
\]

Using the truncated Euler's pentagonal number theorem [1], we prove the following identity which relates \(C_3(n) \) and the function \(M_k(n) \) defined in Section 1.

Theorem 5.1. Let \(k \) be a positive integer. Given an integer \(n \geq 0 \), we have

\[
(-1)^{k-1} \left(\sum_{j=-k}^{k} (-1)^j C_3(n - j(3j - 1)/2) - \sigma \text{mex}(n) \right) = \sum_{j=0}^{n} \sigma \text{mex}(j) M_k(n - j).
\]

A combinatorial interpretation of \(\sum_{j=0}^{n} \sigma \text{mex}(j) M_k(n - j) \) would be appealing.

The limiting case \(k \to \infty \) of Theorem 5.1 gives the following decomposition of \(\sigma \text{mex}(n) \).

Corollary 5.2. For \(n \geq 0 \), we have

\[
\sigma \text{mex}(n) = \sum_{j=-\infty}^{\infty} (-1)^j C_3(n - j(3j - 1)/2).
\]

Using the truncated theta series identity of [2], we prove the following identity which relates \(C'_3(n) \) and the function \(MP_k(n) \) of Section 4.3.

Theorem 5.3. Let \(k \) be a positive integer. Given an integer \(n \geq 0 \), we have

\[
(-1)^{k-1} \left(\sum_{j=0}^{2k-1} (-1)^{j(1/2)} C'_3(n - j(j + 1)/2) - \sigma \text{mex}(n) \right) = \sum_{j=0}^{n} \sigma \text{mex}(j) MP_k(n - j).
\]

Corollary 5.4. For \(n \geq 0 \), \(\sigma \text{mex}(n) = \sum_{j=0}^{\infty} (-1)^{j(1/2)} C'_3(n - j(j + 1)/2) \).

5.2 Four colors for the odd parts

Let \(C_4(n) \) be the number of partitions of \(n \) using 4 colors for the odd parts. The generating function for \(C_4(n) \) is

\[
\sum_{n=0}^{\infty} C_4(n)q^n = \frac{1}{(q^2;q^2)_\infty(q^2;q^2)_\infty^4}.
\]

Then, \(C_4(n) \) and the function \(M_k(n) \) of Section 4.2 are related by the next theorem and its corollary.
Theorem 5.5. Let k be a positive integer. Given an integer $n \geq 0$, we have

$$(-1)^k \left(C_4(n) + 2 \sum_{j=1}^{k} (-1)^j C_4(n - j^2) - \sigma \text{ mex}(n) \right) = \sum_{j=0}^{n} C_4(j) M_k(n - j).$$

Corollary 5.6. For $n \geq 0$, $\sigma \text{ mex}(n) = C_4(n) + 2 \sum_{j=1}^{\infty} (-1)^j C_4(n - j^2)$.

Note that the partition functions $\sigma \text{ mex}(n)$ and $C_4(n)$ have the same parity.

5.3 Two colors for parts $\not\equiv 0 \mod 4$

Let $C_2(n)$ be the number of partitions of n using two colors for the parts not congruent to 0 mod 4. The generating function for $C_2(n)$ is

$$\sum_{n=0}^{\infty} C_2(n) q^n = \frac{(q^4; q^4)_{\infty}}{(q; q)_2^\infty}.$$

The following identity relating $C_2(n)$ and $M_k(n)$ follows from the truncated theta identity of [2].

Theorem 5.7. Let k be a positive integer. Given an integer $n \geq 0$, we have

$$(-1)^k \left(C_2(n) + 2 \sum_{j=1}^{k} (-1)^j C_2(n - 2j^2) - \sigma \text{ mex}(n) \right) = \sum_{j=0}^{\lfloor n/2 \rfloor} M_k(j) \sigma \text{ mex}(n - 2j).$$

Corollary 5.8. For $n \geq 0$, $\sigma \text{ mex}(n) = C_2(n) + 2 \sum_{j=1}^{\infty} (-1)^j C_2(n - 2j^2)$.

We see that the partition functions $\sigma \text{ mex}(n)$ and $C_2(n)$ have the same parity.

5.4 Two colors for the odd parts in partitions into parts $\not\equiv 4 \mod 8$

We denote by $C_2^*(n)$ the number of partitions of n into parts not congruent to 4 mod 8 using two colors for the odd parts. The generating function for $C_2^*(n)$ is given by

$$\sum_{n=0}^{\infty} C_2^*(n) q^n = \frac{1}{(q^2, q^6, q^8; q^8)_{\infty}(q; q^2)_2^\infty}.$$

The proof of following theorem relating $C_2^*(n)$ and MP_k again uses results from [2].
Theorem 5.9. Let k be a positive integer. Given an integer $n \geq 0$, we have

\[(-1)^{k-1} \left(\sum_{j=0}^{2k-1} (-1)^{j(j+1)/2}C_2^*(n-j(j+1)) - \sigma \text{mex}(n) \right) = \sum_{j=0}^{[n/2]} MP_k(j)\sigma \text{mex}(n-2j). \]

Corollary 5.10. For $n \geq 0$, $\sigma \text{mex}(n) = \sum_{j=0}^{\infty} (-1)^{j(j+1)/2}C_2^*(n-j(j+1))$.

References

