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Inversion sequences avoiding consecutive patterns
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Abstract. Inversion sequences are integer sequences e1e2 . . . en such that 0 ≤ ei < i for
each i. The study of classical patterns in inversion sequences was initiated by Corteel–
Martinez–Savage–Weselcouch and Mansour–Shattuck. Here we focus on consecutive
patterns in inversion sequences, namely patterns whose entries are required to occur
in adjacent positions. We enumerate inversion sequences that avoid small consecutive
patterns. We also study the notion of Wilf equivalence in this setting, as well as gener-
alizations that consider the positions of the occurrences, and classify patterns of length
up to 4 into equivalence classes.

Finally, in analogy to the work of Martinez–Savage in the classical case, we consider
consecutive patterns of relations among 3 adjacent entries. Our setting allows us to
give a simple bijective proof of a result of Baxter–Shattuck and Kasraoui about vincu-
lar permutation patterns, and to prove a conjecture of Martinez–Savage about certain
unimodal inversion sequences.

Keywords: inversion sequence, pattern avoidance, consecutive pattern, Wilf equiva-
lence

1 Introduction

A common encoding of permutations is by their inversion sequences. Specifically, de-
noting by Sn the set of permutations of [n] = {1, 2, . . . , n}, and by In the set of inversion
sequences of length n —that is, integer sequences e = e1e2 . . . en with 0 ≤ ei < i for each
i— one can define a bijection Θ : Sn → In that assigns to each π ∈ Sn its inversion
sequence

Θ(π) = e = e1e2 . . . en, where ej = |{i : i < j and πi > πj}|. (1.1)

Clearly, e1 + · · ·+ en is the number of inversions of π, namely, pairs (i, j) with i < j and
πi > πj.

In analogy to patterns in permutations, a research area that has received a lot of
attention in the last few decades, one can study patterns in inversion sequences. In
this context, a pattern is a word p = p1p2 . . . pr with pi ∈ {0, 1, . . . , r − 1} for each i,
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where any value j > 0 can appear in p only if j− 1 appears as well. Given a word w =
w1w2 . . . wk over the integers, define its reduction to be the word obtained by replacing
all the occurrences of the ith smallest entry of w with i− 1 for all i. Then, an inversion
sequence e contains the classical pattern p = p1p2 . . . pr if there exists a subsequence
ei1ei2 . . . eir of e (where i1 < · · · < ir) with reduction p. Otherwise, we say that e avoids p.
For instance, the inversion sequence e = 00014224 avoids the pattern 210, but it contains
the pattern 101 because e5e6e8 = 424 has reduction 101.

The study of classical patterns in inversion sequences was started by Corteel, Mar-
tinez, Savage, and Weselcouch [8], and Mansour and Shattuck [14]. Their work con-
nected classical patterns in inversion sequences to other combinatorial structures, which
inspired more research in the area [6, 13, 15, 18]. Motivated by this work and by the
growing interest in consecutive patterns in permutations [11], we initiate an analogous
systematic study of consecutive patterns in inversion sequences. In this extended ab-
stract, most results are presented without a proof; for more details, we refer the reader
to the full papers [1, 2]. In the definition below, the entries of a consecutive pattern are
underlined to distinguish it from a classical pattern.

Definition 1.1. An inversion sequence e contains the consecutive pattern p = p1p2 . . . pr
if there is a consecutive subsequence eiei+1 . . . ei+r−1 of e whose reduction is p; this sub-
sequence is called an occurrence of p in position i. Otherwise, we say that e avoids p.
Define

Em(p, e) = {i : eiei+1 . . . ei+r−1 is an occurrence of p}.
Denote by In(p) the set of inversion sequences of length n that avoid p.

Example 1.2. The inversion sequence e = 0021100300 ∈ I10 avoids 120, but it contains
010, since e7e8e9 = 030 is an occurrence of 010. It also contains three occurrences of
p = 100, in positions Em(p, e) = {3, 5, 8}.

It is sometimes useful to represent an inversion sequence e as an underdiagonal lattice
path consisting of unit horizontal and vertical steps. Each entry ei of e is represented by
a horizontal step: a segment between the points (i− 1, ei) and (i, ei). The vertical steps
are then inserted to make the path connected (see Figure 2 (a)(b)).

We are also interested in the following equivalence relations, defined in analogy to
those for consecutive patterns in permutation [9]. Henceforth, unless otherwise stated,
patterns will refer to consecutive patterns in inversion sequences, and equivalence of
patterns will refer to the equivalences in Definition 1.3.

Definition 1.3. Let p and p′ be consecutive patterns. We say that p and p′ are

• Wilf equivalent, denoted by p ∼ p′, if |In(p)| = |In(p′)|, for all n;

• strongly Wilf equivalent, denoted by p s∼ p′, if for each n and m, the number of
inversion sequences in In containing m occurrences of p is the same as for p′;
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• super-strongly Wilf equivalent, denoted by p ss∼ p′, if the above condition holds for
any set of prescribed positions for the m occurrences; that is,

|{e ∈ In : Em(p, e) = T}| = |{e ∈ In : Em(p′, e) = T}|.

for all n and all T ⊆ [n].

Clearly, p ss∼ p′ implies p s∼ p′, which in turn implies p ∼ p′. An equivalence of any
one of the these three types will be called a generalized Wilf equivalence.

2 Consecutive patterns of length 3

For any consecutive pattern p of length 3, we are able to give recurrences to compute the
numbers |In(p)|. Most of our recurrences use the refinement In,k(p) = {e ∈ In(p) : en =
k}. A list of these recurrences is given in Table 1.

Pattern p in the OEIS [17] Recurrence for |In,k(p)|
012 A049774 |In,k(p)| = |In−1(p)| −∑k−1

l=1 ∑l−1
j=0 ∑i≥j |In−3,i(p)|

021 A071075 |In,k(p)| = |In−1(p)| − (n− 2− k)∑k−1
j=0 |In−2,j(p)|

102 New |In,k(p)| = |In−1(p)| −∑j≥1 j|In−2,j(p)|
120 A200404 |In,k(p)| = |In−1(p)| −∑j>k(n− 2− j)|In−2,j(p)|
201 New |In,k(p)| = |In−1(p)| − k ∑j>k |In−2,j(p)|
210 New |In,k(p)| = |In−1(p)| −∑n−4

l=k+1 ∑n−3
j=l+1 ∑i≤j |In−3,i(p)|

000 A052169 |In(p)| = (n+1)!−dn+1
n , where dn = # of derangements of [n]

001 New |In,k(p)| = |In−1(p)| −∑j<k |In−2,j(p)|
010 New |In,k(p)| = |In−1(p)| − (n− 2− k)|In−2,k(p)|
011 New |In,k(p)| = |In−1(p)| − ∑j<k |In−2,j(p)| if k 6= n − 1, and

|In,n−1(p)| = |In−1(p)|
100 ss∼ 110 New |In,k(p)| = |In−1(p)| −∑j>k |In−2,j(p)|

101 New |In,k(p)| = |In−1(p)| − k|In−2,k(p)|

Table 1: Enumerative results for avoidance of consecutive patterns of length 3.

Even though we do not include the proofs of the results in Table 1 in this extended
abstract, we will mention some consequences and generalizations. Next is a recurrence
for the number of inversion sequences avoiding the consecutive pattern consisting of r
zeros. We denote this pattern by 0r.
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Proposition 2.1. Let n ≥ r ≥ 2. The sequence |In(0r)| satisfies the recurrence

|In(0r)| =
r−1

∑
j=1

(n− j)|In−j(0r)|,

with initial conditions |In(0r)| = n!, for 1 ≤ n < r.

Denoting by dn be the number of derangements (i.e., permutations with no fixed
points) of length n, it follows from the above recurrence that

|In(000)| = (n + 1)!− dn+1

n
.

It would be interesting to find a direct combinatorial proof of this fact.
The recurrences in Table 1 show that the only two patterns of length 3 that are Wilf

equivalent are 100 and 110. It turns out that the following stronger result holds.

Proposition 2.2. The patterns 110 and 100 are super-strongly Wilf equivalent.

To prove this equivalence, first we construct a bijection

{e ∈ In : Em(110, e) ⊇ S} → {e ∈ In : Em(100, e) ⊇ S}

for any S ⊆ [n], by replacing occurrences of 110 in positions S with occurrences of 100.
Then, using the Principle of Inclusion-Exclusion, we conclude that 110 ss∼ 100.

2.1 From patterns in inversion sequences to patterns in permutations

In this subsection we discuss some correspondences between consecutive patterns of
length 3 in inversion sequences and permutation patterns. We denote by Sn(σ) the set
of permutations in Sn that avoid the pattern σ. We underline the entries of σ that are
required to be adjacent in an occurrence. Patterns where some entries are underlined
are called vincular (or generalized) permutation patterns, and were introduced by Babson
and Steingrímsson [3].

Proposition 2.3. Let π ∈ Sn, and let e = Θ(π) be its corresponding inversion sequence given
by (1.1). Then

(a) π avoids (r + 1)r . . . 1 if and only if e avoids 01 . . . r;

(b) π avoids 3214 if and only if e avoids 120;

(c) π avoids 2413 if and only if e avoids 021.
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Permutations avoiding 1432 were studied by Baxter and Pudwell [4]. The sequence
|Sn(1432)| appears as A200404 in [17], but no enumerative results seem to be known. Us-
ing the reverse-complement operation, it follows from Proposition 2.3 (b) that |In(120)| =
|Sn(1432)|, so these numbers can be computed using the recurrence in Table 1.

Proposition 2.3 (c) implies that |In(021)| = |Sn(1324)|. The exponential generating
function for permutations avoiding 1324 can be deduced by combining [10, Proposition
3.1] and [11, Theorem 4.1], from where we get

∑
n≥0
|In(021)|z

n

n!
= exp

(∫ z

0

dt

1−
∫ t

0 e−u2/2du

)
.

3 Consecutive patterns of length 4

For consecutive patterns of length 4 in inversion sequences, the classification into Wilf
equivalence classes becomes quite interesting. Note that, unlike in the case of permuta-
tions, there are no equivalences resulting from trivial symmetries. There are a total of 75
consecutive patterns of length 4, which fall into 55 Wilf equivalence classes. Strikingly,
this is also the number of strong and super-strong Wilf equivalence classes; in other
words, all the equivalences among consecutive patterns of length 4 are super-strong
equivalences.

Theorem 3.1. A complete list of the generalized Wilf equivalences between consecutive patterns
of length 4 is as follows:

(i) 0102 ss∼ 0112.

(ii) 0021 ss∼ 0121.

(iii) 1002 ss∼ 1012 ss∼ 1102.

(iv) 0100 ss∼ 0110.

(v) 2013 ss∼ 2103.

(vi) 1200 ss∼ 1210 ss∼ 1220.

(vii) 0211 ss∼ 0221.

(viii) 1000 ss∼ 1110.

(ix) 1001 ss∼ 1011 ss∼ 1101.

(x) 2100 ss∼ 2210.

(xi) 2001 ss∼ 2011 ss∼ 2101 ss∼ 2201.

(xii) 2012 ss∼ 2102.

(xiii) 2010 ss∼ 2110 ss∼ 2120.

(xiv) 3012 ss∼ 3102.

This leads us to speculate the following analogue to Nakamura’s conjecture for con-
secutive patterns in permutations [16, Conjecture5.6], which remains open.

Conjecture 3.2. Two consecutive patterns in inversion sequences are strongly Wilf equivalent if
and only if they are Wilf equivalent.
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It is in fact possible that a stronger version of Conjecture 3.2 holds, namely that
all three types of generalized Wilf equivalence for consecutive patterns in inversion se-
quences (see Definition 1.3) coincide. Our results show that this is the case for patterns
of length at most 4. On the other hand, we will see in Corollary 4.4 some evidence in the
other direction, when we consider patterns of relations.

Regarding enumeration, the only consecutive pattern p of length 4 for which the
sequence |In(p)| appears in the OEIS [17] is p = 0123, since |In(0123)| = |Sn(1234)|, by
Proposition 2.3 (a).

The equivalences in Theorem 3.1 are proved using a variety of methods. Next we
summarize three of the techniques that we use.

3.1 Equivalences proved via bijections

Equivalences (ii)–(vii), (ix), (xi), (xii) and (xiv) in Theorem 3.1 are proved bijectively. In
fact, in these cases we can show that not only p ss∼ p′, but also

|{e ∈ In : Em(p, e) = S, Em(p′, e) = T}| = |{e ∈ In : Em(p, e) = T, Em(p′, e) = S}|,
(3.1)

for all n and all S, T ⊆ [n]. In other words, the joint distribution of the positions of the
occurrences of p and p′ is symmetric.

(3.1) is proved by exhibiting a bijection from In to itself that changes all occurrences
of p into occurrences of p′, and vice versa. Such a bijection can be constructed when the
patterns satisfy certain conditions.

Definition 3.3. Two consecutive patterns p and p′ are mutually non-overlapping if it is
impossible for an occurrence of p and an occurrence of p′ in an inversion sequence to
overlap in more than one entry; equivalently, if for all 1 < i < r, the reductions of
p1 . . . pi and p′r−i+1 . . . pr do not coincide, and neither do the reductions of p′1 . . . p′i and
pr−i+1 . . . pr. We say that p is non-overlapping if it is mutually non-overlapping with itself.

Example 3.4. The patterns 110 and 010 are non-overlapping and mutually non-overlap-
ping. However, the patterns 110 and 100 are mutually overlapping. Indeed, the inversion
sequence 0002211 ∈ I7 has occurrences of 110 and 100 overlapping in two entries. The
pattern 1100 is overlapping.

Definition 3.5. Let p = p1p2 . . . pr and p′ = p′1p′2 . . . p′r be two consecutive patterns such
that p1 = p′1, pr = p′r, and maxi{pi} = maxi{p′i}. We say that p is changeable for p′ if, for
all 1 ≤ i ≤ r,

p′i ≤ max({pj : 1 ≤ j ≤ i} ∪ {pj − j + i : i < j ≤ r}).
If p is changeable for p′ and p′ is changeable for p, then we say that p and p′ are
interchangeable.
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Example 3.6. Consider the consecutive patterns p = 01230 and p′ = 03210. Note that

p′2 = 3 > 1 = max({pj : 1 ≤ j ≤ 2} ∪ {pj − j + 2 : 2 < j ≤ 5}).

Hence, 01230 is not changeable for 03210.
On the other hand, the patterns p = 0021 and p′ = 0121 are interchangeable. Indeed,

in this case p′2 = 1 = max({pj : 1 ≤ j ≤ 2} ∪ {pj − j + 2 : 2 < j ≤ 4}) and p′i = pi for
i 6= 2, so p is changeable for p′. Similarly, p′ is changeable for p because pi ≤ p′i, for all i.

Theorem 3.7. Let p and p′ be non-overlapping, mutually non-overlapping, and interchangeable
consecutive patterns. Then p and p′ satisfy (3.1). In particular, p ss∼ p′.

For each of the equivalences (ii)–(vii), (ix), (xi), (xii) and (xiv) in Theorem 3.1, it can
be easily verified that the patterns are non-overlapping, mutually non-overlapping, and
interchangeable. Thus, these equivalences follow from Theorem 3.7.

3.2 Equivalences proved via inclusion-exclusion

Some equivalences in Theorem 3.1 follow from the next result, which has weaker hy-
potheses than Theorem 3.7. It relaxes the condition of p and p′ being mutually non-
overlapping, at the expense of not proving (3.1) and not producing a direct bijection
changing all the occurrences of p into occurrences of p′.

Theorem 3.8. Let p and p′ be non-overlapping and interchangeable consecutive patterns. Then
p ss∼ p′.

Equivalences (viii) and (x) in Theorem 3.1 follow. The proof of Theorem 3.8 general-
izes the ideas behind the proof of Proposition 2.2.

3.3 Equivalences between overlapping patterns

The equivalences proved so far have relied on the patterns being non-overlapping. For
some specific overlapping patterns, the proof of Theorem 3.8 can be adapted to show
their equivalence. The proof of (i) and (xiii) in Theorem 3.1 relies on a decomposition of
inversion sequences into blocks of overlapping occurrences, together with the bijections
hinted in Figure 1, and an inclusion-exclusion argument.

The equivalences 0102 ss∼ 0112 and 2010 ss∼ 2110 ss∼ 2120 can be generalized as follows.

Theorem 3.9. For every r ≥ 1 and s ≥ 2, we have

0r 1 0r 2 0r . . . (s− 1) 0r s ss∼ 0r 1 1r 2 2r . . . (s− 1) (s− 1)r s,

s 0r (s− 1) 0r . . . 0r 10r ss∼ s (s− 1)r s (s− 2)r s . . . s 1rs 0r

ss∼ s (s− 1)r (s− 1) (s− 2)r (s− 2) . . . 1r1 0r.
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Figure 1: Schematic diagram of the bijections behind the proof of 0102 ss∼ 0112.

4 Patterns of relations

Extending the systematic study of Corteel et al. [8] for classical patterns in inversion
sequences, Martinez and Savage [15] reframe the notion of a pattern of length 3 to instead
consider a triple of binary relations between the entries of the occurrence. In this section
we define a consecutive analogue of this notion.

Definition 4.1. Let R1, R2 ∈ {≤,≥,<,>,=, 6=}. An inversion sequence e contains the
consecutive pattern of relations (R1, R2) if there is an i such that eiR1ei+1 and ei+1R2ei+2;
in this case, eiei+1ei+2 is called an occurrence of (R1, R2) in position i. Otherwise, we say
that e avoids (R1, R2). Denote by In(R1, R2) the set of inversion sequences of length n
that avoid (R1, R2).

Example 4.2. The inversion sequence e = 002241250 contains (>,<) because e5e6e7 =
412 is an occurrence of this pattern. However, e avoids (=,>), and so e ∈ I9(=,>).

It is important to note that an occurrence of (R1, R2) is also an occurrence of some
consecutive pattern of length 3, and so avoidance of (R1, R2) is equivalent to avoidance
of a set of consecutive patterns. Specifically, we can write In(R1, R2) =

⋂
p In(p), where

p ranges over the consecutive patterns p = p1p2p3 satisfying p1R1p2 and p2R2p3. One
advantage of studying the sets In(R1, R2) is that they often exhibit more structure than
the sets In(p), provide connections to other combinatorial objects, and yield simpler
enumeration sequences.

In this section we provide formulas for |In(R1, R2)|, and we study the analogues for
consecutive patterns of relations of the notions of equivalence in Definition 1.3.

The 36 consecutive patterns of relations (R1, R2) with R1, R2 ∈ {≤,≥,<,>,=, 6=} fall
into 30 Wilf equivalence classes, and into 31 strong Wilf equivalence classes, which are
also super-strong equivalence classes. The next result provides this classification.

Theorem 4.3. A complete list of the generalized Wilf equivalences between consecutive patterns
of relations (R1, R2) in inversion sequences is as follows:
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(i) (≥,<)
ss∼ (<,≥) ∼ ( 6=,≥).

(ii) (≥,≥) ss∼ (<,<).

(iii) (≥,=)
ss∼ (=,≥).

(iv) (≥,>)
ss∼ (>,≥).

(v) (>,=)
ss∼ (=,>).

Note that the patterns (≥,<) and ( 6=,≥) (similarly, (<,≥) and ( 6=,≥)) are Wilf
equivalent but not strongly Wilf equivalent.

Corollary 4.4. Wilf equivalence and strong Wilf equivalence classes of consecutive patterns of
relations in inversion sequences do not coincide in general.

This result is surprising for two reasons. First, Wilf equivalence and strong Wilf
equivalence classes of single consecutive patterns are conjectured to coincide, both in
the setting of permutations (see [16, Conjecture 5.6]) and in the setting of inversion
sequences (see Conjecture 3.2). Corollary 4.4 shows that the analogous statement for
consecutive patterns of relations does not hold. Second, when considering consecutive
patterns of relations in the setting of permutations, by defining πiπi+1πi+2 to be an
occurrence of (R1, R2) in π ∈ Sn if πiR1πi+1 and πi+1R2πi+2, Wilf equivalence and
strong Wilf equivalence classes of such patterns in permutations coincide. In fact, all
such equivalences are obtained from trivial symmetries, unlike in the case of inversion
sequences.

As a consequence of Theorem 4.3 (iv), we deduce the following result about permu-
tation patterns, originally conjectured by Baxter and Pudwell [4, Conjecture17], and later
proved by Baxter and Shattuck [5, Corollary11] and by Kasraoui [12, Corollary1.9(a)].

Corollary 4.5. The vincular permutation patterns 1243 and 4213 are Wilf equivalent, that is,
|Sn(1243)| = |Sn(4213)| for all n.

Inversion sequences avoiding consecutive patterns of relations provide the right set-
ting to prove this result. Our proof, which is simpler than the previously known ones,

is a sequence of bijections Sn(1243) → Sn(2134) → In(>,≥) Φ→ In(≥,>) → Sn(3124) →
Sn(4213), where the key step is the bijection Φ.

Regarding enumeration, we show that, for many patterns (R1, R2), the sequence
|In(R1, R2)| matches an existing sequence in the OEIS [17] enumerating other combi-
natorial objects. These results are summarized in Table 2. Our proofs are bijective in
most cases.

Let us sketch how some of the formulas in Table 2 were obtained. Using the fact that

In(≥,≤) = {e ∈ In : e1 < e2 < · · · < ej ≥ ej+1 > ej+2 > · · · > en for some 1 ≤ j ≤ n},

we construct a bijection from this set to the set of compositions of n with parts 1 and
2, which has cardinality Fn+1. To enumerate In( 6=, 6=), we describe a bijection to the set
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Pattern (R1, R2) OEIS [17] Description

(≤, 6=) A040000 2 (for n > 1)

(≤,≥) A000027 n

(≥, 6=) A000124 (n
2) + 1

(≥,≤) A000045 Fn+1 (Fibonacci)

( 6=,≤) A000071 Fn+2 − 1

(≥,<)
ss∼ (<,≥) ∼ ( 6=,≥) A000079 2n−1

( 6=, 6=) A000085 Number of involutions of [n]

(≤,>) A000108 Cn (Catalan)
(>,≤) A071356 Underdiagonal paths of from the origin to

x = n with steps (0, 1), (1, 0), (1, 2)

(=, 6=) A003422 0! + 1! + 2! + · · ·+ (n− 1)!

(≥,≥) ss∼ (<,<) A049774 |Sn(321)|
( 6=,=) A000522 ∑n−1

i=0 (n− 1)!/i!

(≥,>)
ss∼ (>,≥) A200403 |Sn(1243)|

(=,=) A052169 (n+1)!−dn+1
n

Table 2: Consecutive patterns of relations (R1, R2) for which |In(R1, R2)| appears
in [17] and has an existing alternative combinatorial interpretation.

of involutions of [n]. On the other hand, the set In(≤,>) consists precisely of weakly
increasing inversion sequences, which are in bijection with Dyck paths.

The enumeration of In(>,≤) is more complicated, and it relies on a bijection ϕ to a
certain set Rn of lattice paths defined as follows.

Definition 4.6. A marked Dyck path P is an underdiagonal lattice path from (0, 0) to some
point in the diagonal, with horizontal steps E = (1, 0) and two possible kinds of vertical
steps (0, 1), denoted by N and N∗. Denoting by E(P), N(P) and N∗(P), the number
of E, N and N∗ steps in P, respectively, the size of P is defined as N∗(P) + E(P) =
N(P) + 2N∗(P). If a marked Dyck path P has no N∗ step in the last run of vertical steps,
then we say that P has an unmarked tail. Let Rn be the set of paths of size n with an
unmarked tail.

To define ϕ, we use the fact that

In(>,≤) = {e ∈ In : e1 ≤ e2 ≤ · · · ≤ ej > ej+1 > · · · > en for some 1 ≤ j ≤ n}.

Given e ∈ In(>,≤), let P be the corresponding underdiagonal lattice path from (0, 0) to
the line x = n, using steps N = (0, 1), S = (0,−1) and E = (1, 0), having n steps E at
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heights given by e1, . . . , en. We construct ϕ(e) ∈ Rn as follows; see Figure 2 (b)(c) for an
example.

1) For every E step in the descending portion of P (i.e., to the right of the line x = j),
which corresponds to an entry ei with i > j, mark the N step in the ascending
portion of P going from height ei to height ei + 1, turning it into an N∗ step.

2) Erase the descending portion of P, and instead append j− ej N steps. Let ϕ(e) ∈
Rn be the resulting path from the origin to (j, j).

(a) (b) (c)

Figure 2: (a) The inversion sequence e = 002031 ∈ I6 as an underdiagonal lattice path.
(b) The inversion sequence e = 011344421 ∈ I9(>,≤). (c) Its corresponding marked
Dyck path ϕ(e) = ENEEN∗N∗ENEEENNN ∈ R9.

Then we use standard generating function techniques to enumerate paths in Rn. As
a byproduct of these bijections, we obtain a proof of the following result involving non-
consecutive triples of relations, which refines a conjecture of Martinez and Savage [15,
Section 2.19]. Alternative proofs of their conjecture using different methods have been
obtained independently by Cao, Jin, and Lin [7, Theorem 5.1] and by Hossain.

Theorem 4.7. For e ∈ In, let dist(e) = |{e1, e2, . . . , en}| be the number of distinct entries of e.
Then

∑
n≥0

∑
e∈In(>,≤)

zntdist(e) =
1 + z(3− t)−

√
1− z(2 + 2t− z + 6zt− zt2)

4z
.

In particular, the distribution of the statistic dist on In(>,≤) is symmetric.
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