
Séminaire Lotharingien de Combinatoire 84B (2020) Proceedings of the 32nd Conference on Formal Power
Article #28, 12 pp. Series and Algebraic Combinatorics (Online)
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Abstract. Ceballos and Pons generalized weak order on permutations to a partial
order on certain labeled trees, thereby introducing a new class of lattices called s-weak
order. They also generalized the Tamari lattice by defining a particular sublattice of
s-weak order called the s-Tamari lattice. We prove that the homotopy type of each
open interval in s-weak order and in the s-Tamari lattice is either a ball or sphere. We
do this by giving s-weak order and the s-Tamari lattice a type of edge labeling known
as an SB-labeling. We characterize which intervals are homotopy equivalent to spheres
and which are homotopy equivalent to balls; we also determine the dimension of the
spheres for the intervals yielding spheres.

Keywords: Poset topology, s-weak order, s-Tamari lattice, SB-labelings

1 Introduction

In [3], Ceballos and Pons introduced a partial order called s-weak order on certain
labeled trees known as s-decreasing trees. They observed this generalizes weak order on
permutations. They proved s-weak order is a lattice. They also found a particular class
of s-decreasing trees which play the role of 231-avoiding permutations. They thereby
introduced a sublattice of s-weak order called the s-Tamari lattice which generalizes
the Tamari lattice. We prove that the order complex of each open interval in s-weak
order has the homotopy type of either a ball or sphere of some dimension. We prove
the same statement for each open interval in the s-Tamari lattice. In both cases, we
do this using the tool of SB-labelings developed by Hersh and Mészáros in [7]. Our
result generalizes Hersh and Mészáros’ result that weak order on permutations and the
classical Tamari lattice admit SB-labelings, but our labelings are distinct from theirs in
the classical case. In s-weak order and the s-Tamari lattice, these spheres are not always
top dimensional which demonstrates that these posets are not always shellable. We
intrinsically characterize which intervals in s-weak order and the s-Tamari lattice are
homotopy equivalent to spheres and which are homotopy equivalent to balls. We also
determine the dimension of the spheres for the intervals yielding homotopy spheres.
As a corollary, we deduce that the Möbius functions of s-weak order and the s-Tamari
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lattice only take values in {−1, 0, 1}. Additionally, an SB-labeling implies that distinct
sets of atoms in an interval have distinct joins. Further, topological understanding of
a poset often strongly restricts the structure of chains in the poset. While one might
wonder whether s-weak order always gives a Cambrian lattice of a finite Coxeter group,
we show this is not the case.

Ceballos and González studied s-increasing trees which are equivalent to s-decr-
easing trees while studying Signature Catalan combinatorics in [1]. The authors also
show that some instances of s-decreasing trees generalize certain pattern avoiding multi-
set permutations known as Stirling permutations which were introduced by Gessel and
Stanley in [4]. Part of Ceballos and Pons’ interest in s-weak order comes from geom-
etry. They conjecture that the Hasse diagrams of s-weak order are the 1-skeleta of
polytopal subdivisions of polytopes. They call these potential polytopal complexes s-
permutahedra. They also conjecture that in particular cases the polytopes they are
subdividing are classical permutahedra. Our result of an SB-labeling for s-weak or-
der, though it considers these lattices from a topological perspective, seems to provide
two pieces of evidence for Ceballos and Pons’ conjecture. The first piece of evidence is
that the Hasse diagrams of many lattices which admit SB-labelings can be realized as
the 1-skeleta of polytopes. The second comes from the fact that Ceballos and Pons’ geo-
metric perspective is somewhat similar in flavor to one point of view in Hersh’s work in
[6]. Hersh studied posets which arise as the 1-skeleta of simple polytopes via directing
edges by some cost vector. In particular, Hersh’s Theorem 4.9 in [6] proves that all open
intervals in lattices which are realizable as such 1-skeleta of simple polytopes are either
homotopy balls or spheres.

Ceballos and Pons’ interest in the s-Tamari lattice also stems from a geometric view-
point. They showed that the s-Tamari lattice is isomorphic to another generalization of
the classical Tamari lattice, namely the ν-Tamari lattice introduced by Préville-Ratelle
and Viennot in [8]. The geometry of the ν-Tamari lattice was recently studied by Ce-
ballos, Padrol, and Sarmiento in [2]. Similarly to how the Hasse diagram of the Tamari
lattice is the 1-skeleton of the associahedron, the Hasse diagram of the ν-Tamari lattice is
the 1-skeleta of a polytopal subdivision of a polytope. Thus, the s-Tamari lattice also has
such a geometric realization. In the context of the s-Tamari lattice, Ceballos and Pons
call these polytopal complexes s-associahedra. Further, they conjecture that in particular
cases s-associahedra can be obtained from the s-permutahedra by deleting certain facets.
The fact that the s-Tamari lattice admits an SB-labeling and has a geometric realization
as a polytopal complex seems to strengthen the evidence given by our result for Cebal-
los and Pons’ conjecture of such realizations of s-permutahedra. Additionally, our result
contributes two new classes of lattices which admit SB-labelings.

Section 2 provides the necessary background on posets, s-decreasing trees, s-weak
order, and the s-Tamari lattice. We largely follow the notation and definitions of [3]. We
also observe that s-weak order is not generally a Cambrian lattice. Section 2 reviews
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the notion of SB-labeling as well. Section 3 is where we sketch the proofs of our main
results, most notably giving SB-labelings for s-weak order and the s-Tamari lattice.

2 Background

2.1 Background on posets

Let (P,≤) be a poset. For x ≤ y ∈ P, the closed interval from x to y is the set [x, y] ={
z ∈ P

∣∣∣ x ≤ z ≤ y
}

. The open interval from x to y is defined analogously and denoted

(x, y). We say that y covers x, denoted x l y, if x ≤ z ≤ y implies z = x or z = y. P
is a lattice if each pair x, y ∈ P has a unique least upper bound, denoted x ∨ y, and a
unique greatest lower bound, denoted x ∧ y. We denote by 0̂ (respectively 1̂) the unique
minimal (respectively unique maximal) element of a finite lattice. The elements which
cover 0̂ are called atoms. For x, y ∈ P with x < y, a k-chain from x to y in P is a subset
C = {x0, x1, . . . , xk} ⊂ P such that x = x0 < x1 < · · · < xk = y. A chain C is said to
be saturated if xi l xi+1 for all i. The order complex of P, denoted ∆(P), is the abstract
simplicial complex with vertices the elements of P and i-dimensional faces the i-chains of
P. For x, y ∈ P with x < y, we denote by ∆(x, y) the order complex of the open interval
(x, y) as an induced subposet of P. Thus, when we refer to topological properties of P,
we mean the topological properties of a geometric realization of ∆(P). In particular, the
homotopy type of P refers to the homotopy type of ∆(P). Hall’s well known theorem
shows that the Möbius function µP of P satisfies µP(x, y) = χ̃(∆(x, y)). Here, χ̃ is the
reduced Euler characteristic. This provides one of the important connections between
the combinatorial and enumerative structure of a poset and its topology.

2.2 Background on s-weak order

We first define s-decreasing trees which are the elements of the partial order. Next we
establish notation for working with these trees and various subtrees. Then, in analogy
with weak order on permutations, we give the notion of inversion set for an s-decreasing
tree containment of which gives s-weak order. Lastly, we give the notions of an ascent
in an s-decreasing tree and of an s-tree rotation which together characterize the cover
relations in s-weak order and provide us our SB-labeling of s-weak order.

A weak composition is a sequence of non-negative integers s = (s(1), . . . , s(n)) with
s(i) ∈ N for all i ∈ [n]. We say the length of a weak composition s is l(s) := n. For
a weak composition s, an s-decreasing tree is a planar rooted tree T with n internal
vertices which are labeled 1 to n (leaves are not labeled and are the only unlabeled
vertices) such that internal vertex i has s(i) + 1 children and all labeled descendants of
i have labels less than i. The s(i) + 1 children of i are indexed by 0 to s(i). We denote
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the full subtree of T rooted at i by Ti, and denote the full subtrees rooted at the s(i) + 1
children of i by Ti

0, . . . , Ti
s(i), respectively. For i and 0 ≤ j ≤ s(i), we denote by Ti \ j

the subtree of T obtained from Ti by replacing Ti
j with a leaf. Let k be the jth child of i

in T. We define the jth left subtree of i in T, denoted LTi
j , to be the subtree of T with

root i obtained by walking from i to k and then down the left most subtree possible until
reaching a leaf. Similarly, we define the jth right subtree of i in T, denoted RTi

j , to be
the subtree of T with root i obtained by walking from i to k and then down the right
most subtree possible until reaching a leaf. Figure 1 is an example of an s-decreasing
tree with s = (0, 0, 0, 2, 1, 3), along with some examples of the subtrees just defined.
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(a) T
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3 2
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(b) T6 \ 0
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(c) LT6
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(d) RT6
2

Figure 1: An s-decreasing tree T with s = (0, 0, 0, 2, 1, 3) and examples of the defined
subtrees.

For 1 ≤ x < y ≤ n, the cardinality of (y, x) in T, denoted #T(y, x), is defined as
follows: if x is left of y in T or x ∈ Ty

0 then #T(y, x) = 0; if x ∈ Ty
i with 0 < i < s(y), then

#T(y, x) = i; and if x ∈ Ty
s(y) or x is right of y in T, then #T(y, x) = s(y). If #T(y, x) > 0,

then (y, x) is said to be a tree inversion of T. We denote by inv (T) the multi-set of tree
inversions of T counted with multiplicity their cardinality. Figure 2 is the s-decreasing
tree from Figure 1 with its cardinalities listed. Now we can also formally describe the
jth left and right subtrees of i in T.

LTi
j =

{
d ∈ Ti

∣∣∣ d = i, or d ∈ Ti
j and #T(e, d) = 0 ∀e ∈ Ti

j such that d < e
}

.

RTi
j =

{
d ∈ Ti

∣∣∣ d = i, or d ∈ Ti
j and #T(e, d) = s(e) ∀e ∈ Ti

j such that d < e
}

.

Remark 2.1. For s = (1, . . . , 1), s-decreasing trees are in by bijection with permutations
in Sl(s) and tree inversions biject with inversions of the corresponding permutation.

A multi-inversion set on [n] is a multi-set I of pairs (y, x) such that 1 ≤ x < y ≤ n.
We write #I(y, x) for the multiplicity of (y, x) in I so if (y, x) does not appear in I,
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#T(6, 5) = 0 #T(6, 4) = 2 #T(6, 3) = 2 #T(6, 2) = 2 #T(6, 1) = 2
#T(5, 4) = 1 #T(5, 3) = 1 #T(5, 2) = 1 #T(5, 1) = 1

#T(4, 3) = 0 #T(4, 2) = 2 #T(4, 1) = 2
#T(3, 2) = 0 #T(3, 1) = 0

#T(2, 1) = 0

Figure 2: An s-decreasing tree and its cardinalities for s = (0, 0, 0, 2, 1, 3).

#I(y, x) = 0. Given multi-inversion sets I and J, we say I is included in J and write I ⊆ J
if #I(y, x) ≤ #J(y, x) for all 1 ≤ x < y ≤ n. We also define the multi-inversion set com-
plement, denoted J− I, to be the multi-inversion set with #J−I(y, x) = #J(y, x)− #I(y, x)
whenever this difference is non-negative and 0 otherwise. We say I is transitive if
for each x < y < z, #I(y, x) = 0 or #I(z, y) ≤ #I(z, x). For I and J with #I(y, x) ≤
s(y) and #J(y, x) ≤ s(y) for all 1 ≤ x < y ≤ n, the transitive closure of I ∪ J, de-
noted (I ∪ J)tc, is the transitive multi-inversion set satisfying #(I∪J)tc(y, x) ≤ s(y) and
min

{
#I(y, x) + #J(y, x), s(y)

}
≤ #(I∪J)tc(y, x) for all x < y which is smallest by inclu-

sion. Transitivity is easily verified on the multi-inversion set for the s-decreasing tree in
Figure 2. Using a subscript to indicate the multiplicity,

inv (T) = {(4, 1)2, (4, 2)2, (5, 1)1, (5, 2)1, (5, 3)1, (5, 4)1, (6, 1)2, (6, 2)2, (6, 3)2, (6, 4)2} .

Definition 2.2. [3, Definition 2.5] Let T and Z be two s-decreasing trees. We define the relation
T � Z if and only if inv (T) ⊆ inv (Z). We call the relation � the s-weak order.

It turns out s-weak order is a lattice. For s-decreasing trees T and Z, their join is
defined by inv (T ∨ Z) = (inv (T) ∪ inv (Z))tc. Further, for s = (1, . . . , 1), s-weak order
is isomorphic to weak order on Sl(s). Figure 3 shows examples of s-weak order. The
labeling of the examples is our SB-labeling and will be defined shortly.

Definition 2.3. [3, Section 2.2] Let T be an s-decreasing tree and 1 ≤ a < b ≤ n. The pair
(a, b) is a tree ascent of T if the following hold: (i) a ∈ Tb

i for some 0 ≤ i < s(b), (ii) if a ∈ Te
j

for any a < e < b, then j = s(e), (iii) if s(a) > 0, then Ta
s(a) is a leaf.

The tree ascents of the s-decreasing tree in Figure 2 are (1, 6), (2, 6), (3, 4), (5, 6). How-
ever, in the examples in Figure 3, (1, 3) is not a tree ascent of either minimal element since
1 ∈ T2

0 and 0 6= s(2) in both cases. When s = (1, . . . , 1), this notion of ascent corresponds
to the definition of ascents for permutations as illustrated in Figure 4.

Remark 2.4. An s-decreasing tree, T, cannot have tree ascents (a, b) and (a, c) with b 6= c.
This would contradict condition (ii) of Definition 2.3. This implies for c ∈ [n] there is at
most one d ∈ [n] such that (c, d) is a tree ascent of T. Thus, whenever (a, b) and (c, d)
are distinct tree ascents of T, we may assume a < c.
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(b) s = (0, 2, 2)

Figure 3: Examples of s-weak order.

Remark 2.5. We observe that conditions (i) and (ii) of Definition 2.3 together are equiv-
alent to a ∈ RTb

i for some 0 ≤ i < s(b).

Definition 2.6. [3, Section 2.2] Let T be an s-decreasing tree with tree ascent (a, b). Let a ∈ RTb
j

for some j < s(b). Let g be the parent of a. Either g = b, or a ∈ Tg
s(g) with g ∈ Tb. Let m be

the smallest element of LTb
j+1 which is still larger than a. Define an s-decreasing tree Z to be the

same as T except for the following changes: Zg
s(g) = Ta

0 instead of Ta, Za
i = Ta

i for 0 < i < s(a)
and Za

0 is a leaf (if s(a) > 0), Za
s(a) = Tm

0 , and Zm
0 = Za. We call Z the s-tree rotation of T

along (a, b), and denote this T
(a,b)−→ Z.

Figure 5 illustrates an s-tree rotation. Intuitively, we move Ta along b to the next
subtree of Tb leaving Ta

0 behind. This gives the characterization of cover relations, from
which we derive our labeling.

Theorem 2.7. [3, Theorem 2.7] Let T and Z be s-decreasing trees. Then T ≺· Z if and only if

there is a unique pair (a, b) which is a tree ascent of T such that T
(a,b)−→ Z.
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3

2 1 ←→ 231
Tree ascents of T: (2, 3)

Ascents of the permutation 231: (2, 3)

Figure 4: An s-decreasing tree with s = (1, 1, 1) and its tree ascents, as well as, the
corresponding permutation in S3 and its ascents.
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Figure 5: Illustration of the s-tree rotation along the tree ascent (4, 7).

Definition 2.8. Let T ≺· Z be a cover relation in s-weak order given by T
(a,b)−→ Z where (a, b) is

a tree ascent of T. Define an edge labeling of s-weak order by λ(T, Z) = a.

Remark 2.9. One might wonder if s-weak order is a Cambrian lattice of some finite Cox-
eter group. Cambrian lattices were defined by Reading in [9] as certain lattice quotients
of weak order. However, from s-weak order with s = (0, 0, 2) which has order 9 we
may conclude that s-weak order is not generally a Cambrian lattice of a finite Coxeter
group. The Cambrian lattices of a finite Coxeter group W all have order the Coxeter
Catalan number Cat(W). The only W with Cat(W) = 9 is the dihedral group I2(7) see
[5]. However, s-weak order with s = (0, 0, 2) has largest anti-chain of cardinality 3 while
the largest anti-chain in a Cambrian lattice of I2(7) has cardinality at most 2.

2.3 Background on the s-Tamari lattice

The Tamari lattice is the sublattice of weak order on permutations generated by the 231-
avoiding permutations. Similarly, the s-Tamari lattice is the sublattice of s-weak order
generated by certain s-decreasing trees. An s-decreasing tree T is called an s-Tamari tree
if for any a < b < c, #T(c, a) ≤ #T(c, b). That is, all the labels in Tc

i are smaller than all the
labels in Tc

j for i < j. We denote the partial order on s-Tamari trees induced by s-weak
order by �Tam. A subscript Tam will be used to denote objects in the s-Tamari lattice.
For instance, ≺·Tam denotes cover relations in the s-Tamari lattice. Taking s = (1, . . . , 1),
the s-Tamari lattice is isomorphic to the Tamari lattice on l(s).
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Theorem 2.10. [3, Theorem 3.2] The collection of s-Tamari trees forms a sublattice of s-weak
order, called the s-Tamari lattice.

Similarly to s-weak order, the cover relations in the s-Tamari lattice can be character-
ized as certain tree rotations. For a < b, we say that (a, b) is a Tamari tree ascent of T if
a is a non-right most child of b, that is, a is a direct descendant of b and #T(b, a) < s(b).
Note that it no longer matters whether or not Ta

s(a) is a leaf. Then the s-Tamari rotation
of T along (a, b) is essentially the same as an s-tree rotation except that the smaller ele-
ment of the Tamari tree ascent may have right descendants and those right descendants

are moved along with a if s(a) > 0. We denote this rotation by T
Tam(a,b)−→ Z where Z is the

resulting s-Tamari tree. Figure 6 illustrates such a rotation. Then we have that T ≺·Tam Z

if and only if T
Tam(a,b)−→ Z.

6

3

1 2

5

4

Tam(3, 6)

6

1 5

4

3

2

Figure 6: s-Tamari rotation along the Tamari tree ascent (3, 6).

Remark 2.11. An s-Tamari tree T cannot have Tamari tree ascents (a, b) and (a, c) with
b 6= c.

2.4 Background on SB-labelings

Hersh and Mészáros developed the notion of an SB-labeling in [7] to show when certain
lattices have open intervals which are homotopy balls or spheres.

Definition 2.12. [7, Definition 3.4] An SB-labeling is an edge labeling on a finite lattice L
satisfying the following conditions for each u, v, w ∈ L such that v and w are distinct elements
which each cover u: (i) λ(u, v) 6= λ(u, w) (ii) Each saturated chain from u to v ∨ w uses both
labels λ(u, v) and λ(u, w) a positive number of times. (iii) None of the saturated chains from u
to v ∨ w use any labels besides λ(u, v) and λ(u, w).

Figure 7 is an SB-labeling of weak order on S3 which is actually our labeling of s-weak
order with s = (1, 1, 1). We will use the following theorem of Hersh and Mészáros.
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Theorem 2.13. [7, Theorem 3.7] If L is a finite lattice which admits an SB-labeling, then each
open interval in L is homotopy equivalent to a ball or a sphere of some dimension. Moreover,
∆(u, v) is homotopy equivalent to a sphere if and only if v is a join of atoms of the interval, in
which case it is homotopy equivalent to a sphere Sd−2 where d is the number of atoms in [u, v].

123

132 213

312 231

321

2 1

1

1

1

2

Figure 7: An SB-labeling of weak order on S3.

3 An SB-labeling of s-weak order and the s-Tamari lattice

We begin with showing the labeling of Definition 2.8 is an SB-labeling of s-weak order.
Then we proceed to the SB-labeling of the s-Tamari lattice. While we mention the main
ideas of our proofs here, the proofs themselves are rather long and technical.

Remark 3.1. In the case s = (1, . . . , 1), the labeling of Definition 2.8 gives an SB-labeling
of weak order on Sl(s). Our labeling is distinct from the labeling for finite Coxeter groups
given by Hersh and Mészáros in [7].

The examples in Figure 3 illustrate the labeling of Definition 2.8. In both cases, it is
easily verified that this is an SB-labeling. As Figure 3 suggests, the main point of our
proof is proving that for T ≺· Z, Q, the interval [T, Z ∨ Q] is a diamond, a pentagon, or
a hexagon. Then we verify that, in any case, the labeling on the two maximal chains
satisfies Definition 2.12. For the remainder of this section let (a, b) and (c, d) be tree

ascents of T with a < c. Also, let Z and Q be the s-decreasing trees such that T
(a,b)−→ Z

and T
(c,d)−→ Q. The following definitions and proposition allow us to describe the join of

two atoms in an interval in terms of tree inversion sets.

Definition 3.2. Let T and Z be as above. The tree inversions added by the s-tree rotation
along (a, b) is the set

AT(a, b) =
{
( f , e)

∣∣∣ #Z( f , e) > #T( f , e)
}

.
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Definition 3.3. We recall that (a, b) and (c, d) are tree ascents of T with a < c. The secondary
tree inversions added is the set valued function

FT(a, c) =


{
(d, e)

∣∣∣ e ∈ Ta \ 0
}

, if b = c and a ∈ Tc
0

∅, otherwise

Proposition 3.4. We recall that T
(a,b)−→ Z. Then ( f , e) ∈ AT(a, b) if and only if f = b and

e ∈ Ta \ 0, in which case #Z( f , e) = #T( f , e) + 1.

This proposition can essentially be read off from Definition 2.6. Using it we show the
following characterization of inv (Z ∨Q).

Lemma 3.5. For T ≺· Z, Q as before, inv (Z ∨Q)− inv (T) = AT(a, b) ∪ AT(c, d) ∪ FT(a, c)
and the three sets in this union are pairwise disjoint.

Proposition 3.6. Let T be an s-decreasing tree and let 1 ≤ a < b ≤ n be such that (a, b) is a
tree ascent of T with s(a) > 0. Then no pair of the form (e, b) such that e ∈ Ta and e < a is a
tree ascent of T.

This proposition follows by contradiction from (ii) of Definition 2.3. It combines with
Lemma 3.5 to show there are no other saturated chains in the relevant intervals besides
the two forming the diamond, pentagon or hexagon. The situation precluded by Propo-
sition 3.6 may occur if s(a) = 0. To prove that we actually have the two desired chains
in the interval [T, Z ∨ Q] and to characterize which intervals are diamonds, pentagons,
and hexagons, we need the following lemma.

Lemma 3.7. If (a, b) is not a tree ascent of Q or (c, d) is not a tree ascent of Z, then b = c and
s(c) > 0. Moreover, if (a, c) is not a tree ascent of Q, then a ∈ Tc

0 . If (c, d) is not a tree ascent
of Z, then a ∈ Tc

s(c)−1.

We show this lemma by considering the ways that Definition 2.3 can be violated, then
using Definition 2.6 and some other observations to show these are the only two possi-
bilities. This leads to the following characterization of the saturated chains in [T, Z ∨Q].

Lemma 3.8. If (c, d) is a tree ascent of Z, then there is a saturated chain T
(a,b)−→ Z

(c,d)−→ Z ∨ Q.

Similarly, if (a, b) is a tree ascent of Q, there is a saturated chain T
(c,d)−→ Q

(a,b)−→ Z ∨Q. If (c, d)

is not a tree ascent of Z, then there is a saturated chain T
(a,c)−→ Z

(a,d)−→ P
(c,d)−→ Z ∨ Q. If (a, b) is

not a tree ascent of Q, then there is a saturated chain T
(c,d)−→ Q

(a,d)−→ P
(a,c)−→ Z ∨Q.

This lemma can be seen intuitively by drawing similar but slightly more complicated
diagrams than those in Figure 5 and tracking what happens using Definition 2.6.
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Theorem 3.9. The edge labeling of Definition 2.8 is an SB-labeling of s-weak order.

Proof sketch. First, we note that condition (i) of Definition 2.12 is satisfied by Remark 2.4.
We then use Proposition 3.6 and Lemma 3.5 to show there are no saturated chains from
T to Z ∨ Q besides the corresponding pair of chains from Lemma 3.8. Then we simply
read off the label sequences from those two chains and verify conditions (ii) and (iii) of
Definition 2.12.

Theorem 3.9 and Theorem 2.13 combine to give the following corollary.

Corollary 3.10. For T � Z, ∆(T, Z) is homotopy equivalent to a sphere or ball. Moreover,
µ(T, Z) ∈ {−1, 0, 1}.

Then we characterize the intervals which give homotopy spheres and the dimensions
of those spheres. This simply follows from the characterization of the join in s-weak
order and Theorem 2.13.

Theorem 3.11. For T � Z, ∆(T, Z) is homotopy equivalent to a sphere if and only if

inv (Z) = (inv (T) ∪ AT(a1, b1) ∪ · · · ∪ AT(al, bl))
tc

where (a1, b1), . . . , (al, bl) are the tree ascents of T such that (bi, ai) ∈ inv (Z)− inv (T). In this
case, the dimension of the sphere is l − 2.

The SB-labeling for the s-Tamari lattice is nearly identical. The proofs are also nearly

identical. For T ≺·Tam Z given by T
Tam(a,b)−→ Z, we define and characterize ATam

T (a, b) =
inv (Z) − inv (T). We use this to show the following labeling is an SB-labeling on the
s-Tamari lattice. We also characterize the intervals yielding homotopy spheres.

Theorem 3.12. Let T ≺·Tam Z be a cover relation in the s-Tamari lattice given by T
Tam(a,b)−→ Z

where (a, b) is a Tamari tree ascent of T. Define an edge labeling of the s-Tamari lattice by
λ(T, Z) = a. Then λ is an SB-labeling of the s-Tamari lattice.

Proof sketch. Remark 2.11 implies (i) of Definition 2.12 is satisfied. We show lemmas for
the s-Tamari lattice corresponding to Proposition 3.6 and Lemma 3.8. These lemmas
imply that if T ≺·Tam Z, Q, the interval [T, Z ∨ Q]Tam has precisely two saturated chains.
We then verify (ii) and (iii) of Definition 2.12 for these two chains.

Corollary 3.13. For T �Tam Z, ∆(T, Z)Tam is homotopy equivalent to a sphere or ball. More-
over, µTam(T, Z) ∈ {−1, 0, 1}.

Theorem 3.14. For T �Tam Z, ∆(T, Z)Tam is homotopy equivalent to a sphere if and only if

inv (Z) =
(

inv (T) ∪ ATam
T (a1, b1) ∪ · · · ∪ ATam

T (al, bl)
)tc

where (a1, b1), . . . , (al, bl) are the Tamari tree ascents of T such that (bi, ai) ∈ inv (Z)− inv (T).
Moreover, the dimension of the sphere is l − 2.
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