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Abstract. Dominant maximal weights are significant objects in the representation
theory of affine Kac-Moody algebras. We construct a (bi)cyclic sieving phenomenon
on the union of dominant maximal weights for highest weight modules over affine
Kac-Moody algebras in a way not depending on types, ranks and levels. Exploiting
this phenomenon, we derive closed and recursive formulae for the number of domi-
nant maximal weights for every highest weight module and observe level-rank duality
on the cardinalities. We also observe interesting interrelations among the recursive
formulae of classical affine Kac-Moody algebras.
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1 Introduction

Let g be an affine Kac-Moody algebra and V(A) be the irreducible highest weight mod-
ule with highest weight A € P*, where P denotes the set of dominant integral weights.
Due to Kac [6], all weights of V(A) are given by the disjoint union of §-strings attached to
maximal weights and every maximal weight is conjugate to a unique dominant maximal
weight under Weyl group action.

In [6], Kac established lots of fundamental properties concerned with wt(A), the set
of weights of V(A), using the orthogonal projection ~: h* — bj. In particular, he showed
that max™(A), the set of dominant maximal weights, is in bijection with £Cy¢ N (A + Q)
under this projection, thus it is finite. Here ¢ denotes the level of A and Q denotes the
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root lattice of g. Based on this result, there have been a number of studies on max™(A)
(see [5, 13]). However, in the best knowledge of the authors, approachable combinatorial
models and cardinality formulae of max™ (A) have not been available up to now except
for limited cases, which motivates our study.

The cyclic sieving phenomenon was introduced by Reiner-Stanton-White in [8]. It was
generalized and developed in various aspects including combinatorics and representa-
tion theory (see [1, 10] for examples).

The main purpose of this extended abstract is to investigate max™ (A) by constructing
a combinatorial model for max™ (A) and a (bi)cyclic sieving phenomenon on this model
in a way not depending on types, ranks and levels. As applications, we derive closed and
recursive formulae of |max™ (A)] for all affine types, and observe interesting symmetries
by considering max™(A) for all ranks and levels. We find out intriguing interrelations
among the recursive formulae of various affine Kac-Moody algebras. We also realize
that our symmetry for AY type gets along with the level-rank duality introduced by
Frenkel [3].

For details and more results, we refer the reader to [7].

2 Preliminaries

Let I = {0,1,...,n} be an index set. An affine Cartan datum (A, P,11, P¥,I1") consists of (a)
an affine Cartan matrix A = (a;;); jer of corank 1, (b) the weight lattice P = P ZN 7S,
(c) the set of simple roots I1 = {«; | i € I} < P, (d) the coweight lattice P¥ = Hom(P, Z), (e)
the set of simple coroots IV = {h; | i € I} = P subject to the condition (;, oc]-> = a;; and
(hj, Ay = 6 for all i,j € I. Here & = 31 a;n; is the null root. Let

c=agho+ayhi+---+a)hy

be the canonical central element. We say that a weight A € P is of level { if (c, A) = £. We
call the free abelian group Q := @),.; Z«; the root lattice. The elements of P* := {A € P |
Chi, N) € Z=y, i € 1} are called dominant integral weights. For a nonnegative integer ¢, we
set

P/ :={AeP" |{c,A)=1t} and PJ,:=P//Zs.

The affine Kac—Moody algebra g associated with the affine Cartan datum (A, P,I1, PV,
ITV) is the Lie algebra over C generated by e;, f; (i € I) and h € P¥ with defining relations.
Let C be the Cartan matrix associated to a finite simple Lie subalgebra gy of g.

It is well known that the category Oint, consisting of integrable weight g-modules,
is a semisimple tensor category such that every irreducible object is isomorphic to the
highest weight module V(A) (A € PT).
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Let wt(V(A)) be the set of weights of V(A). The elements of maxg(A) = {u €
wt(V(A)) | u+ 0 ¢ wt(V(A))} is called maximal weights. We set

max, (A) := maxg(A) n P*.

We sometimes omit the subscript g for simplicity. It is well known that max(A) =
W -max*(A), where W is the Weyl group of g.

Let ho be the vector space spanned by {h; | i € Iy := I\{0}}. The orthogonal projection
71 b* — b and the set Cy¢ are introduced in [6].

Proposition 2.1 ([6, Proposition 12.6]). The map u — 7 defines a bijection from max*(A)
onto €Cqs N (A + Q) where A is of level £.

Throughout this paper, we denote by e the dot product on Q". In addition, for k € Z~
and m,m’ € Z, we write m =, m’ if k | m —m’, and m %, m’' otherwise.

3 Embedding max*(A) into P,

In this section, we will assume that A is of the form Y}_;_, pi/A; because (Cos N (A + Q) =
0Cot (A + kS + Q) for all k € Z.

An equivalence relation ~ on P, defined by A ~ A’ if and only if A — A’ € Q, was
introduced in [2, Definition 3.1]. We note that it induces an equivalence relation, called

the sieving equivalence relation, on P} , defined as follows: For A, A’ € P},
A~ A ifand only if £Con (A+ Q) = €Cos n (N + Q). (3.1)

Let Ty := {a; | i € Iy} be the set of simple roots of gyp and @ := {w@; | i € Iy} the set
of fundamental dominant weights of go. Let Py := Z® be the weight lattice of gy and
Qo := ZTly the root lattice of gg. Then Py/Qp is known to be a finite group, called the
fundamental group of ® (the set of roots of go). Its structure is well known in the literature.
For instance, see [4].

We note that there are at most |Py/Qp| equivalence classes on PCJ[I ;- For each type, we
define a set DR(PJL ¢), called the set of distinguished representatives. Indeed it is designed

so that every A € DR(P] ) is of the form (£ —1)Ag + A;. For instance,

((6—1)Ag+A;|i=0,1,...,n} ifg=AY,

DR(PF)) =
(Pa,e) {{(g_l)A0+Ai]izO,l,n—l,”} ifg:D,(f).

For other types, see [7, Table 2.2].

Lemma 3.1. DR(P,[,) is a complete set of pairwise inequivalent representatives of P ,/~, the set

of equivalence classes of P , under the sieving equivalence relation. In particular, the number of
equivalence classes is given by |Py/Qy.
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For A e DR(P],), set P ,(A) := {A" € P, | A ~ A’} and consider the map ¢, :
(Cht (A + Q) — PI,(A) defined by
Z m;@; — mol\g + Z m;\; (mo =4{— Z al-vmi).
1<i<n 1<i<n 1<i<n

Proposition 3.2. For A € DR(P,), the map 1, is a bijection.
Note that ((Co¢ N (A + Q)) N (€Cos n (N + Q)) = & if A » N, which yields a bijection

~. A 11
|| i (A+Q) — PI,(A) =P, . (3.2)
AeDR(PCD) AeDR(PCT/)

Now, we introduce a simple description of P} ,(A) for each A € DR(P],). To do that,

we need preparations: Let N := |Py/Qo| and N := max{|g| | ¢ € Po/Qo}. For a subset
ScZ", setredn(S) :={s < (Zn)" | s € S}, wheres = s + (NZ)".

Definition 3.3. Let g be an affine Kac-Moody algebra. We call a subset S < Z" a root-
sieving set if, for all x € Py, (1) x € Qp if and only if s e [x]o =y O for all s € S, (2) the
set redn(S) < (Zn)" is Zg-linearly independent, and (3) [redn(S)| = |S|. In this case, the
elements of S are called root-sieving vectors of S.

Convention 3.4. (1) We choose a special root sieving set, denoted by S, as follows:

(s=(12...,n)} ifg=AY,
S=1<1{s=(20,20,...,0,2,1,3)} ifg=DV(n=1),

s =(0,0,...,0,2,2),5s@ = (2,0,2,0,...,2,0,2,0)} ifg= DY (n=0).

For other types, see [7, Table 2.4].
(2) For a root sieving vector s = (sq,s,...,5,), we denote (0,s1,5s2,...,5,) by s.

With the root sieving sets S given in Convention 3.4, we define a new statistics evy,
called the S-evaluation, by

~(k
evg : PCJFM — Zk;o, Z m;A\; — (s( ) e m) oria (3.3)

o<ign
where m = (mg, my, ..., my).

Theorem 3.5. Let S be the set given in Convention 3.4. For any A € DR(P] ), we have
RS (A) = {N € P, | evy(A)) =wevy(A)}. (34)

Note that Theorem 3.5 does not depend on the choice of a root-sieving set.
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4 Sagan’s action and generalization

From this section, we will investigate the structure and enumeration of PCJ“M(A) for all
A€ DR(PCJIFI ;) in a viewpoint of (bi)cyclic sieving phenomena ([8]). In order to do this, we
give a suitable (bi)cyclic group action on Pc+1, , by generalizing Sagan’s action in [9]. For
details of Sagan’s action and our generalization, see [7, Section 3].

Throughout this section, we assume that d,k are positive integers and ¢ is a non-
negative integer. Given a kd-tuple m = (mg,my,...,my;_1) € Zk;O, we set m[j;d] :=

Do<t<d—1Mjart for 0 < j <k —1. Also, given a k-tuple v = (vo,v1,..., V1) € Zk ,, we set

>0

M (d;v) := { m = (mo,my,...,mg_q) € Z% | > vim[j;d] = ¢
0<j<k—1

To each m = (mg,myq,...,m_1) € My(d;v) we associate a word w(m;d;v) with
entries in {0,vp, vy, ..., Vk_1} produced by the following algorithm:
Algorithm 4.1. Assume we have a kd-tuple m = (mg,mq, ..., my;_1) € My(d; v).
(A1) Set w to be the empty word and j = 0,¢ = 0. Go to (A2).

(A2) Set w to be the word obtained by concatenating m;;,; v;’s at the right of w. If
j=k—1andt=d—1, return w and terminate the algorithm. Otherwise, go to (A3).

(A3) Set w to be the word obtained by concatenating 0 at the right. Go to (A4).

(A4)Ift #d—1thensett =t+1land goto (A2). Ift=d—1setj=j+1andf =0, and
go to (A2).

Set Wy(d;v) == {w(m;d;v) | m € My(d;v)}. Let ¥ : My(d;v) — Wy(d;v) be a map
defined by ¥(m) = w(m; d; v).

Lemma 4.2. The map VY is a bijection.

Now we define a C; = {(0y)-action on W,(d; v). First, we break w = wiw, ... w, into
subwords of length d as many as possible as follows:

w=w'[w | W | Wiy wa,

where t = |u/d] and W/ = w(;_1)441W(j_1)as2 - Wjg for 1 < j < t. Note that 0 acts on
each subword w/ by cyclic shift, i.e., oy - w = WigW(j—1)d+1W(j—1)d+2 " Wjg—1. Assume

that jo is the smallest integer such that o, - w), # w). Then we set
OgmW:= wl ’ wz ‘ ’wjo_l ‘ O-d.ij ’ wj0+1 ‘ ’wt | Wiiy1 - Wy (41)

If there is no such jy, we set oy = w := w.
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Theorem 4.3. For any v = (vp,v1,...,Vk_1) € 7k

"o the action defined as above is indeed a
Cg-action on Wy(d;v).

Now we define a C;-action on My (d; v) by transporting the Cy-action = on Wy(d;v)
via the bijection V¥, that is,

ogem:=¥Y1(g;aW(m)) forall me M,(d;v). (4.2)

Remark 4.4. Suppose that C; acts on My(d; v) as in (4.2). Then, for any r € Z~o, My(d;v)
is also equipped with a C,;-action s ; given by

Opgmgm = 0y =m. (43)

Let us generalize the above setting a little further. Let d,k,k’,r € Z > 0 and ¢ € Z>,.

k / o / K
For v = (vo,v1,...,vk_1) € ZLyand v' = (v, vy, ...,V ) € ZL, set

M(rd,d;v,v') := { m e Zgg*k/d Z vmlj; rd] + Z vimlkr +j;d] = £ 5. (44)
O<j<k—1 0<j<k/'~1

Using the actions given in (4.2) and (4.3), we define a new C,;-action, denoted by =, 4,
on My(rd,d;v,v') as follows: Given m € My(rd,d;v,v’), we break it into mcj,y_1 :=
(mo,my, ..., Mgq_1) € My(rd;v) and mxpyg 1= (Mgg, Mg, - - - Migdskd—1) € My(d;v'),
where ¢ = [ + 1. Now, we define

(OrgmMgppg_1) *Mojrg i Opg m Mgy # Mgprg_1, (45)

Ord "rd,d M 1= _
Mjrd—1 * (Urd "4 m;krd) otherwise,

where m = m’ is the tuple obtained by concatenating m and m’.

5 (Bi)cyclic sieving phenomena on Pj,

The cyclic sieving phenomenon was introduced by Reiner-Stanton—-White in [8]. Let X be a
finite set, with an action of a cyclic group C of order m. Elements within a C-orbit share
the same stabilizer subgroup, whose cardinality is called the stabilizer-order for the orbit.
Let X(g) be a polynomial in g with nonnegative integer coefficients. For d € Z ., let wy
be a dth primitive root of the unity. We say that (X, C, X(q)) exhibits the cyclic sieving
phenomenon if, for all c € C, we have

|XC’ = X(wo(c))/
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where o(c) is the order of ¢ and X° is the fixed point set under the action of c. Note that
this condition is equivalent to the following congruence:

X(@@)= ) bg (modg"-1),

0<ism—1

where b; counts the number of C-orbits on X for which the stabilizer-order divides i.

A generalization of the cyclic sieving phenomenon, called the bicyclic sieving phe-
nomenon, was introduced in [1, Section 3]. Let X be a finite set with a permutation
action of a finite bicyclic group, that is, a product C,, x C, for some m,m’ € Z-. Fix
embeddings w : C;, — C* and ' : C,y — C* into the complex roots of unity. Let
X(q1,92) € Z>0[91,92]. We say that the triple (X, Cy, x Cyy, X(q1,492)) exhibits the bicyclic
sieving phenomenon if for all (¢,c’) € Cyy x C,,y, we have

X(w(c), ' () = |{xe X | (c,d) x = x}|.

This condition is equivalent to the following congruence:

X(q1,92) = > b(j1, 27192 (mod gf' — 1,45 —1)

0<ji<m, 0<jp<m’

where b(j1,j2) is the number of orbits of C,, x C,y on X satisfying certain conditions
(see [1, Proposition 3.1]).

Now, let us introduce the triple for the (bi)cyclic sieving phenomenon on P . First,
we let X := PJIF,E = uAeDR(PC'f,[) PCJ{,Z(A).

C
To define a (bi)cyclic group action, we note that the symmetric group &g, over the

set {0,1,...,n} acts on P*, by permuting indices of coefficients, that is,
e PY P g

- Z miAi: Z mg(i)/\i for o e 6[0,,1].

We also note that if g # D,(f)(n =, 0) then Py/Qp ~ Cy, where Cy is a cyclic group of
order N. For g # D,(ql)(n =7 0), we take an appropriate 0 € &g, of order N. For instance,

we let
0,1,...,1) ifg=AY,

0,1n,1,n—1)(2,3)(4,5)---(n—3,n—2) ifg=DY(n=1).

Indeed N=n+1if g = A,(ql) and N =4if g = D,(,ll)(n =; 1). For other types, see [7, Table
4.1]. Now, we define a Cy = {on)-action on P , by

ON - Z m,-Ai = Z mc(i)Ai for any Z miAiEPchM' (51)

o<ign o<ign 0<ign
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For g = D,(ql)(n =, 0), we let
o = (0,n)(L,n-1)e S, and 0@ =(0,1)(2,3) - (n—4,n-3)(n—1,n) € Gy -

Note that ¢(1) and o/® commute to each other in S(o,n], 5O (o), 6?)) ~ Cp x C;. We
define a C; x Cy = {0p) x {03)-action on PC, by (e denotes the 1dent1ty of Cp)

(0'2,6)’ Z miAi = Z mG(l)(i)Ai and (6,0’2)' Z m,'Ai = 2 ma(z)(i)/\i. (52)
0<i<n 0<i<n 0<i<n 0<i<n

Finally, to define X(g) or X(g1,42), let us consider its generating function as follows:
For g # D,(ql)(n =, 0), let's = (so,51,52,...,5n). For £ € Z~,, we define X(gq) := P:lrf(q) by

1
Z 15 : 1_[ av " (53)
= ° o<icn L — gt

where s is the root-sieving vector given in Convention 3.4. Then we have

cle Z HA € PCJ{,E ’ ev (A) = i} P:l_f( ) qevs(A) (mod gM —1).

For g = D{V(n =; 0), we let s := 130 and 5@ :
P&(m,qz) for L € Z~( by

%E(Z) and define X(q1,q2) :=

1

‘.

Pc+1,£(‘71fq2)t = H ROENE
=0 0<i<n 1—01 ql i’

For t = 1,2, letev, : P, — Z=( be a map defined by ev ) (3cic, miA;) = 50 em.
Then we have

P&(b]b%) = Z

AeDR(PY )

ev (1) (A) ev 5 (A)
AN S @ (mod g2 — 1,45 —1). (5.4)

Theorem 5.1. For g + D) (n =, 0), the triple (P;,,Cx, P, (q)) exhibits the cyclic sicving
phenomenon under the Cy-action given in (5.1).

For g = A$}), Theorem 5.1 follows from the classical result [8, Theorem 1.1 (a)] of
cyclic sieving phenomena. For other types, it can be proved by using the action defined
in (4.5). We here only deal with D,gl)(n =; 1) type since the method of proof for each
type is essentially same.

For m € Z=q and k € Z-, we denote by m* the sequence m,m, ..., m consisting of k
m’s. Moreover, we let 17 := ”53 and

CM 2 blq (mod q4 —1).

0<i<3
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Lemma 5.2. Under the Cy-action on P, given in (5.1) and the Cy4-action on M,(4,2; (1), (2))
given in (4.5), we have

PY (@)lg=i = |(P5,) | = [My(4,2;(1), (27))%| = bo — b2 and by = bs.

Lemma 5.3. Under the C4-action on P , given in (5.1) and the Cy-action on My(2,1; (12), (227))
given in (4.5), we have

P+

2
@ lg=—1 = [(P3 )] = My(2,1;(1%), (227)) 2| = by — by + by — bs.

Proof of Theorem 5.1 for g = DV (n =2 1). Let {4 be a 4th primitive root of unity. We will
see that

j ,
(P4 )7 = Py ,(g}) forj=0,1,2,3.

When j = 0, sincg ‘(P:LE)‘ = PCJ{’g(l), it is trivial. For the case j € {1,3}, note that
]

+\& + )% + (7] j I Th h
(Pc1,£> = (Pcl,€> and Pc1,€(€4) = by + 010y — by — b30;. Thus, by Lemma 5.2, we have

(L)) = [Me(4,2 (1), (2")%| = by — by = P, (})-

For the case j = 2, note that Pchr /(=1) = bg — by + by — b3. Thus, by Lemma 5.3, we have
2
[(P1) %] = IM(2,1;(1%), (221))| = bg — by + by — b3 = P3 ,(-1). O

For g = D,gl)(n =; 0), we obtain the bicyclic sieving phenomenon in a similar way as
above.

Theorem 54. For g = D (n =, 0), the triple <PCJ{€ G x G chJh(‘h,lh)) exhibits the
bicyclic sieving phenomenon, under the Cy x Cy-action given in (5.2).

6 Formulae on the number of maximal dominant weights

Using the (bi)cyclic sieving phenomenon, we derive closed formulae for [max*(A)] in
terms of binomial coefficients. In particular, for affine Kac-Moody algebras of classi-
cal type, we show that our closed formulae for [max*(A)| can be written as a sum of
binomial coefficients. For instance, when A e DR(P:L ¢), we have

N d , 1) + ¢)/dd’
|maxA1(11)(A)‘ = Z CESFY Z w(d’) (((” +g}dti’ )/ >, 6.1)

d|(n+1,4,i) d’|("+1,§)

maxy ()] = 5 (P,(1) + (~1%P3,(-1) - ( ' VZ@”J) . ( : l—J) |

n n
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Here p denotes the classical Mobius function (see [7, Table 2.2, Table 6.2] for more de-
tails).
From our closed formulae, we find recursive formulae for j[max* (A)| which can be

described as triangular arrays. For instance, let us consider the case g = qu). Define

4@ AQ , AZ)
Ty : Zzo X Lo — Zxo by Ty (n,i) =1 (n>0,i =0,1), Ty (0,£) =1 (£ = 2) and

2)

) (2
Taqeven (7’1, E) — TOAeven<n,€ _ 2) + TOAeven(n _ 1, g) (62)

(2)
Then for all n € Z~,, { € Z~o, we have Tg‘ev‘m(n, 0) = |max:;§2) (LAg)| = ("ﬂ%J) In

)
particular, as a triangular array, Tgl even can be described as follows:

It is interesting to note that this array coincides with Pascal’s triangle with duplicated

(2) (2)
diagonals, i.e., Téqeve“(n, 20) = Téqeve“(n, 20+1) = (”}fg) for n,¢ > 0, which appears in [11,
A065941] in a totally different context from ours. The recursive condition (6.2) says if we
add the @ and the @ then we get @
For another example, let us consider the case g = B,(}). Define T(?(l) 1 Z>o x L=y —

Zoo by T8 (1,00 =1 (n > 1), T (n,1) =2 (n > 1), T8 (0,£) = 2 (¢ > 0) and
T8 (1, 0) = TB (0 —2) + TB" n—1,0) n > 1, £ > 2).

Then for all n € Z->3, { € Z-o, we have TOB(D (n,0) = |max;’(ql) (¢Ag)|. In particular, as a

triangular array, T(')B(l) can be described as follows:
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This array is the triangular array obtained by removing the left boundary from the
triangular array in [11, A129714] whose row sums are the Fibonacci numbers.

2)
We note that TP W (n,£) can be obtained from T(f even as follows:
@) 2)
T (1, 0) = Tg‘even(n,@ + TAeVE“(n,E 1) fornf>1

For instance, if we add (4], 10} in TAeven then we get 14] in Tg(l) (n,0).

Remark 6.1. Interestingly, all triangular arrays for classical affine type except for un-
twisted affine C-type can be constructed by boundary conditions and the triangular array
of twisted affine even A-type. The triangular arrays for affine C-type ([11, A034851]) can
be constructed by boundary conditions and Pascal triangle [7, Appendix A].

On the other hand, we obtain an interesting duality between level and rank from

our closed and recursive formulae. For instance, in case where g = A,(ql), the closed
formula in (6.1) implies that for n > 1 and ¢ > 1,if (n+1,¢,i) = ({,n+1,j) for some
0 <1i,j < min(n,{), then

‘maxA ((€—=1)Ao + Ag)| = }max (nAo +A))|,

6.3)

i.e., exchanging n 4 1 with ¢ preserves the number of dominant maximal weights.
Let us deal with the relation between our duality and Frenkel’s duality in [3]. For

a residue i modulo n, let Agn) denote the ith fundamental weight of Ag). For A =
Yo miAl( ) e PT o+ let A’ be the dominant integral weight of Agl_)l defined by
n
-1
A= Z A7(ﬂi+”)li+1+"-+mn Pchrn+1
i=0

With this setting, Frenkel found the following beautiful duality between the g-specialized
characters of V(A) and V(A/):

o0 o0
. 1
dim,(V H pLORSYE: dlmq(V(A’)) IH T s
k=0 =0

Here dim,(V) denotes the g-specialized character of V (see [3, Theorem 2.3] or [12,
Section 4.4]). Based on (6.3), we have

{max; (A)] = ]max;ﬁl(A/)‘.

n

In case where g = B,(ll) , the closed formula in (6.1) implies the following symmetries:
(1) Forn >3,¢>7 and ¢ =, 1, we have

|max 1) (0Ag)| = |max’,,  ((2n+1)Ag)|,
Bl

i.e., exchanging n with (¢ —1)/2 preserves the number of dominant maximal weights.
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(2) Forn >3, ¢ > 8 and ¢ =, 0, we have

7

‘max;(ql) (£ —=1)Ao + An)} = ‘maxg(l) (2n +1)Ag + Aé/zfl)

0/2-1

i.e., exchanging n with ¢/2 — 1 preserves the number of dominant maximal weights.
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