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Abstract

This paper initiates the study of shortening universal cycles (u-
cycles) and universal words (u-words) for permutations either by using
incomparable elements, or by using non-deterministic symbols. The
latter approach is similar in nature to the recent relevant studies for
the de Bruijn sequences. A particular result we obtain in this paper
is that u-words for n-permutations exist of lengths n! + (1− k)(n− 1)
for k = 0, 1, . . . , (n − 2)!.

1 Introduction

Chung et al. [3] introduced the notion of a universal cycle, or u-cycle,
for permutations, which is a cyclic word such that any permutation
of fixed length is order-isomorphic to exactly one factor (that is, to
an interval of consecutive elements) in the word. In fact, the notion
of a u-cycle for permutations can be extended to that of a u-cycle
for any combinatorial class of objects admitting encoding by words
[3]. In particular, universal cycles for sets of words are nothing else
but the celebrated de Bruijn sequences [3]. De Bruijn sequences are
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a well studied direction in discrete mathematics, and over the years
they found widespread use in real-world applications, e.g. in the areas
of molecular biology [2], computer security [8], computer vision [7],
robotics [9] and psychology [10].

The existence of u-cycles (of length n!) for n-permutations (that
is, permutations of length n) was shown in [3] for any n via cluster-
ing the graph of overlapping n-permutations. This graph has n! ver-
tices labelled by n-permutations, and there is an edge x1x2 · · · xn →
y1y2 · · · yn if and only if the words x2x3 · · · xn and y1y2 · · · yn−1 are
order-isomorphic, that is, if and only if xi < xj whenever yi−1 < yj−1

for all 2 ≤ i < j ≤ n.
A pattern of length k is a permutation of {1, 2, . . . , k}. Each cluster

collects all n-permutations whose first n − 1 elements form the same
pattern, that is, these elements in each permutation in the cluster
are order-isomorphic to the same (n − 1)-permutation. We call such
a pattern the signature of a cluster, and we denote a signature by
“π” where π is an (n − 1)-permutation. See Figure 1 for the case of
n = 3, and Figure 2 for the case of n = 4 where clusters are thought
of as “super nodes”. There is exactly one edge associated with each
permutation x1x2 · · · xn, which goes to the cluster with the signature
that is order-isomorphic to x2x3 · · · xn. The edges are also viewed as
edges between clusters.

Any Eulerian cycle in a graph formed by clusters can be extended
to a Hamiltonian cycle in the graph of overlapping permutations (since
each edge corresponds to exactly one permutation and we know this
permutation). At least some of these Hamiltonian cycles (possibly all,
which is conjectured), can be extended to u-cycles for permutations
via linear extensions of partially ordered sets as described in [3].

123

132

231

“12”
213

312

321

“21”

Figure 1: Clustering the graph of overlapping permutations of order 3

Removing the requirement for a u-cycle to be a cyclic word, while
keeping the other properties, we obtain a universal word, or u-word.
Of course, existence of a u-cycle u1u2 · · · uN for n-permutations triv-
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ially implies existence of the u-word u1u2 · · · uNu1u2 · · · un−1 for n-
permutations; the reverse to this statement may not be true.

Remark 1. It is important to note that any Hamiltonian path (given
by a Hamiltonian cycle) in a graph of overlapping permutations can
be easily turned into a u-word for permutations by the methods de-
scribed in [3]. Indeed, the real problem in the method is dealing with
the cyclic nature of a u-cycle making sure that the beginning of it is
compatible with the end, while in the case of u-words there are no
such complications. As a less relevant observation, note that for the
classical de Bruijn sequences, we never have such problems as there is
a one-to-one correspondence between Hamiltonian cycles in de Bruijn
graphs and de Bruijn sequences.

In this paper we deal both with the cyclic and non-cyclic cases
related to the objects introduced below. This will cause no confusion
though as from the context, it will always be clear which case we mean.

U-cycles and u-words provide an optimal encoding of a set of com-
binatorial objects in the sense that such an encoding is shortest possi-
ble. However, as is discussed in [1] for the case of de Bruijn sequences,
one can still shorten u-cycles/u-words by using non-deterministic sym-
bols. The studies in [1], mainly related to binary alphabets, were ex-
tended in [5] to the case of non-binary alphabets. In this paper, we
will utilise the “shortening” idea, approaching the problem of short-
ening u-cycles and u-words for permutations from two different angles
discussed next.

• Our non-determinism will be in using incomparable elements and
considering linear extensions of partial orders, and we will study
compression possibilities for u-cycles and u-words for permuta-
tions.

• Our second approach is a plain extension of the studies in [1, 5]
to the case of permutations. However, using the “wildcard” sym-
bol ✸ seems to be inefficient in the context (it is dominated by
non-existence results; see Section 3.1), so we consider its refine-
ment ✸D, where D is a subset of the alphabet in question (see
Section 3.2).
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Figure 2: Clustering the graph of overlapping permutations of order 4

1.1 Using linear extensions of partially ordered

sets (posets) for shortenning

To illustrate our idea, consider the word 112, which is claimed by us
to be a u-cycle1 for all permutations of length 3, thus shortening a
“classical” u-cycle for these permutations, say, 145243. Indeed, we
treat equal elements as incomparable elements, while the relative or-
der of these incomparable elements to the other elements must be

1We modify the notion of a u-cycle for n-permutations introduced in [3] by allowing
equal elements in a factor of length n and declaring them to be incomparable. Note that
we still call the obtained object a “u-cycle for permutations”.
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respected. Thus, 112 encodes all permutations whose last element is
the largest one, namely, 123 and 213; starting at the second position
(and reading the word cyclically), we obtain the word 121 encoding
the permutations 132 and 231, and finally, starting at the third posi-
tion, we (cyclically) read the word 211 encoding the permutations 312
and 321. More generally, it is clear that the word 11 · · · 1

︸ ︷︷ ︸

n−1 times

2 = 1n−12

encodes all permutations and is of length n (instead of length n! for
earlier defined u-cycles for permutations). However, there are other
compression possibilities creating u-cycles of lengths between n and
n!. For example, the word 1232 is also a u-cycle for permutations of
length 3. Note that the word of the form 11 · · · 1 is a (trivial) u-word
for all permutations of the respective length (when words are not read
cyclically), while this word is not a u-cycle because the definition of a
u-cycle cannot be applied to it.

The main goal of this paper is to study compression possibilities
for (classical) u-cycles and u-words for permutations. In particular,
we will show that such u-words exist of lengths n! + (1 − k)(n − 1)
for k = 0, 1, . . . , (n − 2)! (see Theorem 7) and we conjecture that a
similar result is true for u-cycles (see Conjecture 8). More specifically,
our concern will be in existence of u-cycles/u-words for permutations
in which equal elements do not stay closer than a fixed number of
elements d ≥ 1 from each other, that is, when there are at least d− 1
other elements between any pair of equal elements. Note that the
case of d ≥ n is not interesting when dealing with n-permutations
since then equal elements cannot appear in the same factor of length
n, and therefore, such a problem would be equivalent to constructing
classical u-cycles/u-words for n-permutations, which has already been
solved. Thus, the interesting values for d for us are between 1 and
n− 1.

Finally, note that the problem can be modified by requiring from
equal elements to stay exactly, rather than at least, at distance d,
1 ≤ d ≤ n − 1, from each other, and then one can study the lengths
of possible u-cycles/u-words for permutations, if any. Both problems
are, of course, equivalent for the case d = n − 1, which we deal with
in Section 2.1.
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1.2 Using ✸s for shortenning

In [1, 5] u-cycles for words (de Bruijn sequences) and u-words for
words are shortened using the ✸ symbol playing the role of a “wild-
card” symbol, or a “universal symbol”. Any word containing a ✸ is
called a partial word, or p-word in [1, 5], and the universal cycles/words
obtained by shortening with ✸s are called, respectively, universal par-
tial cycles, or u-p-cycles, and universal partial words, or u-p-words.
For example, u = ✸✸0111 is a u-p-word for binary words of length 3,
since

• ✸✸0 covers 000, 010, 100 and 110;

• ✸01 covers 001 and 101; and

• the remaining factors in u cover 011 and 111.

As a straightforward extension of the objects in [1, 5] to the case
of permutations, our u-cycles and u-words will contain ✸(s), whose
meaning needs to be redefined though to avoid factors not order-
isomorphic to permutations. In analogy with [1, 5], we call u-cycles
and u-words for permutations containing at least one ✸ universal par-
tial cycles (u-p-cycles) and universal partial words (u-p-words) for
permutations, respectively. Introducing these notions helps us to dis-
tinguish between shortening using linear extensions of posets (when
the resulting objects are still called by us u-cycles and u-words; see
Section 1.1), and shortening using ✸s, in which case the obtained
objects are called u-p-cycles and u-p-words.

To see which of the n-permutations are covered by a factor of
length n, we keep the same relative order of non-✸ elements, and
insert all possible elements instead of the ✸(s) that will result in the
reduced form (see Subsection 1.3 for definitions) in an n-permutation.
Following this definition, for n = 3, 1✸2 covers the permutations
213, 123 and 132, while for n = 4, 1✸2✸ covers the following 12
permutations: 3142, 3241, 2143, 2341, 2134, 2431, 1243, 1342, 1234,
1432, 1324 and 1423. Any factor of length n with k ✸s covers n!

(n−k)!
permutations. Indeed, the number of ways to pick values for the ✸s
is

(
n
k

)
, and there are k! ways to arrange these values.

We say that a u-p-word for n-permutations is trivial if it contains
only ✸s. Obviously, ✸ is the only u-p-word for the permutation of
length 1. Also, ✸1 is a u-p-word for 2-permutations. Proposition 20
below shows that if n ≥ 3 then there is no u-p-word containing a single
✸ that is placed in position 1. This result, along with Proposition 21
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and Corollaries 15 and 23, led us to the observation that usage of ✸s
in u-p-cycles, or u-p-words, for permutations may be too restrictive
to be of practical use, and instead of a ✸, one should use a restricted
✸ denoted ✸D, where D is a subset of {1, 2, . . . , n} and n is the size
of permutations in question. Indeed, even though no u-p-word for
3-permutations of the form ✸x1x2 · · · xk exists by Proposition 20, for
example, ✸1,2254231 is a u-p-word for 3-permutations (in particular,
the factor ✸1,225 covers the permutations 123 and 213). See Theo-
rem 24 for a result in this direction.

So, ✸D gives the permissible extensions out of n possible extensions
given by ✸. However, note that the notion of a ✸D is well-defined only
if there is at most one ✸D in any factor of length n, since there is no
meaning of, for example, the factor ✸1,2✸1,2✸1,21 for n = 4. Having
said that, it is always acceptable to have ✸D1

, ✸D2
, . . . ,✸Dk

inside
the same factor of length n as long as D1 ∩D2 ∩ · · · ∩Dk = ∅.

1.3 Some basic definitions

For a word w = w1 · · ·wn over an ordered alphabet, we let red(w)
denote the word that is obtained from w by replacing each copy of
the i-th smallest element in w by i. For example, red(2547) = 1324,
red(5470) = 3241 and red(436326) = 324214.

Let π be a permutation of {1, . . . , n} and x an element of {1, . . . , n}.
For x < n, we let x+ denote a number y such that x < y < x+1, while
for x = n, x+ = n+1. Also, for x > 1, we let x− denote an element y
such that x − 1 < y < x, while for x = 1, x− = 0. The definitions of
x+ and x− can be generalized to any word instead of a permutation π
in a straightforward way, namely, x+ refers to an element larger than
x but less than next largest element (if it exists), while x− refers to
an element smaller than x but larger than next smallest element (if it
exists).

The complement of an n-permutation π1π2 · · · πn is the permuta-
tion obtained by replacing πi by n+1−πi. For example, the comple-
ment of 2314 is 3241. The reverse of a permutation is the permutation
written in the reverse order. For example, the reverse of 2341 is 1432.

1.4 Organization of the paper

This paper is organized as follows. In Section 2 we discuss shortening
u-cycles and u-words for permutations via linear extensions of posets
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and present a key result, Theorem 7, giving possible lengths of u-words
for permutations. An extension of the results in Section 2 in the case
of n = 4 is discussed in Section 2.2. In Section 3 we discuss the usage
of ✸ (see Section 3.1) and ✸D for the special case of D being of size 2
(see Section 3.2) in the context of shortening u-cycles and u-words for
permutations. Finally, in Section 4 we give some concluding remarks
and state some problems for further research.

2 Shortening u-cycles/u-words for per-

mutations via linear extensions of posets

In Section 2.1 we will derive Theorem 7 showing possible lengths of
u-words when incomparable elements are allowed at distance n−1 for
n-permutations. In Section 2.2 we will provide an example for n = 4
of a shorter u-cycle than those given by Theorem 7. The example was
obtained by allowing incomparable elements to be closer to each other
(to be at distance 2 rather than at distance 3).

2.1 Incomparable elements at distance n − 1

for n-permutations

Definition 2. Two different permutations, π1 · · · πn and σ1 · · · σn, are
called twin permutations, or twins, if

• red(π1 · · · πn−1) = red(σ1 · · · σn−1), and

• |πn − π1| = |σn − σ1| = 1.

Examples of twins are 3124 and 4123, 2413 and 3412, and 23451
and 13452.

We refer the Reader to Figures 1 and 2 to check their understand-
ing of the following four lemmas in the cases of n = 3 and n = 4,
respectively.

Lemma 3. Each cluster has exactly one pair of twins.

Proof. Let the signature (the first n−1 elements of the permutations in
the reduced form) of a cluster be “x1 · · · xn−1”. The only possibilities
to create twin permutations are to adjoin x+1 or x−1 at the end of
x1 · · · xn−1, and these possibilities always exist.

8



By parallel edges between clusters we mean multiple edges oriented
in the same way. In particular, a pair (resp., a triple) of parallel edges
is called a double edge (resp., a triple edge). In what follows, double
and triple edges from a cluster X to a cluster Y will be denoted,

respectively, by X Y and X Y .

Lemma 4. For any cluster X, there exists a unique cluster Y such

that X Y . Also, for no clusters X and Y , we have X Y .

Proof. Both of the statements follow from the fact that parallel edges
can only be produced by twins (the last (n− 1) elements in non-twin
permutations in a cluster cannot be isomorphic), but by Lemma 3,
there is only one such pair in each cluster.

Lemma 5. For any cluster Y , there exists a unique cluster X such

that X Y .

Proof. Let the signature of Y be “x1 · · · xn−1”. Then the only double
edge that can come to Y is given by the permutations x−n−1x1 · · · xn−1

and x+n−1x1 · · · xn−1 (both belonging to the same cluster with the sig-
nature “xn−1x1 · · · xn−2”).

By Lemmas 4 and 5, the clustered graph of overlapping permu-
tations can be partitioned into a disjoint union of cycles formed by
double edges.

Lemma 6. Any of the disjoint cycles formed by the double edges goes
through exactly n− 1 distinct clusters.

Proof. Since double edges are formed by twin permutations, we can
assume that any such cycle is of the form:

x1x2 · · · xn−1x
+
1

x1x2 · · · xn−1x
−

1

x2x3 · · · xn−1x1x
+
2

x2x3 · · · xn−1x1x
−

2

· · ·
xn−1x1 · · · xn−2x

+
n−1

xn−1x1 · · · xn−2x
−

n−1

where the last cluster is linked to the first one by a double edge. Since
all xis are distinct, the cycle must involve exactly n− 1 clusters.

Theorem 7. Using incomparable elements at distance n− 1, one can
obtain u-words for n-permutations of lengths n! + n− 1, n!, n!− (n−
1), . . . , n!− (n − 1)! + n− 1.

9
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Figure 3: Applying incomparable elements on distance 2 for 3-permutations

Proof. It is not hard to show, and is stated in [3], that the clustered
graph of overlapping n-permutations is balanced and strongly con-
nected for any n ≥ 1.

There are (n − 1)! clusters. By Lemma 6, there are (n − 2)! =
(n − 1)!/(n − 1) disjoint cycles formed by double edges, and we can
decide in which cycles to replace every double edge by a single edge
thus maintaining the property of the graph (whose nodes are clusters)
being balanced. This action will correspond to replacing every double
edge of the form

x1x2 · · · xn−1x
+
1

x1x2 · · · xn−1x
−

1

x2x3 · · · xn−1x1x
+
2

x2x3 · · · xn−1x1x
−

2

by

x1x2 · · · xn−1x1 x2x3 · · · xn−1x1x2

and thus introducing incomparable elements inside some of clusters.
Strong connectivity in the graph will clearly be maintained as well,
since our action is in simply replacing a pair of equivalent edges by a
single edge.

So, by removing double edges in such a way we guarantee the
existence of an Eulerian cycle going through the clusters, which gives
the existence of the respective Hamiltonian cycle (recall that to each
word or permutation there corresponds exactly one edge), and thus the
existence of a respective u-word for n-permutations by Remark 1.

See Figure 3 for an illustration of the proof of Theorem 7 in the
case of n = 2, and Figure 4 for that in the case of n = 3 when both
of the double edge cycles were replaced. Examples of u-words that
can be obtained from Figures 3 and 4, respectively, are 123212 and
123847687657859423123.

10



We believe that replacing “u-words” by “u-cylces” in Theorem 7,
and adjusting the lengths, would result in a true statement. We state
this as the following conjecture.

Conjecture 8. Using incomparable elements at distance n − 1, one
can obtain u-cycles for n-permutations of lengths n!, n! − (n − 1),
n!− 2(n− 1), . . . , n!− (n− 1)!.

An attempt to solve Conjecture 8 would follow the same steps as
those in the proof of Theorem 7, but an argument would then need
to be made that there is a Hamiltonian cycle in the graph of overlap-
ping permutations that can be turned into a u-cycle for permutations.
There is a chance that any Hamiltonian cycle has this property. Ex-
amples of u-cycles supporting Conjecture 8, that can be obtained from
Figures 3 and 4, respectively, are 1232 and 123847687657859423.
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1324

1423
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“132”

3123
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3421
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2134

2132

3241

“213”

4321

4312

3213

“321”

Figure 4: Applying incomparable elements at distance 3 for 4-permutations
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2.2 Lengths of u-cycle and u-words for n-per-
mutations different from n and those in Theo-

rem 7 and Conjecture 8

Theorem 7 (resp., Conjecture 8) discusses a number of (resp., poten-
tially) possible lengths for u-words (resp., u-cycles) for n-permutations,
the shortest of which is n!− (n− 1)!+n− 1 (resp., n!− (n− 1)!). The
trivial u-cycle 1n−12 and the trivial u-word 1n for n-permutations are
of length n. A natural question is whether there exist u-words and
u-cycles for n-permutations of length larger than n but smaller than
n!− (n − 1)! + n − 1 and n!− (n − 1)!, respectively. Clearly, such u-
cycles/u-words could only be obtained if incomparable elements would
be allowed on the distance smaller than n− 1. An example of such a
u-cycle is u = 34321432345234 of length 14 for 4-permutations (note
that 4!-3!=18 is the shortest u-cycle suggested by Conjecture 8 and
actually given in Section 2.1). Clustering the graph of overlapping 4-
permutations with incomparable elements used is shown in Figure 5.
A u-word of length 17 (< 21, the shortest length in Theorem 7) is eas-
ily obtained from u by adjoining 343 at the end: 34321432345234343.

3 Shortening u-cycles and u-words for

permutations via usage of ✸s

In this section we consider the shortening problem via usage of ✸s.
While the usage of the plain symbol ✸ seems to be dominated by
various non-existence results (see Section 3.1), the usage of ✸D may
potentially result in interesting classification theorems, an example of
which is given in Section 3.2 (see Theorem 24).

3.1 Usage of ✸s

The following lemma is an analogue in the case of permutations of
Theorem 4.1 in [5] and Lemma 14 in [1] obtained for words.

Lemma 9. Let n ≥ 3 and u = u1u2 · · · uN be a u-p-cycle, or u-p-word,
for n-permutations. If uk = ✸ then uk+n = uk−n = ✸ assuming k+n
and/or k−n exist in the case of u-p-words, and taking these numbers
modulo N in the case of u-p-cycles.

12
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2123
“212”
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Figure 5: Clustering the graph of overlapping 4-permutations that corre-

sponds to the u-cycle 34321432345234

Proof. In what follows, the indices are taken modulo N in the circular
case. Suppose that uk = ✸ and uk+n 6= ✸. Further, suppose that π =
π1 · · · πn−1 is one of the permutations obtained from uk+1 · · · uk+n−1

by substituting all the ✸s, if any, by any values and taking the reduced
form.

For the circular case, because uk = ✸, the permutation π cannot
be covered by any other factor of u (or else, some permutation ending
with π in the reduced form would be covered twice). However, this
means that if π is not monotone, at least one of the n-permutations
red(π0) or πn is not covered by u; contradiction. On the other hand,
if π is monotone, then we use the fact that n ≥ 3, so even though
both red(π0) and πn can be covered by u, there is still at least one
n-permutation not covered by u; contradiction.

For the non-circular case, there is a possibility for π to occur one

13
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more time in u, namely, at its very beginning (that is, it is possible
that red(u1u2 · · · un−1) = π). However, since n ≥ 3, we know that at
least one of the n-permutations red(π0), red(π1+) or πn is not covered
by u; contradiction.

One can use similar arguments, or use the fact that the reverse of
a u-p-cycle/u-p-word is a u-p-cycle/u-p-word, to show that uk−n =
✸.

By the previous lemma, for any ✸ in a u-p-cycle or u-p-word u,
the other two symbols in distance n from it must be ✸s as well. Thus
the positions of ✸s are periodic in u with period n, and any factor of
u of length n contains equal number of ✸s. It follows that the notion
of the diamondicity introduced next is well defined (see also [5] where
this notion was introduced in the context of u-p-words over non-binary
alphabets).

Definition 10. For a u-p-cycle or u-p-word u for n-permutations, the
diamondicity of u is the number of ✸s in any length n factor in u.

3.1.1 U-p-cycles for permutations with ✸(s)

Lemma 9 yields Corollary 13 below, which captures various rather
restrictive conditions on relations between n and N to be satisfied by
any u-p-cycle for permutations. In the proof of Corollary 13, we need
the following simple number theoretical fact as well as the well known
result stated in Lemma 12.

Lemma 11. If n and N are two positive integers, c = gcd(n,N), and
I =

{
0, 1, . . . , N

c
− 1

}
, then

{

i ·
n

c
mod

N

c
: i ∈ I

}

= I.

Proof. We show that the integers of the form i · n
c

mod N
c
, i ∈ I, are

all different. If i, i′ ∈ I with i 6= i′, then i · n
c

mod N
c
6= i′ · n

c
mod N

c
.

Indeed, otherwise (i−i′)· n
c
is a multiple of N

c
, or equivalently (i−i′)·n

is a common multiple of n and N , which yields a contradiction since
|i − i′| < N

c
and lcm(n,N) = N

c
· n. Thus, the sets in question have

the same cardinality, which completes the proof.

Lemma 12 (Fine and Wilf’s periodicity lemma, [4]). Any word having
periodicities p and q and length ≥ p + q − gcd(p, q) has periodicity
gcd(p, q).

14



Corollary 13. Let u = u1u2 · · · uN be a u-p-cycle (with or without
✸(s)) for n-permutations. Then we have

(i) N = k!, where n− k is the diamondicity of u.

In addition, if c = gcd(n,N), then

(ii) the occurrences of ✸s in u are c-periodic, and

(iii) n
c
divides n− k, so c 6= 1 for 1 ≤ k ≤ n− 1.

Proof. (i) The number of ✸s in each factor of u of length n is n − k,
and thus such a factor covers

(
n

k

)

(n− k)! =
n!

k!

permutations of length n, and there must be k! length n factors (read
cyclically) to cover all n! permutations.
(ii) The statement follows by Lemma 9 and Lemma 12 applied to n
and N . However, we provide an alternative proof here.

Factoring u as u1u2 · · · uc
︸ ︷︷ ︸

v1

uc+1uc+2 · · · u2c
︸ ︷︷ ︸

v2

· · · uN−c+1uN−c+2 · · · uN
︸ ︷︷ ︸

vN
c

,

we have u = v1v2 · · · vN

c

where vi, 1 ≤ i ≤ N
c
, is the length c factor

uc·(i−1)+1uc·(i−1)+2 · · · uc·i. With this notation, it follows that the num-
ber of ✸s in v1 is the same as that in vn

c
+1. Indeed, v1v2 · · · vn

c

and
v2v3 · · · vn

c
+1 are two length n factors of u which overlap when c 6= n,

and by Lemma 9 they have the same number of ✸s, and so do v1
and vn

c
+1. Similarly, and taking the indices modulo N

c
, the length c

factors vn

c
+1 and v 2n

c
+1 have the same number of ✸s. And generally,

each of the length c factors v i·n

c
+1, 0 ≤ i < N

c
, has the same number of

✸s. By Lemma 11, the set
{
i · n

c
+ 1 : 0 ≤ i < N

c

}
is precisely the set

{
i : 1 ≤ i ≤ N

c

}
, and thus each of the length c factors vi, 1 ≤ i ≤ N

c
,

has the same number of ✸s.
Clearly, u2u3 · · · uNu1 is a u-p-cycle for n-permutations too, and

factoring it as u2u3 · · · uc+1
︸ ︷︷ ︸

v′
1

uc+2uc+3 · · · u2c+1
︸ ︷︷ ︸

v′
2

· · · uN−c+2uN−c+3 · · · u1
︸ ︷︷ ︸

v′
N
c

,

and reasoning as previously, we have that each v′i has the same num-
ber of ✸s (which is the same as that of vis). Repeating this process,
we have finally that each length c factor of u has the same number of
✸s.
(iii) By (ii) it follows that n

c
divides the number of ✸s in each factor

of length n.
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The following corollary of Corollary 13 refines Lemma 9 in the case
of u-p-cycles for permutations.

Corollary 14. With the notations in Corollary 13, if u is a u-p-cycle
for n-permutations, the positions of ✸s in u are periodic with period c.

In the next corollary, we give two proofs for the case when n is a
prime number.

Corollary 15. If n is a prime number, or n = 4, then there exists no
u-p-cycle for n-permutations.

Proof. If n = 4, it follows from Corollary 13 that the admissible values
of N are 2 and 6, corresponding to k = 2, 3, respectively. Clearly
only N = 6 can be the length of a u-p-cycle, thus k = 3 and c =
gcd(n,N) = 2. By (iii) in Corollary 13, n

c
= 2 divides n − k = 1,

contradiction.
If n is prime, from (iii) in Corollary 13 (and with the notations

therein) gcd(n,N) = n, which contradicts (i) in Corollary 13, namely,
that n divides N = k!, with k < n.

An alternative proof for the case when n is prime is as follows.
The total number of ✸s counted in all factors of length n is k!(n −
k). However, each ✸ was counted exactly n times, so n must divide
k!(n− k), which is impossible if n is a prime number since k < n.

We conclude the subsection with two more non-existence results,
the first of which is also applicable to u-p-words for permutations to
be considered in the next subsection. Recall that by Lemma 9, ✸s in
a u-p-word or a u-p-cycle must occur periodically.

Theorem 16. For any n ≥ 1, there are no non-trivial u-p-words
or u-p-cycles for n-permutations in which ✸s occur periodically with
period 2.

Proof. Suppose that such a u-p-word, or u-p-cycle u = u1u2 · · · uN for
permutations exists, where N ≥ n + 1 because u is non-trivial. Then
u1u2 · · · un is of one of the following four forms:

1. u1✸u3✸u5 · · · un;

2. u1✸u3✸u5 · · ·✸;

3. ✸u2✸u4✸ · · · un;

4. ✸u2✸u4✸ · · ·✸.
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In either case, we claim that there exists an n-permutation that is
covered by both u1u2 · · · un and u2u3 · · · un+1, contradicting u’s prop-
erties. Next we provide such permutations for the first two cases; the
remaining two cases are similar and their considerations are omitted.

1. u1a3u3a5u5 · · · anun, where red(a3a5 · · · an) = red(u3u5 · · · un)
and each of ais is larger than any uj (clearly, the ✸s can be
assigned in such values). This permutation is also covered by
u2u3 · · · un+1 by choosing the values of the ✸s from left to right to
be b3b5 · · · bn+2, such that red(b3b5 · · · bn+2) = red(u1u3 · · · un),
and each of bis is smaller than any uj.

2. u1a1u3a3 · · · unan, where red(a1a3 · · · an) = red(u1u3 · · · un) and
each of ais is larger than any uj . This permutation is also cov-
ered by u2u3 · · · un+1 by choosing the values of the ✸s from
left to right to be b3b5 · · · bn+1, such that red(b3b5 · · · bn+1) =
red(u1u3 · · · un−1), and each of bis is smaller than any uj.

Theorem 17. For any n ≥ 1, there are no non-trivial u-p-cycles for
n-permutations in which ✸s occur periodically with period 3.

Proof. Suppose that such a u-p-cycle u exists. Note that 3 must divide
n. Indeed, if 3 does not divide n, then we can connect any pair of
positions in u cyclically with steps of length 3, so by Corollary 13, all
symbols would have to be ✸s, making u trivial and contradicting the
assumption. Thus, we have three cases to consider based on which
factor covers the increasing n-permutation. In each of the cases it is
crucial that our universal word u is cyclic, because we do not know the
location of the factor covering the increasing permutation. Without
loss of generality, we assume that in the factor covering the increasing
permutation, the non-✸ symbols are 1, 2, 3, . . ..

• The increasing permutation is covered by the factor

✸12✸34 · · ·✸

(
2n

3
− 1

)
2n

3
.

Then this permutation is covered one more time starting from
the letter 1, since the value of the ✸ next to 2n

3 (cyclically) can
be chosen

(
2n
3 + 1

)
; contradiction.
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• The increasing permutation is covered by the factor

12✸34✸ · · ·

(
2n

3
− 1

)
2n

3
✸.

Picking the value of the ✸ immediately to the left (cyclically) of
the letter 1 to be 1− we see that the increasing permutation is
covered one more time starting from this position; contradiction.

• The increasing permutation is covered by the factor

1✸23✸4 · · ·

(
2n

3
− 1

)

✸
2n

3
. (1)

Consider the factor

23✸4 · · ·

(
2n

3
− 1

)

✸
2n

3
x✸ (2)

of length n, where x is some letter. No matter what x is, we cover
some permutation (not necessarily increasing) twice, which leads
to a contradiction. Indeed, the rightmost ✸ in (2) can be chosen
to be maximum in the permutation, while the rightmost ✸ in
(1) can be chosen to be equivalent to x in (2).

Remark 18. Unfortunately, the arguments in Theorems 16 and 17
do not seem to be possible to extend to periods of length 4, or more.

3.1.2 U-p-words for permutations with ✸(s)

Clearly, ✸ and ✸1 are, respectively, u-p-words for the 1-permutation
and 2-permutations. The following proposition shows that these are
the only u-p-words with a single ✸ placed at the beginning of the
word. Before stating the proposition, we introduce a notion related to
the clustered graph of overlapping permutations that will be used in
some of our proofs.

Definition 19. Let uiui+1 · · · ui+n be a factor of a u-p-word u1u2 · · · uN
for n-permutations. We say that the edge coming out from the per-
mutation red(uiui+1 · · · ui+n−1) in the clustered graph of overlapping
permutations is used to reach the permutation red(ui+1 · · · ui+n).

Proposition 20. Let n ≥ 3. No u-p-word for n-permutations with a
single ✸ of the form u = ✸u2u3 · · · uN exists.
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Proof. Since n ≥ 3, it is clear that N ≥ n + 1. We can now apply
Lemma 9 to obtain the desired result.

The case n = 4 in the next proposition follows from our more gen-
eral Corollary 23 below. However, we keep this case in Proposition 21
for yet another illustration of our straightforward approach to prove
some of the non-existence statements.

Proposition 21. For n = 3, 4 there is no u-p-word for n-permutations
with a single ✸ of the form u = u1✸u3u4 · · · uN .

Proof. Let n = 3. Without loss of generality (using the complement
operation, if necessary), we can assume that u begins with 1✸2. Then
the possible continuations of u are 1✸22+, 1✸22− and 1✸21−. But
then the following permutations are covered twice, respectively, 123,
132 and 132.

Let n = 4. Without loss of generality (using the complement
operation, if necessary), we can assume that there are three cases of
beginning of u to consider.

• 1✸23. Possible continuations are as follows.

– 1✸234. The permutation 1234 is covered twice; contradic-
tion.

– 1✸232+x for some x. Note that so far three permutations,
namely,1324, 1423, and red(232+x) from the cluster with the
signature “132” were covered. But the fourth permutation
from that cluster will never be covered (or else, because of
✸232+, some permutation ending with the pattern 132 will
be covered twice).

– 1✸231x for some x. Because of the factor ✸231, the permu-
tation red(231x) will be the only one covered in the cluster
with the signature “231” (no such permutation can be cov-
ered starting at the leftmost position, or at the ✸). Contra-
diction with the cluster having four permutations.

• 1✸32.

– 1✸324x for some x. Note that so far three permutations,
namely, 2143, 3142, and red(324x) from the cluster with the
signature “213” were covered. But the fourth permutation
from that cluster will never be covered (or else, because of
✸324, some permutation ending with the pattern 213 will
be covered twice).
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– 1✸322+x for some x. Because of the factor ✸322+, the
permutation red(322+x) will be the only one covered in the
cluster with the signature “312” (no such permutation can
be covered starting at the leftmost position, or at the ✸).
Contradiction with the cluster having four permutations.

– 1✸321. The permutation 1432 is covered twice; contradic-
tion.

• 2✸13.

– 2✸134. The permutation 3124 is covered twice; contradic-
tion.

– 2✸132x for some x. Because of the factor ✸132, the permu-
tation red(132x) will be the only one covered in the cluster
with the signature “132” (no such permutation can be cov-
ered starting at the leftmost position, or at the ✸). Contra-
diction with the cluster having four permutations.

– 2✸131−x for some x. Note that so far three permutations,
namely, 2314, 2413, and red(131−x) from the cluster with
the signature “231” were covered. But the fourth permuta-
tion from that cluster will never be covered (or else, because
of ✸131−, some permutation ending with the pattern 231
will be covered twice.

Let u be a u-p-word for n-permutations with diamondicity d. It
follows (see also the proof of the first part of Corollary 13) that u must
contain exactly (n − d)! different factors, and thus the length of u is
(n− d)! + n− 1.

Theorem 22. Let u be a non-trivial u-p-word for n-permutations,
and let f be the number of ✸s in u. Then n ≤ 3f + 1.
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Proof. Let d ≥ 1 be the diamondicity of u. Thus, the length of u is
(n− d)! + n− 1, and the number f of ✸ symbols in u satisfies:

f ≥

⌊
(n− d)! + n− 1

n

⌋

· d

=

⌈
(n− d)!

n

⌉

· d

≥
(n− d)!

n
· d

≥
(n− d) · (n − (d+ 1))

n
≥ n− (2d+ 1).

It follows that n ≤ f + 2d+ 1 ≤ 3f + 1, and the statement holds.

As is mentioned above, ✸ is a trivial u-p-word for the 1-permutation,
and✸1 is a u-p-word for 2-permutations. These are the only u-p-words
for permutations with a single ✸ as shown by the following corollary.

Corollary 23. For n ≥ 3, there is no u-p-word for n-permutations
with a single ✸.

Proof. By Theorem 22, if u is a u-p-word for n-permutations with a
single ✸, then n ≤ 4.

Using the reverse operation, if necessary, one can assume that the
single ✸ in a u-p-word for permutations is in its first half. Thus, by
Propositions 20 and 21, no u-p-word exists for 3-permutations.

If n = 4, then by Lemma 9, since we have exactly one ✸, the length
of a u-p-word must be at most 7. On the other hand, this length must
be (n − d)! + n− 1 = (4− 1)! + 4− 1 = 9; contradiction.

3.2 Usage of ✸a,b

Recall that ✸a,b, where a, b ∈ {1, 2, . . . , n}, a < b, denotes the set of
permissible substitutions in an n-permutation. For example, a = 1
allows usage of the smallest element in all factors containing ✸a,b,
while a = 2 allows usage of the next smallest element in these factors,
and so on.

Theorem 24. Let n ≥ 2 and a < b. Then, necessary and sufficient
conditions for existence of a u-p-word for n-permutations of the form
✸a,bu2u3 · · · uN are
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• a = 1 and red(u2u3 · · · un) = 12 · · · (n− 1), or

• b = n and red(u2u3 · · · un) = (n− 1)(n − 2) · · · 1.

Proof. Similarly to the proof of Lemma 9, consider the cluster C
corresponding to the signature “red(u2u3 · · · un)”. If u2u3 · · · un is
not monotone (increasing or decreasing) then because of the factor
✸a,bu2u3 · · · un we see that reaching the permutation red(u2u3 · · · un+1)
in C (recall Definition 19) uses two edges, so that at least one per-
mutation in C will never be covered by u. On the other hand, one
can see that exactly the same situation occurs if red(u2u3 · · · un) =
12 · · · (n− 1) and a 6= 1 (if a = 1 then one of the two edges mentioned
above is a loop and there is no contradiction), and if red(u2u3 · · · un) =
(n − 1)(n − 2) · · · 1 and b 6= n (again, if b = n then one of the two
edges is a loop giving no contradiction).

On the other hand, if one of the two conditions are satisfied, then
we have that the✸a,b is responsible for removing an edge coming to the
respective cluster C with a monotone signature and the loop connected
to C from the clustered graph of overlapping permutations, as well as
covering two permutations, one from C and one from another cluster
C ′. The rest of the word u2u3 · · · uN corresponds to an Eulerian path
beginning at C and ending at C ′, which exists because each cluster
is balanced, except for C (one extra out-edge) and C ′ (one extra in-
edge), and the graph is clearly still strongly connected.

An example of a u-word for 3-permutations given by Theorem 24
is ⋄1,5243241.

4 Concluding remarks

This paper opens up a new research direction of shortening u-cycles
and u-words for permutations that naturally extends analogous studies
conducted for the celebrated de Bruijn sequences [1, 5]. We were able
to offer two different ways to approach the problem, namely, via linear
extensions of posets, and via usage of (restricted) ✸s, and we discussed
several existence and non-existence results related to the context.

Out of possible directions for further research, it would be inter-
esting to prove, or disprove, Conjecture 8 and our guess that no dis-
tribution of ✸s in a word can result in a non-trivial construction of a
u-p-word for n-permutations for n ≥ 3. Moreover, it would be interest-
ing to extend the results in Section 2.2 to the case of n-permutations
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for n ≥ 5, namely, to answer the following question: Do there exist
u-words and u-cycles for n-permutations of length larger than n but
smaller than n!− (n−1)!+n−1 and n!− (n−1)!, respectively? Also,
we would like to see some characterization theorems involving (more
than one) ✸D for D not necessarily of size 2, thus extending the result
of Theorem 24.

Some enumerative questions can be raised as well. For example,
one should be able to count u-words of various lengths in Theorem 7,
that should be based on the choice of k cycles formed by double edges
to be replaced by single edges (out of the total number of (n − 2)!
cycles formed by double edges).

Finally, note that there are other ways to define the concept of a
universal cycle/word for permutations. For example, in [6] permuta-
tions are listed as consecutive substrings without using the notion of
order-isomorphism. The ideas in this paper for shortening u-cycles/u-
words for permutations can be used for other contexts, such as those
in [6].
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