
ar
X

iv
:1

71
1.

10
82

0v
2

 [
m

at
h.

C
O

]
 2

3
Ju

l 2
01

8

On a Greedy Algorithm to Construct Universal

Cycles for Permutations

Alice L.L. Gao1, Sergey Kitaev2, Wolfgang Steiner3 and Philip B. Zhang4

1Department of Applied Mathematics
Northwestern Polytechnical University, Xian, Shaanxi 710072, P.R. China

2Department of Computer and Information Sciences
University of Strathclyde, 26 Richmond Street, Glasgow G1 1XH, UK

3IRIF, CNRS UMR 8243
Université Paris Diderot – Paris 7, 75205 Paris Cedex 13, Paris, France

4College of Mathematical Science
Tianjin Normal University, Tianjin 300387, P. R. China

Email: 1llgao@nwpu.edu.cn, 2sergey.kitaev@cis.strath.ac.uk,
3steiner@irif.fr, 4zhang@tjnu.edu.cn

Abstract. A universal cycle for permutations of length n is a cyclic word or
permutation, any factor of which is order-isomorphic to exactly one permu-
tation of length n, and containing all permutations of length n as factors. It
is well known that universal cycles for permutations of length n exist. How-
ever, all known ways to construct such cycles are rather complicated. For
example, in the original paper establishing the existence of the universal cy-
cles, constructing such a cycle involves finding an Eulerian cycle in a certain
graph and then dealing with partially ordered sets.

In this paper, we offer a simple way to generate a universal cycle for per-
mutations of length n, which is based on applying a greedy algorithm to a
permutation of length n − 1. We prove that this approach gives a unique
universal cycle Πn for permutations, and we study properties of Πn.

Keywords: universal cycles; combinatorial generation; greedy algorithm;
permutations

AMS Subject Classifications: 05A05

1

http://arxiv.org/abs/1711.10820v2

1 Introduction

A universal cycle, or u-cycle, for a class of combinatorial objects is a cyclic
word containing each object, encoded by a word, exactly once as a cyclic
interval (called a factor). Universal cycles were introduced by Chung, Dia-
conis and Graham in [2]. However, the origin of the notion of a u-cycle is in
the study of the celebrated de Bruijn cycles, which are cyclic words contain-
ing each word of length n over some alphabet, for a given n, exactly once
(see [3]).

There are many ways to construct a de Bruijn cycle. A “classical” way to
construct a de Bruijn cycle is via the notion of a de Bruijn graph of order n,
which is a directed graph representing overlaps between words of length n.
It can be easily shown that any de Bruijn graph is balanced and strongly
connected, and thus it contains an Eulerian cycle. Moreover, one can show
that a de Bruijn graph of order n is the line graph of the de Bruijn graph
of order n − 1, and thus any de Bruijn graph contains a Hamiltonian cycle,
which can easily be translated to a de Bruijn cycle.

1.1 Martin’s algorithm to generate de Bruijn sequences

An alternative construction of a de Bruijn sequence involves concatenating
together, in lexicographic order, all the Lyndon words whose length divides n.
An interesting, and most relevant to our paper fact is that this sequence was
first generated by Martin [11] in 1934 using the following greedy algorithm.

Martin’s greedy algorithm to generate a de Bruijn sequence

Start with the word (k − 1)n−1 and then repeatedly apply the following
rule: Append the smallest letter in {0, 1, . . . , k − 1} so that factors of
length n in the resulting word are distinct. Once no more extension is
possible, remove the n− 1 rightmost letters.

For example, for k = 3 and n = 2, the steps of the algorithm are:
2 → 20 → 200 → 2001 → 20010 → 200102 → 2001021 → 20010211 →
200102112 → 20010211.

1.2 Universal cycles for permutations

In this paper, permutations of length n are called n-permutations.

2

Universal cycles for permutations were one of the main objects considered
in [2]. A universal cycle for n-permutations is a cyclic word, each length n
factor of which is order-isomorphic to a unique n-permutation, and every
n-permutation is order-isomorphic to some factor in the word. There is a
long line of research on universal cycles for permutations, e.g. see [1, 4, 5, 6,
7, 8, 9, 12].

Even though the basic original idea to construct universal cycles for per-
mutations is similar to that of constructing de Bruijn cycles via de Bruijn
graphs, the situation with permutations is much more complicated. Indeed,
just proving the existence of such a universal cycle uses a not so trivial trick
of clustering the graph of non-overlapping permutations, an analogue of the
de Bruijn graph in the case of permutations. The actual construction of
universal cycles for permutations in [2] involved dealing with partially or-
dered sets and resulted in a nice conjecture on the minimal alphabet that
was settled 17 years later by Johnson in [9]. Namely, it turns out that it is
possible to construct a universal cycle for n-permutations using just n + 1
letters; using n letters is impossible (unless using the shorthand encoding of
n-permutations by (n − 1)-permutations, which is deleting the rightmost el-
ement in each n-permutation; see [5]) as can be easily seen, e.g. in the case
of n = 3.

We found the existent constructions of the universal cycles for permuta-
tions in the literature to be rather involved, and we asked ourselves whether
the simple algorithm by Martin for de Bruijn cycles could be extended to the
case of the permutations. We were pleased to discover that the answer to the
question was positive with surprisingly small changes that were required to
Martin’s algorithm: instead of the initial word (k−1)n−1 we use the increas-
ing permutation of length n− 1, and instead of the smallest available letter
on a given iteration of the process we use the smallest available extension of
the respective permutation, to be defined in Section 2.1. Interestingly, be-
ginning with a monotone permutation, that is, the increasing or decreasing
permutation of appropriate length, is a necessary condition in our greedy
algorithm, as we show in Section 2.4.

1.3 Basic definitions

For a permutation, or word, π, the reduced form of π, denoted red(π), is
obtained by replacing the i-th smallest element in π by i. For example,
red(3275) = 2143. Any i consecutive letters of a word or permutation w

3

form a factor of w. If w is a cyclic word then a factor can begin at the end
of w and end at the beginning of w. If u is a factor of w, we also say that w
covers red(u).

Definition 1.1. A word Π′

n is a universal word, or u-word, for n-permutations
if Π′

n covers every n-permutation exactly once.

Definition 1.2. A cyclic word Πn is a universal cycle, or u-cycle, for n-
permutations if Πn covers every n-permutation exactly once.

1.4 Organization of the paper

This paper is organized as follows. In Section 2.1 we show our simple way to
generate the words Π′

n and Πn, and in Sections 2.2 and 2.3 we justify that
the constructions of Π′

n and Πn work. Also, in Section 2.4 we show that our
greedy algorithm to generate Π′

n and Πn can only be applied to the increasing
permutation of length n− 1. Further, Section 3 discusses some properties of
Π′

n and Πn, and Section 4 gives several directions of future research. This
includes a discussion on reducing the alphabets of Π′

n and Πn in Section 4.1
and a possibility of extending our approach to relevant object in the literature
in Section 4.2.

2 Simple generation of u-words and u-cycles

for permutations

2.1 Generating Π′
n
and Πn

Let π = π1π2 · · ·πm be a permutation of m distinct integers. Then the i-th
extension of π to the right, 1 ≤ i ≤ m, is the permutation

cb(π1)cb(π2) · · · cb(πm)b,

where b is the i-th smallest element in {π1, π2, . . . , πm}, and

cb(x) =

{

x if x < b,

x+ 1 if x ≥ b.

The (m+1)-st extension is the permutation πb, where b is the largest element
in {π1 + 1, π2 + 1, . . . , πm + 1}. We call the first extension the smallest
extension, and the (m+ 1)-st extension the largest extension of w.

4

The following simple algorithm produces recursively a universal word Π′

n

of length n! + n− 1 for n-permutations.

The greedy algorithm to construct Π′

n

Begin with the increasing permutation

Π′

n,0 := 12 · · · (n− 1).

Suppose that a permutation

Π′

n,k = a1a2 · · · ak+n−1

has been constructed for 0 ≤ k < n!, and no two factors in Π′

n,k of length
n are order-isomorphic. Let i be minimal such that no factor of length n
in Π′

n,k is order-isomorphic to the i-th extension of ak+1ak+2 · · ·ak+n−1,
and denote the last element of this extension by b. Then

Π′

n,k+1 := cb(a1)cb(a2) · · · cb(ak+n−1)b.

For some k∗, no extension of Π′

n,k∗ will be possible without creating a
factor order-isomorphic to a factor in Π′

n,k. The greedy algorithm then
terminates and outputs Π′

n := Π′

n,k∗ .

For example, the steps of the algorithm for n = 3 are as follows:

12 → 231 → 3421 → 45312 → 564132 → 6751324 → 78613245 = Π′

3.

We note that for each k, Π′

n,k is a permutation of {1, 2, . . . , k + n− 1}.
The following simple extension of the greedy algorithm turns the universal

word for permutations Π′

n into a universal cycle for permutations Πn.

Generating the u-cycle Πn from Π′

n

Remove the last n− 1 elements in Π′

n and take the reduced form of the
resulting sequence to obtain Πn.

For example, Π3 is given by

Π′

3 = 78613245 → 786132 → red(786132) = 564132 = Π3.

For another example, Π4 is given by

22 23 24 21 20 18 19 3 17 4 2 16 1 6 7 5 11 10 8 13 9 12 15 14.

5

2.2 Justification of Π′
n
being a u-word for permutations

In the following, let n be arbitrary but fixed. For Π′

n,k = a1a2 · · · ak+n−1, set

σk := red(akak+1 · · · ak+n−1), σ′

k := red(ak+1ak+2 · · · ak+n−1),

and
Jk = |{j ≤ k : σ′

j = σ′

k}|,

i.e. Jk is the number of occurrences of the (n−1)-permutation σ′

k in Π′

n,k. By
the definition of the greedy algorithm, all i-th extensions of σ′

k with i < Jk

occur in Π′

n,k, and the Jk-th extension of σ′

k does not occur in Π′

n,k. Therefore,
the greedy algorithm terminates at k if and only if Jk = n + 1. If Jk ≤ n,
then σk+1 is the Jk-th extension of σ′

k (and ends with Jk).

Lemma 2.1. The greedy algorithm terminates at k if and only if σk =12 · · ·n.

Proof. If σk = 12 · · ·n, then σ′

k−1 = σ′

k = 12 · · · (n− 1) and Jk−1 = n. Thus,
Jk = n+ 1, and the greedy algorithm terminates at k.

For the converse, assume that σk 6= 12 · · ·n. By the preceding paragraph,
this implies that σj 6= 12 · · ·n for all j ≤ k. Since each word aj+1 · · · aj+n−1,
1 ≤ j ≤ k, is preceded by the letter aj and the permutation σj occurs
only at the position j, we have σ′

j = σ′

k for at most n different indices
j ≥ 1. If σ′

k 6= 12 · · · (n − 1), then we have σ′

0 6= σ′

k and thus Jk ≤ n. If
σ′

k = 12 · · · (n− 1), then we have σ′

j = σ′

k for at most n− 1 different indices
j ≥ 1 (because σj = 12 · · ·n is not possible), which also gives that Jk ≤ n.
Therefore, the greedy algorithm does not terminate at k if σk 6= 12 · · ·n.

Lemma 2.2. Π′

n covers all n-permutations.

Proof. We shall prove this lemma by contradiction. Suppose that a permu-
tation π1π2 · · ·πn is not covered by Π′

n. Then π2 · · ·πn is covered at most
n−1 times, hence red(π2 · · ·πn)n is not covered. More generally, we have for
1 ≤ k ≤ n that, if red(πk · · ·πn)(n− k + 2) · · ·n is not covered, then

red(red(πk+1 · · ·πn)(n−k+2) · · ·n)n = red(πk+1 · · ·πn)(n−k+1) · · · (n−1)n

is not covered. We obtain that Π′

n does not cover the permutation 12 · · ·n,
contradicting Lemma 2.1.

Theorem 2.3. Π′

n is a u-word for n-permutations.

Proof. By the nature of the greedy algorithm, Π′

n cannot cover a permutation
more than once. By Lemma 2.2, Π′

n covers all n-permutations.

6

2.3 Justification of Πn being a u-cycle for permutations

Theorem 2.4. Πn is a u-cycle for n-permutations.

Proof. By Theorem 2.3, it suffices to prove that

red(akak+1 · · · ak+n−1) = red(ak · · ·an!a1 · · ·ak+n−n!−1)

for all n!− n + 2 ≤ k ≤ n!.
First, note that σi ends with 1 for all i < n. Hence, we have that

Π′

n,n−1 = n(n+ 1) · · · (2n− 2)(n− 1)(n− 2) · · ·1

and thus
ak < a1 < a2 < · · · < an−1

for all k ≥ n.
Next, we show that σi ends with n for all i ≥ n! − n + 2. Suppose that

this is not true for some i ≥ n!− n+ 2. Since Π′

n is a u-word, we must have
σ′

i−1 = σ′

j−1 for some j > i. It follows from σn! = 12 · · ·n that

an! < an!+1 < · · · < an!+n−1.

In particular,
an! < an!+1 < · · · < aj+n−2.

Then, σ′

i−1 = σ′

j−1 implies that

an!+i−j < an!+i−j+1 < · · · < ai+n−2 < · · · < an!+n−1.

Iterating this argument gives that aj < aj+1 < · · · < an!+n−1 and thus
ai < ai+1 < · · · < an!+n−1, contradicting the assumption σi does not end
with n. Therefore, σi ends with n for all i ≥ n!− n+ 2, which implies that

ak < an!+1 < an!+2 < · · · < an!+n−1

for all n!− n + 2 ≤ k ≤ n!. It follows that

σk = red(akak+1 · · · an!)(n!− k + 2) · · ·n = red(ak · · · an!a1 · · · ak+n−n!−1)

for n!− n+ 2 ≤ k ≤ n!, which proves the theorem.

7

2.4 Uniqueness of Πn

The construction of Πn begins with the permutation 12 · · · (n− 1) and is fol-
lowed by consecutive applications of the greedy algorithm choosing the small-
est possible element to extend the already constructed sequence. A natural
question is what happens if we start with a different permutation of length
n − 1 and follow the greedy steps of our algorithm? Can we obtain other
(non-equivalent) constructions of u-cycles for n-permutations? The following
theorem answers this question.

Theorem 2.5. Beginning the construction of Πn (and thus of Π′

n) with an
(n−1)-permutation Π′

n,0 6= 12 · · · (n−1) and following the steps of the greedy
algorithm will not produce a u-cycle for n-permutations.

Proof. Assume that σ′

0 6= 12 · · · (n − 1). As in the proof of Lemma 2.1, the
greedy algorithm terminates at k if σk = 12 · · ·n. Now, the second part of the
proof of Lemma 2.1 shows that Jk < n when σ′

k = 12 · · · (n− 1). Therefore,
the permutation 12 · · ·n is not covered by Π′

n, hence Π′

n is not a u-word and
Πn is not a u-cycle.

3 Properties of Πn and Π
′
n

In this section, we shall give some properties of Πn and Π′

n. All our results
discussed are stated in terms of Π′

n, since the same results for Πn will trivially
follow from the definition of Πn.

Our main result is that all permutations with 1 before n occur in the first
half of Π′

n, and those with n before 1 occur in the second half. More precisely,
consider the partition of the symmetric group Sn = S1,n ∪ Sn,1, where

S1,n = {π1π2 · · ·πn ∈ Sn : i < j for πi = 1, πj = n},

Sn,1 = {π1π2 · · ·πn ∈ Sn : i < j for πi = n, πj = 1}.

Theorem 3.1. We have an!

2
+1 = 1,

σn!

2

= n12 · · · (n− 1), σn!

2
+1 = 134 · · ·n2, σn!

2
+2 = 23 · · · (n− 1)1n,

{

σk : k ≤
n!

2

}

= Sn,1 and

{

σk : k >
n!

2

}

= S1,n.

8

In particular, σn!

2

= n12 · · · (n−1) is the last occurrence of an n-permutation

starting with n, σn!

2
+1 = 134 · · ·n2 is the first occurrence of an n-permutation

starting with 1, and σn!

2
+2

= 23 · · · (n− 1)1n is the first occurrence of an n-

permutation ending with n.
For the proof of Theorem 3.1, we use the following lemmas.

Lemma 3.2. Let m ≥ 1 be minimal such that σm starts with 1. Then am = 1,
and σk does not end with n for all k ≤ m.

Proof. The fact that am = 1 is a direct consequence of the greedy algorithm.
Suppose that σk ends with n for some k ≤ m. Then we have σ′

j = σ′

k−1 for n
different indices j < k. Since σk 6= 12 · · ·n, we have that j ≥ 1 for all these j.
Hence, there are n different permutations σj ending with σ′

k−1. Therefore,
one of these permutations starts with 1, contradicting the definition ofm.

Lemma 3.3. Let m be as in Lemma 3.2. We have σk ∈ Sn,1 for all k < m,
σm−1 = n12 · · · (n− 1) and σm = 134 · · ·n2.

Proof. We use induction on k. We have σ1 = 23 · · ·n1 ∈ Sn,1. Assume that
σj ∈ Sn,1 for all j ≤ k, where 1 ≤ k < m. If σ′

k ∈ Sn−1,1, then we have
σk+1 ∈ Sn,1 because σk+1 does not end with n by Lemma 3.2. Now, assume
that σ′

k ∈ S1,n−1. Since σk ∈ Sn,1, σk starts with n. Moreover, we cannot
have σ′

j = σ′

k for 1 ≤ j < k, since otherwise it implies that σ′

j ∈ S1,n−1.
Together with σj ∈ Sn,1, it follows that σj would also have to start with n,
contradicting that σj 6= σk. If σ

′

k 6= σ′

0, then this implies that σk+1 ends with 1
and hence σk+1 ∈ Sn,1. Finally, if σ′

k = σ′

0, then σk+1 is an i-th extension of
12 · · · (n − 1) with i ≥ 2, thus σk+1 starts with 1, which is possible only for
k = m− 1. Therefore, we have σk ∈ Sn,1 for all k < m.

We have σm ∈ S1,n because it starts with 1, hence we obtain from the
previous paragraph that σ′

m−1 = σ′

0, σm−1 = n12 · · · (n − 1) and σm =
134 · · ·n2.

Lemma 3.4. Let m be as in Lemma 3.2. We have σk ∈ S1,n for all k ≥ m,
with σm+1 = 23 · · · (n− 1)1n.

Proof. Suppose that σk ∈ Sn,1 for some k ≥ m. Then, we will show that, for
some i ≥ m, σi starts with n and ends with n− 1. We obtain that, for some
i ≥ m, σi ends with n1, and finally this yields that n12 · · · (n − 1) occurs
after m, contradicting that σm−1 = n12 · · · (n− 1).

9

First, note that σ′

k = σ′

0 and σk ∈ Sn,1 are possible only for k = m − 1.
Therefore, σk ∈ Sn,1 for k ≥ m implies that σ′

j = σ′

k for at most n different
indices j ≤ k. Moreover, since σj cannot start with 1 if j < m or j = k,
and since k ≥ m, there are at most n − 2 different indices j < m such that
σ′

j = σ′

k. Hence the (n− 1)-st extension of σ′

k occurs after m.
If σk ∈ Sn,1 does not start with n, then its (n − 1)-st extension is also

in Sn,1, with the position of n shifted to the left; we obtain iteratively that
there is some i ≥ m such that σi starts with n and ends with n− 1. On the
other hand, if σk starts with n, then the (n − 1)-st extension of σ′

k−1 starts
with n and occurs at or after the position k.

Therefore, we can assume that, for some k ≥ m, σk starts with n and
ends with n− 1. Now, we cannot have σ′

j = σ′

k for some 1 ≤ j < m, because
σj 6= σk would imply that σj ends with n, which is not possible for j < m.
Since σ′

k 6= σ′

0, we obtain that σ′

k does not occur before m, hence the first
extension of σ′

k, which ends with n1, occurs after m.
Finally, assume that σk ends with n1 for some k ≥ m. Then, iterating

(n− 1)-st extensions gives that n12 · · · (n− 1) occurs after m, contradicting
that σm−1 = n12 · · · (n− 1). Hence, we cannot have σk ∈ Sn,1 for k ≥ m.

Since σ′

m = 23 · · · (n − 1)1 by Lemma 3.3 and σm+1 ∈ S1,n, we have
σm+1 = 23 · · · (n− 1)1n.

Proof of Theorem 3.1. Since |S1,n| = |Sn,1| = n!/2, the theorem is a direct
consequence of Lemmas 3.3 and 3.4, with m = n!/2 + 1.

Note that, since an!

2
+1 = 1, we have, for all k ≤ n!/2 − n + 2, some

0 ≤ j ≤ n − 2 such that σk+j ends with 1. This also follows from the fact
that σk ∈ Sn,1 for all k ≤ n!/2. Similarly, since σk ∈ S1,n for all k > n!/2,
we have, for all k > n!/2, some 0 ≤ j ≤ n − 2 such that σk+j ends with n.
Therefore, an!+n−1 is the largest element to the right of an!

2
+1 = 1.

4 Directions of further research

4.1 Reducing the alphabets of Π′
n
and Πn

Our main goal in this paper was to come up with a simple construction of a
u-cycle for permutations, not a construction requiring the minimum number
of letters, which was a concern in, say [2, 5, 9]. However, it is an interesting
and challenging question to ask what is the minimum number of distinct

10

letters that is required for our greedy construction. These considerations
will be similar in nature to dealing with partially ordered sets in [2].

For example, constructing Π′

3 in a greedy way with respect to the number
of letters used, we end up with a word over a 6-letter alphabet, not over an
8-letter alphabet:

12 → 231 → 3421 → 45312 → 564132 → 5641324 → 56413245.

Such an optimization is irrelevant for the construction of Π3, but it would
be relevant for the construction of Πn for n ≥ 4. So, the idea is that in
the original construction of Π′

n some of the letters can be used more than
once. This defines a partial order on the letters of the originally constructed
Π′

n indicating which letters have a choice to be used more than once. More
precisely, the poset is defined by aj ≺ ak if aj < ak and |k− j| < n, where ≺
denotes the poset relation. Then the minimal number of letters is the length
of this partial order. Such partially ordered sets, in the cases of n = 3, 4,
are shown in Figure 1, and we can see that Π′

3 (resp., Π′

4) actually requires
6 (resp., 13) distinct letters. It would be interesting to study properties of
such partially ordered sets. For example, from the case of n = 4, we see that
such partially ordered sets are not necessarily graded.

We note that our greedy algorithm will never result in the optimum size
of the alphabet, which is n + 1 for n-permutations, because of the first n
steps of the algorithm when we are forced to use new letters, so the total
number of letters will be ≥ 2n − 2 > n + 1 for n ≥ 4. However, to find the
exact optimal size for our construction is an interesting problem requiring
understanding the partially ordered sets in question.

If constructing a universal cycle for n-permutations over an (n+1)-letter
alphabet is someone’s main goal, it would be interesting to see if there is a
(natural) modification of our algorithm that would help to achieve this goal
(thus reproving the result of Johnson [9]). Such a modification would be in
describing (in a “nice” way) a sequence of extensions instead of applying the
minimal possible extension every time. For example, we might be interested
in alternation of applications of minimal and maximal extensions, or applying
some sort of closest to average extension, etc. Of course, many, if not (almost)
all such modifications will not result in a universal cycle. This effectively
opens up the question on classification of sequences of extensions that result
in universal cycles (leaving aside the question on the number of letters used
by a particular universal cycle obtained this way).

11

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Figure 1: Partially ordered sets for Π′

3 and Π′

4

4.2 Shortened universal words/cycles for permutations

It would be interesting to extend our approach to generate universal cycles
for permutations in the context of shortened universal words/cycles for per-
mutations that were introduced in [10].

To illustrate the idea of one of the two ways suggested in [10] to shorten
universal cycles for permutations, consider the word 112, which is claimed
to be a universal cycle for all permutations of length 3, thus shortening a
“classical” universal cycle for these permutations, say, 145243. Indeed, we
can treat equal elements as incomparable elements, while the relative order
of these incomparable elements to the other elements must be respected.
Thus, 112 encodes all permutations whose last element is the largest one,

12

namely, 123 and 213; starting at the second position (and reading the word
cyclically), we obtain the word 121 encoding the permutations 132 and 231,
and finally, starting at the third position, we (cyclically) read the word 211
encoding the permutations 312 and 321. For another example, the word 1232
is also a universal cycle for permutations of length 3.

The main goal of [10] is to study compression possibilities for (classical)
universal cycles for permutations. In particular, [10] shows that such univer-
sal cycles exist of lengths n! − kn for k = 0, 1, . . . , (n − 1)!. The approach
in [10] to obtain these results is graph theoretical, and it actually does not
provide any explicit constructions of the objects in the general case. Thus,
(a modification of) our approach to generate universal cycles could poten-
tially be useful in generating shortened universal words/cycles, and this is an
interesting direction of further research. An idea here would be to introduce a
rule, or rules, overriding the rules of the algorithm, while still beginning with
the increasing sequence of length (n − 1) for n-permutations. For example,
we could require to use the minimum letter equal to some letter among the
(n − 1) preceding letters, if possible, while following our original algorithm
otherwise. So that the steps of such a modified algorithm in the case of n = 3
could be

12 → 121 → 1211 → 12112

covering all 6 permutations non-cyclicly, or for the cyclic version, we can stop
at 121 (132 and 231 are covered by 121, 321 and 312 by 211, and 123 and 213
by 112). However, correctness of such an algorithm, or its variations, must
be addressed, which is outside of the scope in this paper.

Acknowledgments

The first author was supported by the Fundamental Research Funds for the
Central Universities (31020170QD101). The second author is grateful to
the administration of the Center for Combinatorics at Nankai University for
their hospitality during the author’s stay in May 2017. The last author
was partially supported by the National Science Foundation of China (Nos.
11626172, 11701424).

13

References

[1] M. Albert, J. West. Universal cycles for permutation classes. 21st In-
ternational Conference on Formal Power Series and Algebraic Combina-
torics (FPSAC 2009), 39–50, Discrete Math. Theor. Comput. Sci. Proc.,
AK, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2009.

[2] F. Chung, P. Diaconis, R. Graham. Universal cycles for combinatorial
structures. Discrete Math. 110 (1992) 43–59.

[3] N.G. de Bruijn. A combinatorial problem. Nederl. Akad. Wetensch.,
Proc. 49 (1946) 758–764.

[4] A. E. Holroyd, F. Ruskey, A. Williams. Faster generation of shorthand
universal cycles for permutations. Computing and combinatorics, 298–
307, Lecture Notes in Comput. Sci. 6196, Springer, Berlin, 2010.

[5] A. E. Holroyd, F. Ruskey, A. Williams. Shorthand Universal Cycles for
Permutations. Algorithmica 64 (2012) 215–245.

[6] G. Hurlbert, G. Isaak. Equivalence class universal cycles for permuta-
tions. Discrete Math. 149 (1996) 1–3, 123–129.

[7] G. Isaak. Hamiltonicity of digraphs for universal cycles of permutations.
European J. Combin. 27 (2006) 6, 801–805.

[8] B. W. Jackson. Universal cycles of k-subsets and k-permutations. Dis-
crete Math. 117 (1993) 1–3, 141–150.

[9] J. R. Johnson. Universal cycles for permutations. Discrete Math. 309
(2009) 5264–5270.

[10] S. Kitaev, V. N. Potapov, V. Vajnovszki. On shortening u-cycles and
u-words for permutations. arXiv:1707.06110.

[11] M. H. Martin. A problem in arrangements. Bulletin of the American
Mathematical Society 40 (1934) 859–864.

[12] F. Ruskey, A. Williams. An explicit universal cycle for the (n − 1)-
permutations of an n-set. ACM Trans. Algorithms 6 (2010) 3, Art. 45,
12 pp.

14

	1 Introduction
	1.1 Martin's algorithm to generate de Bruijn sequences
	1.2 Universal cycles for permutations
	1.3 Basic definitions
	1.4 Organization of the paper

	2 Simple generation of u-words and u-cycles for permutations
	2.1 Generating 'n and n
	2.2 Justification of 'n being a u-word for permutations
	2.3 Justification of being a u-cycle for permutations
	2.4 Uniqueness of n

	3 Properties of n and 'n
	4 Directions of further research
	4.1 Reducing the alphabets of 'n and n
	4.2 Shortened universal words/cycles for permutations

