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Abstract 

Chung, F., P. Diaconis and R. Graham, Universal cycles for combinatorial structures, Discrete 

Mathematics 110 (1992) 43-59 

In this paper, we explore generalizations of de Bruijn cycles for a variety of families of 

combinatorial structures, including permutations, partitions and subsets of a finite set. 

1. Introduction 

The cyclic sequence C of 16 O’s and l’s shown in Fig. 0 has the following 

unlikely property. If we list each of the 16 possible blocks of 4 consecutive 

symbols of C, it turns out that they are all different. As a consequence, it follows 

that every possible O-l sequence of length 4 occurs this way (uniquely). The cycle 

C is an example of what has come to be known as a de Bruijn cycle. More 

generally, a (binary) de Bruijn cycle C,, of order IZ is defined to be a cyclic 

sequence (x,,, x1, . . . , A+_~) where xi = 0 or 1, and each possible binary sequence 

of length IZ occurs uniquely as (_x~+~, . . . , xj+,) for some i, where index addition is 

performed modulo 2”. The study of such cycles has had a long and distinguished 

history, and has arisen in a variety of contexts, such as design of Sanskrit memory 

wheels, digital fault testing, pseudo-random number generation, modern public- 

key cryptographic schemes, and even for use by illusionists in various mind- 

reading effects, to mention a few. (For an overview of this history, and indeed, 

the whole topic of de Bruijn cycles, the reader can consult [l, 5,21,14]. 
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Fig. 0. A de Bruijn cycle of order 4. 

Among the fundamental questions one might ask concerning de Bruijn cycles 

are: 

(i) 
(ii) 

(iii) 

(iv) 

Do de Bruijn cycles always exist for each n? 

If so, how many are there? 

How does one construct them? 

In a given de Bruijn cycle C, is there an easy way of determining the ith 

block as a function of i? 

(v) How can one ‘invert’ this process in C. That is, for each given block, where 

is it in C? 

(vi) How can one ‘cut down’ a de Bruijn cycle C. That is, when is it possible 

to remove elements from C so that the resulting contracted cycle C’ still has 

distinct blocks of length n (although some now will be missing). In the same spirit, 

how can one ‘build up’ or ‘combine’ de Bruijn cycles? 

(vii) What are the analogues for larger alphabets (k symbols rather than 2), or 

more dimensions (e.g., a de Bruijn ‘torus’ rather than a cycle), etc. 

We will summarize some of the known answers to some of these questions in 

Section 3. 

The thrust of this paper will be to consider the analogous situation for a variety 

of other combinatorial structures, rather than binary n-tuples. In particular, we 

will outline what is known for permutations of an n-set (Section 4), partitions of 

an n-set (Section 5), and k-sets of an n-set (Section 6). In Section 2, we formulate 

our problem in a general setting, and in Section 3, we interpret de Bruijn cycles 

in this formulation. Finally, in Section 7, we describe possible future directions. 

2. A general formulation 

We begin by being given some family 9n of combinatorial objects of ‘rank n’. 

We denote their number by m : = ISj/. We assume that each F E 9 is ‘generated’ 

or specified by some sequence (x1, . . . , x,), where xi E A, for some fixed 

alphabet A. 
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We will say that U = (a,,, a,, . . . , a,_,) is a universal cycle for Sn (or U-cycle, 

for short) if (uj+i, . . . , a,,,), 0 c i < m, runs through each element of Sn exactly 

once, where index addition is performed modulo n. 

Now we can ask the standard questions: do U-cycles for Sn exist, if so how 

many, how do you construct them, invert them, combine them, extend them, etc. 

Of course, it is clear that some U-cycles might be better than others for some of 

these purposes. When this is so, how do we find ‘good’ ones. 

In addition to their inherent combinatorial interest, one might also ask how one 

might use these U-cycles. 

3. de Bruijn cycles 

We next sketch the standard approach used for treating de Bruijn cycles. In 

this case, 

9n = B, = (0, l}” = {(XI, . . . ) x,) 1 Xi E (0, l}, 1 pi S/Z}, m = 2” 

and each binary n-tuple (xl, . . . , x,) is just represented by itself, i.e., 

(Xl, . . . , .G> -(x1, . . . ,G). 

(This will not be the case in most of the later situations.) 

The first step in constructing potential U-cycles for B, is to construct the 

(directed) transition graph G, for B,. The vertices of G,, are all the n-tuples 

(0, l}“. There is a directed edge (= arc) from (xl, . . . , x,) to (y,, . . . , yn) 

provided %?=Yl? x3 =yz, . . . ) x, =y,_i. Thus, arcs look like 

((Xl, . . . 7 L), (x2, . . . > %I, x n+l)). What this indicates is that it is possible to go 

from (xi, . . . , x,) to (x2, . . . , x,+~) in a potential U-cycle, namely, when the 

block . . . x1, x2, . . . , x,, x”+~ . . occurs. 

We illustrate the graphs G2 and G3 in Fig. 1. 

From this point of view, a U-cycle for B, corresponds exactly to a directed 

circuit in G,, going through each vertex exactly once, i.e., a Hamiltonian circuit 
for G,. This is both good news and bad news. The good news is that our problem 

has been reduced to finding a very familiar object in graph theory, namely, 

Hamiltonian circuits. The bad news is that these objects are well known to be 

difficult to find! In fact, it is an NP-complete problem to decide if a graph in 

general even has a Hamiltonian circuit. 

Fortunately, we have a way around this problem in this case. What we can do is 

to define another digraph G,*, called the arc digruph of G,, as follows. The 

vertices of G,* will just be the arcs of G,. In particular the arc 

((Xl, . . , x,-1, 4 (x2, . . . , x,, -IC,+,)) will correspond to the vertex labelled 

with the (n - 1)-tuple (x,, . . . , x,) in G,*. The arcs of G,* will be all pairs of 

vertices ((yi, . . . , y,_J (y2, . . . , y,)) in G,*, i.e., so that the ‘head’ of the first 

vertex label is equal to the ‘tail’ of the second vertex label. In Fig. 2, we show Gz 
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Fig. 1. The graphs G, and G,. 

and G:. It is clear now that a Hamiltonian circuit in G, corresponds exactly to an 
‘Eulerian’ circuit in G,*, i.e., a (directed) circuit passing through each arc exactly 
once. The advantage of this transformation is that Eulerian circuits in digraphs 
are easy to detect. To state this precisely, let us call a digraph G balanced if for 
every vertex ‘u of G, indegree = outdegree( Also, call G strongly connected 
if for any vertices u and Y of G, there is a directed path in G from u to u. 

10 

Gi 

Fig. 2. The arc digraphs G: and G;. 
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Fact. G has an Eulerian circuit if and only if G is balanced and strongly 

connected. 

It is not difficult to see that G,* is balanced and strongly connected, and so is 
Eulerian. This in turn shows that G, is Hamiltonian, i.e., has a U-cycle. Notice 
that G,* is isomorphic to G,_,. A more careful analysis shows that in fact G,T has 
exactly 2’“-” different Eulerian cycles. For a good discussion of this topic as well 
as various generalizations such as k-symbol alphabets, the reader is referred to 
[14,15,18]. 

In the next three sections we will attempt to apply the same analysis (with 
decreasing success) to permutations, partitions and k-set of an n-set, respectively. 

4. Permutations 

Let us denote by S, the set of all n! permutations (or arrangments) of 

(172,. . . 7 n}. If a = (a,, a2, . . . , a,) and 6 = (b,, b,, . . . , b,) each are n-tuples 
of distinct integers we will say that 15 and 6 are order-isomorphic, written Z - 6, if 

ai<ai ($ bi<bi. 

A U-cycle U,, = (ao, a,, . . . , a,!_,), a, E (1, 2, . . . , IV}, for S, will be n!-tuple 
such that each u E S, is order-isomorphic to exactly one block (aitl, . . . , a;,,), 
where, of course, index addition is performed modulo n ! It is clear why we must 
in general take N > n since blocks of length n must always consist of n distinct 
symbols. An example of U-cycle for S, is 

14 5 2 4 3. 

To begin the process of constructing U-cycles of S,, we imitate the analysis used 
for de Bruijn cycles and construct the transition graph G, for S,. We illustrate this 
for N = 3 in Fig. 3. 

The arcs of G, are defined as follows. Suppose (for n = 3) we have the 
sequence **.452x.* - where we are suppressing commas. Now 452 - 231. The 
next 3-block 52x could have three possibilities. If x = 1 then 521- 321 so that we 
get the arc 2314321. If x = 3 then 523 - 312 and we have the arc 231-312. 

Fig. 3. G, 
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Finally, if x = 6 then we have 526 - 213 and 231+ 213. So, even after we find a 

Hamiltonian cycle in G,,, we still have to assign values ai to realize (order- 

isomorphically) the appropriate elements of S,. We will have more to say about 

this latter. The structure of G3 can be simplified if we regroup the vertices as in 

Fig. 4. 

We have grouped permutations according to the order type of the first two 

elements, which are ‘12’ and ‘21’. An arc in G3 from 213, for example to the 

group ‘12’ denotes that there are really three arcs, one from 213 to each of the 

elements 123, 132 and 231 in the group ‘12’. Since each permutation now has 

exactly one arc leaving it, it suffices to find an Eulerian circuit in G3 in order to 

produce a Hamiltonian circuit in Gs. We show such an Eulerian circuit for G, in 

Fig. 5. The corresponding Hamiltonian circuit in G3 is 

132- 312 - 123 - 231 - 321 - 213 

The key question is now this. How does such a cycle correspond to a U-cycle 

for S,? 

Suppose we assign (as of yet) undetermined values for the potential U-cycle as 

follows: 

17: abcdef. 

Fig. 5. An Eulerian circuit in ifL,. 
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Fig. 6. 5. 

We want the first 3-block abc to be order-isomorphic to the first permutation 132 
in our Hamiltonian circuit, i.e., abc - 132 which just means a <c < b. Similarly, 
we want bed - 312 which implies c <d < b, cde - 123 which implies c <d <e, 

etc. 
We can represent the implied inequalities among a, b, . . . , f by means of a 

partial order (which itself is just an acyclic digraph), where i+ j will denote the 
requirement that i <i. We show this partial order Z’? in Fig. 6. 

What we now require is a mapping of {a, b, . . . , f} into (1, 2, . . . , N} which 
preserves order, i.e., a linear extension A of P3 into (1, 2, . . . , N} for a suitable 

Fig. 7. The clustered transition graph (I?4 for S,. 
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N. In particular, it is natural to make N as small as possible (so that in particular 
the mapping should be onto). In this case, we can choose N = 4 and take 
L(a) = 1, A(c) = n(f) = 2, Ii(d) = 3, )L(b) = n(e) = 4, which results in the U-cycle 
14 2 3 4 2 for S,. 

In Fig. 7 we show the ‘clustered’ transition graph G4 for S,. A particularly nice 
Eulerian circuit for G, is given in Fig. 8. 

If we assume that U, = abc . * * x is a U-cycle which realizes this ordering of S, 

then we can construct as we did for S, the implied partial order P4 (shown in Fig. 
8). This we show in Fig. 9. 

The main point is that P4 has height (= length of longest chain) 5. Thus, we can 
define the linear extension il: {a, . . . , x} - {1,2, 3, 4, 5) by n(z) : = length of 
longest chain ending in z, to produce the U-cycle 

123412534153214532413254. 

In general, we can cluster vertices of the transition graph G,, to form G,, (by 
grouping together those n permutations for which the initial (n - 1) blocks are 
order-isomorphic), which is easily checked to be balanced and strongly con- 
nected, and hence Eulerian. It is shown in Hurlbert [lo] that by appropriately 

a b c d 

Fig. 8. An Eulerian circuit for c4. 
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p4 

a-b-c-d 

/ r>, 

Fig. 9. A linear extension. 

restricting C, the implied ordering on the values in the ‘lifted’ U-cycle is in fact a 

partial order P, = P,(C), i.e., has no cycles. (In fact, we believe this to be the 

case for any Eulerian circuit C.) If h(P,) denotes the height of P,, then there is a 

linear extension of P, into (1, 2, . . . , h(P,)}, and consequently there is a U-cycle 

for S, from symbols in { 1,2, . . . , h( Pa)}. 

Suppose we define N(n) : = min, h(P,(C)) where C ranges over all Eulerian 

circuits in G,,. Then any U-cycle for S,, must use at least N(n) different symbols. 

The best bounds we currently have for N(n) are 

N(2) =2, N(3) =4, N(4)=.5 and IZ + l~N(n)<6n for n 25. 

However, we believe the following. 

Conjecture. N(n) = 12 + 1, IZ 2 3. 

We close this section with several questions. How many U-cycles for S, are 

there with exactly N(n) different vertices ? What about with at most N(n) + c 

entries for a fixed constant c? Exponentially many? Can we find U-cycles which 

are easy to invert? Suppose we just want a specified subset X ES,, to be 

represented by U,,. For which X is this possible? 
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{1)=1 {;}=7 {;}4 {:}=1 

~ ___ 

1234 1 1 234 112134 1121314 

21134 1 I 3 I 24 

3 1 124 1141 23 

4 I 123 2131 14 

12 I 34 2141 13 

13 1 24 314112 

14 I 23 

Fig. 10. Partitions of { 1,2,3,4}, lJd: a 6 c 6 ccc c d d c de e c. 

5. Partitions 

The next class of objects we consider is the set of P,, of partitions of the 
n-element set {1,2, . . . , n}. The number of such partitions is just C$,i {$}, 
where {z} denotes the Stirling number of the second kind, and satisfies the 
recurrence 

(e.g., see [8]). 
How will we represent partitions? We will do the following. We illustrate the 

idea for II = 8. A U-cycle for P, will be a sequence composed of symbols from the 
set A = {a, b, c, . . .}. A block, for example, a b UC b ccd, will represent a 
partition, in this case 13 1 25 1 467 1 8, by putting i and i in the same group of the 
partition if and only if the ith and jth symbols of the block are the same. In Fig. 
10, we list the 15 partitions of {1,2,3,4} and a U-cycle U, for Pd. 

We can proceed in the canonical way in searching for U-cycles by first 
considering the corresponding transition graph G,. In Fig. 11(a) we show G3. In 
Fig. 11(b) we redraw G3 by clustering certain partitions together as shown, to 
form G3. 

Fig. 11. The graphs G3 and G3. 
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? u4 : x1 x2 x3 x4 x5 

1 2 3 3 x, = x2 = x3 

1 21 3 d xq f x3 

1 31 2 =9 x5 = x3 

II 21 3 ==B x, #X5 

II 2 3 

Fig. 12. 

We use the same convention as in the preceding section, namely, an arc from 

a partition n to a cluster means that arcs go from Ed to all partitions of the Custer. 

This reduced graph C$ is Eulerian, with the only Eulerian circuit being 

Ll23 + 121 3 --z 13 12 --+ 112 13 - 11 23l 

The final step is to ‘lift’ this circuit to an actual U-cycle by assigning appropriate 

symbols in order to realize the corresponding partitions. We show the set-up in 

Fig. 12. 

However, we now get a contradiction since we can deduce x5 #xl = xg = xs. 

Thus, we have an example of a Hamiltonian circuit in G, which cannot be ‘lifted’ 

to a U-cycle. In fact, there are no U-cycles for P3. 

Undaunted, we move on to P4. In Fig. 13, we show cd. 

As before, if we imagine contracting clusters to points, this graph is Eulerian. 

The reader may wish to test his or her understanding up to this point by finding 

an Eulerian circuit in C%, and extending it to a U-cycle for P4 (there is more than 

one way to do this). 

For the general case of P,,, this procedure works quite well. It is not difficult to 

see that the clustered graph C?,, is always Eulerian (for n 2 3). The only problem 

we have to worry about is that some Eulerian circuits might not be able to be 

converted to U-cycles. This can only happen if the implied (in)equalities in the 

symbols of the U-cycle end up with forcing x fx for some symbol x (as happened 

for n = 3). To prevent this, it is enough to require that a specific sequence W of 

partitions occur in the Eulerian circuit C. The purpose of W is to prevent a 

sequence of equalities (or unequalities) from going across the corresponding 

portion of the U-cycle. For example, take n = 4 and let W be 

1123 14, 12134, 11234, 1234, 123 (4. 

When this portion of C is ‘lifted’ we get the situation shown in Fig. 14. Thus, we 

must have 

aj+l f ai+2 = aj+3 # aj+5 = tZj+e = ait7 # ai+x. 

We can think of W as a ‘breaker’ since if r s i and s 2 i + 8 then neither a, = a, 

nor a, #a, can be forced. In particular, if C has a ‘breaker’ which does not 
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include 1 1 2 1 3 1 4 then C can always be lifted to a U-cycle. It is not difficult to 
show that for n 2 4 this can always be done. 

It is amusing to note that there are exactly 52 partitions of {1,2,3,4,5}. In 
fact, a U-cycle for Ps can be constructed with the alphabet A = (0, C, H, S, J} so 
that the symbol J occurs just once, and each of the other symbols occur at most 
13 times. For example, one such cycle is 

Fig. 13. The reduced graph C?,. 

‘1 1 23” 

“ 123” 

U4 : . Oi+i ai+ ai+ (li+4 ai+ ai+ ai+ ai+ ..f 

II 2 31 4 

1 21 3 4 

II 2 3 4 

1 2 3 4 

1 2 31 4 

Fig. 14. 
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In particular, this cycle can be realized with an ordinary deck of playing cards 

with one spade (= S) replaced by a joker (= J). It is not hard to see that for P,, 
we must have an alphabet IAl Z= II. For N 2 n, how many U-cycles for P,, are there 

with IAl = N? How do you invert any of these U-cycles? 

6. k-Sets of an n-set 

The final class of objects we consider is the family [g] of all k-element subsets 

(= k-sets) of an n-element set (0, 1, . . . , n - l}. As an example of a U-cycle for 

this situation, we have for IZ = 8, k = 3, the following cycle U: 

02456145712361246703671345034601250135672560234723570147. 

A distinguishing feature of this situation is that each 3-set might occur in any of 6 

possible orders in U, but it is only allowed to occur once. That is, since the first 

3-block 024 represents the 3-set {0,2,4} then none of the five other 3-blocks 042, 

204, 240, 402 and 420 can occur in U. One consequence of this fact is that we 

cannot even define a transition graph G for [:I! For if {1,2,3} is represented by 

the block 123, for example, then the arc {1,2,3}+ {2,3,4} is possible in G (by 

having the block continue 1234. . .). However, if {1,2,3} is represented by 213 

then { 1,2,3} -+ {2,3,4} cannot be an arc in G. Since we do not know which way 

{ 1,2,3} will be represented then we cannot give a meaningful definition of G. 

There is a simple modular condition which is necessary for the existence of 

U-cycles for [$I. 

Fact. If [z] has a U-cycle then k divides (z 1:). 

Proof. Consider a fixed symbol ai =x in a U-cycle C. Since all symbols 

u~+~, -k <j < k, must be distinct from X, then each copy of x occurs in exactly k 
k-blocks of C. Since these k-blocks represent k-sets of (0, . . . , II - l} which 

contain X, and there are exactly (;t- 1 i) if these, the conclusion follows. 0 

It is easy to see that U-cycles exist for [$I whenever this necessary condition is 

satisfied, i.e., n is odd. 

It has been shown by Jackson [12] that this necessary condition is in fact 

sufficient for k = 3 if n is large enough. 

Theorem [12]. U-cycles exist for [;I, n 2 8, provided (” ; ‘) = 0 (mod 3). 

Idea of proof. We illustrate the idea for II = 8. We first tabulate all possible 

different ways of selecting 3 elements from an 8-cycle where we identify two 

choices if they only differ by a rotation. We describe these by their sequences of 

differences between consecutive elements (modulo 8) (see Fig. 15). We next 
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DIFFERENCES (mod 8) 

_lJ6 

_lJ5 

134 

314 

215 

224 

332 

Fig. 15. Possible cyclic patterns for 3-sets of an g-set. 

select for each (ordered) pattern two of the three differences (underlined in Fig. 

15). 

Now we construct a digraph G with vertices labeled by 1, 2 and 3, and arcs 

from i to j if ij is an (ordered) pair of differences selected in the previous stage. 

We show G in Fig. 16. 

For the next step we look for an Eulerian circuit C in G. In this case we take 

L2211331). 

Finally we check that the sum C of the elements of C is relatively prime to n = 8. 

Since C = 5 in this case, then this stage passes. If we have managed to succeed up 

to this point then we can now construct our U-cycle V as follows. We take the 
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Fig. 16. The graph for 3-sets of an &set. 

‘template’ of differences 2 2 1 13 3 1 formed by C repeated 8 times, and construct 

the sequence of length 7.8 = 56 having these differences (mod 8) between 

consecutive elements. (It does not matter what the first element of U is). Thus, U 

(starting with 0) is 

A: 2 2 1 13 3 12 2 1 13 3 12 ... 

u: 0 2 4 5 6 1 4 5 7 1 2 3 6 1 2 4 se.’ 

What Jackson shows is that it is always possible to construct a U-cycle for [I;] 

this way, provided 3 ) (” ; I), i.e., n f: 0 (mod 3), and it 2 8. 

These techniques can be extended to show the following. 

Theorem. U-cycles exist for [y] provided (” ;‘) = 0 (mod 4), (n, 4) = 1 and n is 

suficiently large. 

It has very recently been shown by Hurlbert [lo] that the necessary condition 

(“;‘)-O(mod6). 1s also sufficient for the existence of U-cycles for [:I. However, 

for k = 5 or k > 7 we are still completely baffled. 

We are willing to make the following conjecture though. 

Conjecture ($100). U-cycles exist for [It] always exist provided k divides (;I i) 

and n 2 no(k). 

7. Future directions 

There are of course many other combinatorial structures for which these and 

similar questions can be raised. Thus include, for example, permutations with 

ties, ordered k-sets of an n-set, k-sets of an n-element multi-set, k-dimensional 

subspaces of an n-dimensional vector space over GF(q), combinatorial k-spaces 
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Fig. 17. A de Bruijn torus for 2 x 2 arrays. 

of an n-space (a la Hales-Jewett; see [9]), etc. One could also ask for 
higher-dimensional analogues of these questions. For example, is it always 
possible to construct a universal torus T for every 2k-by-2k binary array? In other 
words, we are asking for a (square) 22k2 -by-22k2 binary array T, with horizonal and 
vertical sides, respectively, identified, so that all 2k-by-2k binary arrays occur in T 
exactly once. The simplest example of such a T is shown in Fig. 17. In fact, such 
T always exist (see [6]) although their number for each size is not known. 

Non-square toruses have been investigated in [2-4,7,11,16,18-191. and in 
particular in [20], where they arise in connection with robot self-location 
problems. 

Clearly we have barely scratched the surface of this subject, with the vast bulk 
of the interesting results remaining yet to be discovered. An excellent start in 
some of these directions can be found in [lo]. 
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