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Abstract. We show that the totally nonnegative part of a partial flag variety G/P (in
the sense of Lusztig) is a regular CW complex, confirming a conjecture of Williams. In
particular, the closure of each positroid cell inside the totally nonnegative Grassman-
nian is homeomorphic to a ball, confirming a conjecture of Postnikov.
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1 Introduction

Let G be a semisimple algebraic group, split over R, and let P ⊂ G be a parabolic sub-
group. Lusztig [26] introduced the totally nonnegative part of the partial flag variety
G/P, denoted (G/P)≥0, which he called a “remarkable polyhedral subspace”. He con-
jectured and Rietsch proved [32] that (G/P)≥0 has a decomposition into open cells. We
prove the following conjecture of Williams [40]:

Theorem 1.1. The cell decomposition of (G/P)≥0 forms a regular CW complex. Thus the closure
of each cell is homeomorphic to a closed ball.

A special case of particular interest is when G/P is the Grassmannian Gr(k, n) of k-
dimensional linear subspaces of Rn. In this case, (G/P)≥0 becomes the totally nonnegative
Grassmannian Gr≥0(k, n), introduced by Postnikov [29] as the subset of Gr(k, n) where all
Plücker coordinates are nonnegative. He gave a stratification of Gr≥0(k, n) into positroid
cells according to which Plücker coordinates are zero and which are strictly positive,
and conjectured that the closure of each positroid cell is homeomorphic to a closed ball.
Postnikov’s conjecture follows as a special case of Theorem 1.1:
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Corollary 1.2. The decomposition of Gr≥0(k, n) into positroid cells forms a regular CW complex.
Thus the closure of each positroid cell is homeomorphic to a closed ball.

When k = 1, Gr≥0(1, n) is the standard (n − 1)-dimensional simplex ∆n−1 ⊂ Pn−1, a
prototypical example of a regular CW complex.

1.1 History and motivation

A matrix is called totally nonnegative if all its minors are nonnegative. The theory of
such matrices originated in the 1930’s [35, 15]. Later, Lusztig [26] was motivated by a
question of Kostant to consider connections between totally nonnegative matrices and his
theory of canonical bases for quantum groups [25]. This led him to introduce the totally
nonnegative part G≥0 of a split semisimple G. Inspired by a result of Whitney [39],
he defined G≥0 to be generated by exponentiated Chevalley generators with positive
real parameters, and generalized many classical results for G = SLn to this setting.
He introduced the totally nonnegative part (G/P)≥0 of a partial flag variety G/P, and
showed [27, Section 4] that G≥0 and (G/P)≥0 are contractible.

Fomin and Shapiro [7] realized that Lusztig’s work may be used to address a long-
standing problem in poset topology. Namely, the Bruhat order of the Weyl group W of
G had been shown to be shellable by Björner and Wachs [4], and by general results of
Björner [3] it followed that there exists a “synthetic” regular CW complex whose face
poset coincides with (W,≤) (see Figure 1). The motivation of [7] was to answer a natu-
ral question due to Bernstein and Björner of whether such a regular CW complex exists
“in nature”. Let U ⊂ G be the unipotent radical of the standard Borel subgroup, and
let U≥0 := G≥0 ∩ U be its totally nonnegative part. For G = SLn, U≥0 is the semi-
group of upper-triangular unipotent matrices with all minors nonnegative. The work of
Lusztig [26] implies that U≥0 has a cell decomposition whose face poset is (W,≤). The
space U≥0 is not compact, but Fomin and Shapiro [7] conjectured that taking the link of
the identity element in U≥0, which also has (W,≤) as its face poset, gives the desired
regular CW complex. Their conjecture was confirmed by Hersh [19]. Hersh’s theorem
also follows as a corollary to our proof of Theorem 1.1, see Section 4.1.

Corollary 1.3 ([19]). The link of the identity in U≥0 is a regular CW complex.

For recent related developments, see [5].
Meanwhile, Postnikov [29] defined the totally nonnegative Grassmannian Gr≥0(k, n),

decomposed it into positroid cells, and showed that each positroid cell is homeomorphic
to an open ball. Motivated by work of Fomin and Zelevinsky [8] on double Bruhat cells,
he conjectured [29, Conjecture 3.6] that this decomposition forms a regular CW complex.
It was later realized that the space Gr≥0(k, n) and its cell decomposition coincide with the
one studied by Lusztig and Rietsch in the special case that G/P = Gr(k, n). Williams [40,
Section 7] extended Postnikov’s conjecture from Gr≥0(k, n) to (G/P)≥0.
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Figure 1: The Bruhat order on W = S3 (after deleting the bottom element) is the face
poset of the regular CW complex homeomorphic to a 2-dimensional ball on the right.

There has been much progress towards proving these conjectures. Williams [40]
showed that the face poset of (G/P)≥0 (and hence of Gr≥0(k, n)) is graded, thin, and
shellable, and therefore by [3] is the face poset of some regular CW complex. Postnikov,
Speyer, and Williams [30] showed that Gr≥0(k, n) is a CW complex, and their result was
generalized to (G/P)≥0 by Rietsch and Williams [33]. Rietsch and Williams [34] also
showed that the closure of each cell in (G/P)≥0 is contractible. In previous work [11,
13], we showed that the spaces Gr≥0(k, n) and (G/P)≥0 are homeomorphic to closed
balls, which is the special case of Theorem 1.1 for the top-dimensional cell of (G/P)≥0.
We remark that our proof of Theorem 1.1 uses different methods than those employed
in [11, 13], in which we relied on the existence of a vector field on G/P contracting
(G/P)≥0 to a point in its interior. Singularities of lower-dimensional positroid cells give
obstructions to the existence of a continuous vector field with analogous properties.

Totally positive spaces have attracted a lot of interest due to their appearances in
other contexts such as cluster algebras [9] and the physics of scattering amplitudes [1].
Our original motivation for studying the topology of spaces arising in total positivity
was to better understand the amplituhedra of Arkani-Hamed and Trnka [2], and more
generally the Grassmann polytopes of the third author [22]. A Grassmann polytope
is a generalization of a convex polytope in the Grassmannian Gr(k, n). For example,
the totally nonnegative Grassmannian Gr≥0(k, n) is a generalization of a simplex, while
amplituhedra generalize cyclic polytopes [38]. The faces of a Grassmann polytope are
linear projections of closures of positroid cells, and therefore it is essential to understand
the topology of these closures in order to develop a theory of Grassmann polytopes.

1.2 Outline

We provide some background definitions in Section 2. We give a brief overview of our
proof of Theorem 1.1 in Section 3. Finally, in Section 4 we consider three examples:
the unipotent radical Un, the complete flag variety Fln, and the Grassmannian Gr(k, n).
Further details and full proofs of the results stated here appear in our preprint [12].
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2 Background

In this section we review background on regular CW complex and totally nonnegative
partial flag varieties. We refer to [16, 24, 26] for further details.

2.1 Regular CW complexes

Let X be a Hausdorff space. We call a finite disjoint union X =
⊔

g∈Q Xg a regular CW
complex if it satisfies the following two properties.

(1) For each g ∈ Q, there exists a homeomorphism from the closure Xg to a closed ball
B which sends Xg to the interior of B.

(2) For each g ∈ Q, there exists Q′ ⊂ Q such that Xg =
⊔

f∈Q′ X f .

The face poset of X is the poset (Q,�), where f � g if and only if X f ⊂ Xg.

2.2 Totally nonnegative partial flag varieties

Let g denote the Lie algebra of G over R. We fix Chevalley generators (ei, fi)i∈I of g, so
that the elements hi := [ei, fi] (i ∈ I) span the Lie algebra of a split real maximal torus T
of G. For i ∈ I and t ∈ R, we define the elements of G

xi(t) := exp(tei), yi(t) := exp(t fi).

We also let α∨i : R∗ → T be the homomorphism of algebraic groups whose tangent map
takes 1 ∈ R to hi. The xi(t)’s (respectively, yi(t)’s) generate the unipotent radical of a
Borel subgroup B (respectively, B−) of G, with B ∩ B− = T. The data (T, B, B−, xi, yi; i ∈
I) is called a pinning for G.

We define the totally nonnegative part G≥0 of G as the semigroup generated by all
xi(t)’s, yi(t)′s, and α∨i (t)’s with t > 0. For a parabolic subgroup P ⊃ B, we define the
totally nonnegative part (G/P)≥0 of G/P as the closure of the image of G≥0 inside G/P.
For examples in the case G = SLn, see Section 4.

Rietsch [32, 31] established the decomposition

(G/P)≥0 =
⊔

g∈Q
Π>0

g (2.1)

of (G/P)≥0 into open balls Π>0
g indexed by the elements g of a certain poset (Q,�),

which is the face poset of (G/P)≥0. When (G/P)≥0 is the totally nonnegative Grass-
mannian Gr≥0(k, n), this is the positroid cell decomposition of [29] (see Section 4.3).
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Figure 2: The map ν̄g for the case G = SL3 and P = B from Example 4.2.

3 Stars, links, and the Fomin–Shapiro atlas

In this section, we outline our proof of Theorem 1.1. Given g ∈ Q, define the star of g in
(G/P)≥0 by

Star≥0
g :=

⊔
h�g

Π>0
h .

We also consider the space Lk≥0
g (the link of g), stratified as

Lk≥0
g =

⊔
h�g

Lk>0
g,h .

We show along the way that Lk≥0
g is a regular CW complex homeomorphic to a closed

ball.
At the core of our approach is a collection of (stratification-preserving) homeomor-

phisms

ν̄g : Star≥0
g
∼−→ Π>0

g ×Cone(Lk≥0
g ), (3.1)

one for each g ∈ Q (see Figure 2). Here Cone(A) := (A×R≥0)/(A× {0}) denotes the
open cone over A. The homeomorphisms ν̄g, along with dilation actions ϑg on the cones,
are part of the data of what we call a Fomin–Shapiro atlas. Our construction is inspired
by similar maps introduced in [7] for the unipotent radical U≥0.

We also introduce the abstract notion of a totally nonnegative space, which captures
several known combinatorial and geometric properties of (G/P)≥0 used in our proof.
This includes the shellability of Q due to Williams [40], and some topological results [31,
21] on Richardson varieties. We prove that every totally nonnegative space that admits a
Fomin–Shapiro atlas is a regular CW complex. Our argument proceeds by induction on
the dimension of Lk>0

g,h, and depends on a delicate interplay between objects in smooth
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and topological categories. We use crucially that the maps (3.1) in a Fomin–Shapiro atlas
are restrictions of smooth maps. On the topological level, we rely on the generalized
Poincaré conjecture [36, 10, 28] combined with some general results on poset topology.
We formulate our results in the abstract language of totally nonnegative spaces since we
expect that they can be applied in other contexts, such as to totally nonnegative Kac–
Moody flag varieties, totally nonnegative double Bruhat cells [8], spaces of electrical
networks [23], spaces of boundary correlations of planar Ising models [14], amplituhe-
dra [2], and the totally nonnegative part of the wonderful compactification [17].

The bulk of the proof of Theorem 1.1 is devoted to the construction of the Fomin–
Shapiro atlas. For each g ∈ Q we give an isomorphism ϕ̄u between an open dense
subset Og ⊂ G/P and a certain subset of the affine flag variety G/B of the loop group G
associated with G. The map ϕ̄u, which we call an affine Bruhat atlas, sends the projected
Richardson stratification [21] of G/P to the affine Richardson stratification of its image
inside G/B. The hardest part of the proof consists of showing that the subset Og ⊂ G/P
contains Star≥0

g .

Remark 3.1. The map ϕ̄u generalizes the map of Snider [37] from Gr(k, n) to all G/P.
A different approach to give such a generalization is due to He, Knutson, and Lu [18],
which led them to the notion of a Bruhat atlas. See [6] for the definition. Huang [20] has
independently constructed a map similar to our ϕ̄u.

4 Examples

In this section we discuss three examples (in type A) of regular CW complexes which
are addressed by Theorem 1.1. We fix n ≥ 1, and let [n] := {1, 2, . . . , n}. For 0 ≤ k ≤ n,
let ([n]k ) denote the set of all k-element subsets of n. We set G := SLn. In the setup of
Section 2.2, we may take I := [n− 1], where xi(t), yi(t), and α∨i (t) are obtained from the
n× n identity matrix by placing, respectively,[

1 t
0 1

]
,
[

1 0
t 1

]
, and

[
t 0
0 t−1

]
in rows and columns i, i + 1.

Then B and B− are the subgroups of G of upper- and lower-triangular matrices, respec-
tively, and G≥0 is the subset of G of matrices whose minors are all nonnegative.

The Weyl group is the symmetric group Sn. We let w0 := (i 7→ n + 1− i) denote the
longest permutation in Sn. For w ∈ Sn, we let ẇ ∈ G denote the signed permutation
matrix which contains a ±1 in row w(k) and column k for each k ∈ [n], where the
signs are chosen so that the submatrix with rows {w(1), . . . , w(k)} and columns [k] has
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determinant 1. For example,

ṡ1 =

0 −1 0
1 0 0
0 0 1

 , and for w = s1s2, we have ẇ =

0 0 1
1 0 0
0 1 0

 .

4.1 Unipotent radical Un

Let Un denote the subgroup of B of all unipotent matrices, and U≥0
n := G≥0 ∩Un its to-

tally nonnegative part. We have the decomposition into totally positive Bruhat cells [26]

U≥0
n =

⊔
w∈Sn

Π>0
w , where Π>0

w := U≥0
n ∩ B−ẇB−.

The closure relation on cells is given by the strong Bruhat order.
We can take the link of the identity in U≥0

n to be the subset of matrices whose n− 1
entries immediately above the diagonal sum to 1. It has a similar cell decomposition
indexed by permutations w ∈ Sn with w 6= id. The natural inclusion Un ↪→ G/B−
allows us to identify this link with one appearing in the proof of Theorem 1.1 for G/B−,
which implies that it is a regular CW complex homeomorphic to a closed ball. This result
was conjectured by Fomin and Shapiro [7] and proved by Hersh [19], all in general Lie
type (cf. Corollary 1.3).

Example 4.1. Let n = 3. Then

U≥0
3 =


1 x y

0 1 z
0 0 1

 : x, y, z, xz− y ≥ 0

 .

The permutation w0 = s1s2s1 = 321 indexes the cell where x, y, z, xz − y > 0, while
w = s1s2 = 231 indexes the cell where x, y, z > 0 and xz− y = 0.

The link of the identity of U≥0
3 consists of all matrices in U≥0

3 with x + z = 1. We can
plot this region in the xy-plane:

x

y

1

w0

s2s1

s1s2

s1s2

.

We see that this agrees with the regular CW complex of Figure 1.
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4.2 Complete flag variety Fln

Taking P = B, we can identify G/B with the space Fln of complete flags in Rn, i.e. the space
of tuples (V1, . . . , Vn−1), where Vk is a subspace of Rn of dimension k (1 ≤ k ≤ n− 1) and
V1 ⊂ · · · ⊂ Vn−1. (Here Vk is the subspace spanned by the first k columns of x ∈ G/B.)
The totally nonnegative part Fl≥0

n consists of all complete flags which can be represented
by an element x ∈ G with nonnegative initial minors:

det(xI,[k]) ≥ 0 for all 1 ≤ k ≤ n− 1 and I ∈ ([n]k ).

We have the decomposition (2.1) into totally positive Richardson cells

Fl≥0
n =

⊔
v≤w in Sn

Π>0
(v,w), where Π>0

(v,w) := Fl≥0
n ∩ B−v̇B ∩ BẇB.

The dimension of Π>0
(v,w)

is `(w)− `(v). The closure relation on cells is given by contain-
ment of intervals in the strong Bruhat order:

(v, w) � (v′, w′) ⇔ v′ ≤ v ≤ w ≤ w′.

Example 4.2. Let n = 3. Then Fl≥0
3 gives a cell decomposition of a 3-dimensional ball, see

Figure 2 (left). Let us illustrate the homeomorphism (3.1) for g := (s1, s2s1). Here Π>0
g is

an open line segment, and Star≥0
g consists of 4 cells: a line segment Π>0

g = Π>0
(s1,s2s1)

, two

open square faces Π>0
(s1,w0)

and Π>0
(id,s2s1)

, and an open 3-dimensional ball Π>0
(id,w0)

. This

union is indeed homeomorphic to Π>0
g × Cone(Lk≥0

g ) shown in Figure 2 (right). Here
Lk≥0

g is a closed line segment whose endpoints are Lk>0
g,(s1,w0)

and Lk>0
g,(id,s2s1)

, and whose

interior is Lk>0
g,(id,w0)

.

4.3 Grassmannian Gr(k, n)

Fix 1 ≤ k ≤ n − 1, and take P to be the subset of G of all matrices whose lower-left
(n − k) × k block is zero. Then we can identify G/P with the Grassmannian Gr(k, n),
i.e. the space of k-dimensional subspaces of Rn. (Here x ∈ G/P corresponds to the k-
dimensional subspace spanned by the first k columns of x.) The totally nonnegative part
Gr≥0(k, n) consists of all subspaces which can be represented by an n× k matrix whose
k× k minors (known as Plücker coordinates) are all nonnegative.

In the case of Gr≥0(k, n), we can describe the decomposition (2.1) in terms of positroid
cells [29]. Namely, let Bound(k, n) denote the set of bounded affine permutations, i.e. bijec-
tions f : Z→ Z satisfying

f (i + n) = f (i) + n and i ≤ f (i) ≤ i + n for all i ∈ Z, and
n

∑
i=1

( f (i)− i) = kn.
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We write f in window notation as [ f (1), . . . , f (n)]. Given an element of Gr(k, n) repre-
sented by an n× k matrix M, we associate an element f ∈ Bound(k, n) as follows: for
each i ∈ [n], we set f (i) ≥ i to be minimum such that row f (i) of M is in the span of
rows i, i + 1, . . . , f (i) − 1 (where indices are taken modulo n). Then the positroid cell
Π>0

f is defined to be the set of all elements of Gr≥0(k, n) associated to f , and

Gr≥0(k, n) =
⊔

f∈Bound(k,n)

Π>0
f .

The closure relation on cells is given by the dual of the Bruhat order on Bound(k, n).

Example 4.3. Let (k, n) := (2, 4), and take g := [2, 4, 5, 7] ∈ Bound(2, 4). Then Π>0
g

consists of all elements which can be represented by a matrix of the form
1 0
x1 0
x3 x4
0 1

 with x1, x3, x4 > 0.

Now let us describe the map ν̄g from (3.1) and the dilation action ϑg. We have Star≥0
g =

Π>0
g tΠ>0

[3,4,5,6], and Lk≥0
g is a point, so Cone(Lk≥0

g ) ' R.

First we must fix a subset I ∈ ([4]2 ) whose Plücker coordinate does not vanish on Π>0
g .

Here we may take any I 6= {1, 2}; let us take I := {1, 4}. This allows us to define the
embedding ϕ̄I of an open dense subset of Gr(2, 4) into the affine flag variety:

ϕ̄I




1 0
x1 x2
x3 x4
0 1


 =


1
z 0 0 0
−x1 1 0 x2

z
−x3 0 1 x4

z
0 0 0 1

z

 , where z is the formal loop parameter.

After performing some calculations in the affine flag variety and pulling back the result
to Gr(2, 4), we find that

ν̄g




1 0
x1 x2
x3 x4
0 1


 =




1 0
x1x4−x2x3

x4
0

x3 x4
0 1

 ,
x2

x4

 .

The first component gives a projection Star≥0
g → Π>0

g . The dilation action ϑg is given by

t ·


1 0
x1 x2
x3 x4
0 1

 7→


1 0
x1 + (t− 1) x2x3

x4
tx2

x3 x4
0 1

 for t > 0.
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