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Abstract. We introduce a type A crystal structure on decreasing factorizations on 321-
avoiding elements in the 0-Hecke monoid which we call ?-crystal. This crystal is a
K-theoretic generalization of the crystal on decreasing factorizations in the symmetric
group of the first and last author. We prove that under the residue map the ?-crystal
intertwines with the crystal on set-valued tableaux recently introduced by Monical,
Pechenik and Scrimshaw. We also define a new insertion from decreasing factoriza-
tion to pairs of semistandard Young tableaux and prove several properties, such as its
relation to the Hecke insertion and the uncrowding algorithm. The new insertion also
intertwines with the crystal operators.
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1 Introduction

The Grassmannian Grothendieck polynomials [8, 9, 6] represent Schubert classes in the
K-theory of the Grassmannian. They can be expressed [2] as generating functions of
semistandard set-valued tableaux

Gλ(x1, . . . , xm; β) = ∑
T∈SVTm(λ)

βex(T)xwt(T), (1.1)

where SVTm(λ) is the set of semistandard set-valued tableaux of shape λ in the alpha-
bet [m] := {1, 2, . . . , m} and ex(T) is the excess of T. Recently, Monical, Pechenik and
Scrimshaw [13] provided a type Am−1-crystal structure on SVTm(λ). In particular, this
implies that the Grassmannian Grothendieck polynomial Gλ(x1, . . . , xm; β) is a positive
sum of Schur polynomials ∑µ β|µ|−|λ|Mµ

λ sµ(x1, . . . , xm), where Mµ
λ is the number of

highest weight set-valued tableaux of weight µ in the crystal SVTm(λ). A different com-
binatorial formula for the multiplicities Mµ

λ was given by Lenart [10, Theorem 2.2] in
terms of flagged increasing tableaux.
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Stable Grothendieck polynomials [6], which are labeled by permutations w ∈ Sn,
generalize the Grassmannian Grothendieck polynomials. They are defined as

Gw(x1, . . . , xm; β) = ∑
(k,h)

β`(h)−`(w)xk,

where the sum is over decreasing factorizations [k, h]t of w in the 0-Hecke algebra. When
β = 0, Gw specializes to the Stanley symmetric function Fw [18].

In this paper, we define a type A crystal structure on decreasing factorizations of w
in the 0-Hecke algebra, when w is 321-avoiding. A permutation w is 321-avoiding if its
reduced expressions do not contain any braids or equivalently w is fully commutative.
The residue map (see Section 2.4) shows that 321-avoiding permutations correspond
to skew shapes. We call our crystal ?-crystal. It is local in the sense that the crystal
operators f ?i and e?i only act on the i-th and (i + 1)-th factors of the decreasing fac-
torization. It generalizes the crystal of Morse and Schilling [15] for Stanley symmetric
functions (or equivalently reduced decreasing factorizations of w) in the 321-avoiding
case. We show that the ?-crystal and the crystal on set-valued tableaux intertwine under
the residue map (see Theorem 2.13). We also show that the residue map and the Hecke
insertion [3] are related (see Theorem 3.5), thereby resolving [13, Open Problem 5.8] in
the 321-avoiding case. In addition, we provide a new insertion algorithm, which we
call ?-insertion, from decreasing factorizations on 321-avoiding elements in the 0-Hecke
monoid to pairs of (conjugates of) semistandard Young tableaux of the same shape (see
Definition 3.7 and Theorem 3.10), which intertwines with crystal operators (see Theo-
rem 4.3). This recovers the Schur expansion of Gw of Fomin and Greene [5] when w is
321-avoiding, stating that

Gw = ∑
µ

β|µ|−`(w)gµ
wsµ,

where gµ
w = |{T ∈ SSYTn(µ′) | wC(T) ≡ w}| and wC(T) is the column reading word

of T (see Remark 4.4). We also show that the composition of the residue map with the
?-insertion is related to the uncrowding algorithm [2] (see Theorem 4.7).

The paper is organized as follows. In Section 2, we introduce the ?-crystal on decreas-
ing factorizations in the 0-Hecke monoid and show that it intertwines with the crystal on
semistandard set-valued tableaux [13] under the residue map. In Section 3, we discuss
two insertion algorithms for decreasing factorizations. The first is the Hecke insertion
introduced by Buch et al. [3] and the second is the ?-insertion. In Section 4, properties
of the ?-insertion are discussed. In particular, we state that it intertwines with the crys-
tal operators and that it relates to the uncrowding algorithm. Proofs of all statements
appear in the long version of this extended abstract [14].
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2 The ?-crystal

In this section, we define the K-theoretic generalization of the crystal on decreasing fac-
torizations by Morse and Schilling [15] when the associated word is 321-avoiding. The
underlying combinatorial objects are decreasing factorizations in the 0-Hecke monoid
introduced in Section 2.1. The ?-crystal on these decreasing factorizations is defined in
Section 2.2. We review the crystal structure on set-valued tableaux introduced by Moni-
cal, Pechenik and Scrimshaw [13] in Section 2.3. The residue map and the theorem that
it intertwines the ?-crystal and the crystal on set-valued tableaux is given in Section 2.4.

2.1 Decreasing factorizations in the 0-Hecke monoid

The symmetric group Sn is generated by the simple transpositions si for 1 6 i < n with
relations sisj = sjsi for |i− j| > 1, sisi+1si = si+1sisi+1, and s2

i = 1. A reduced expression
for an element w ∈ Sn is a word a1a2 . . . a` with ai ∈ [n− 1] := {1, 2, . . . , n− 1} such that
w = sa1 · · · sa` and ` is minimal among all words representing w. In this case, ` is called
the length of w.

Definition 2.1. The 0-Hecke monoidH0(n), where n > 1 is an integer, is a monoid of finite
words generated by positive integers in the alphabet [n− 1] subject to the relations

pq ≡ qp if |p− q| > 1, pqp ≡ qpq for all p, q, pp ≡ p for all p. (2.1)

We may form an equivalence relation ≡H0 on all words in the alphabet [n− 1] based
on the relations (2.1). The equivalence classes are infinite since the last relation changes
the length of the word. We say that a word a = a1a2 . . . a` is reduced if ` > 0 is the smallest
among all words in H0(n) equivalent to a. In this case ` is the length of a. Note that
H0(n) is in bijection with Sn by identifying the reduced word a1a2 . . . a` in H0(n) with
sa1sa2 · · · sa` ∈ Sn. We say w ∈ H0(n) or Sn is 321-avoiding if none of the reduced words
equivalent to w contain a consecutive subword of the form i i + 1 i for any i ∈ [n− 1].

Definition 2.2. A decreasing factorization of w ∈ H0(n) into m factors is a product of the
form h = hm . . . h2h1, where the sequence in each factor hi = hi

1hi
2 . . . hi

`i
is either empty

(meaning `i = 0) or strictly decreasing (meaning hi
1 > hi

2 > · · · > hi
`i

) for each 1 6 i 6 m
and h ≡H0 w in H0(n). The set of all possible decreasing factorizations into m factors is
denoted by Hm. We call ex(h) = len(h)− ` the excess of h, where len(h) is the number
of letters in h and ` is the length of w. We say h is 321-avoiding if w is 321-avoiding.

2.2 The ?-crystal

Let Hm,? be the set of 321-avoiding decreasing factorizations in Hm. We introduce a type
Am−1 crystal structure on Hm,?, which we call the ?-crystal. This generalizes the crystal
for Stanley symmetric functions [15] (see also [11]).
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Definition 2.3. For any h = hm . . . h2h1 ∈ Hm,?, we define crystal operators e?i and f ?i for
i ∈ [m− 1] and a weight function wt(h) = (len(h1), len(h2), . . . , len(hm)). We begin with a
pairing process:

• Start with the largest letter b in hi+1, pair it with the smallest a > b in hi. If there is
no such a, then b is unpaired.

• The pairing proceeds in decreasing order on elements of hi+1 and with each itera-
tion, previously paired letters of hi are ignored.

If all letters in hi are paired, then f ?i annihilates h. Otherwise, let x be the largest
unpaired letter in hi. The crystal operator f ?i acts on h in either of the following ways:

1. If x + 1 ∈ hi ∩ hi+1, then remove x + 1 from hi, add x to hi+1.

2. Otherwise, remove x from hi and add x to hi+1.

The operator e?i is defined as the partial inverse of f ?i , that is, e?i (h) is the unique h′ such
that f ?i (h

′) = h if it exists and zero otherwise.

Example 2.4. Let h = (7532)(621)(6), then f ?1 (h) = 0 and f ?2 (h) = (75321)(61)(6).

Proposition 2.5. Let h = hm . . . h1 ∈ Hm,? such that e?i (h) 6= 0. Then e?i (h) ∈ Hm,?,
e?i (h) ≡H0 h, and ex(e?i (h)) = ex(h). Furthermore, the j-th factor in e?i (h) and h agrees for
j /∈ {i, i + 1}. Analogous statements hold for f ?i .

It will be shown in Section 2.4 that Hm,? is indeed a Stembridge crystal of type Am−1
(for an introduction to crystal and terminology, see [4]).

2.3 The crystal on set-valued tableaux

In this section, we review the type A crystal structure on set-valued tableaux introduced
in [13]. In fact, in [13] the authors only considered the crystal structure on straight-
shaped set-valued tableaux. Here we consider the slight generalization to skew shapes,
see Theorem 2.8. We use French notation for partitions λ = (λ1, λ2, . . .) with λ1 > λ2 >
· · · > 0, that is, in the Ferrers diagram for λ, the largest part λ1 is at the bottom.

Definition 2.6 ([2]). A semistandard set-valued tableau T is the filling of a skew shape λ/µ

with nonempty subsets of positive integers such that (1) for all adjacent cells A, B in the
same row with A to the left of B, max(A) 6 min(B), (2) for all adjacent cells A, C in the
same column with A below C, max(A) < min(C). We denote the set of all semistandard
set-valued tableaux of shape λ/µ by SVT(λ/µ). If the maximum entry in the tableaux
is m, the set is denoted by SVTm(λ/µ).
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We now review the crystal structure on semistandard set-valued tableaux given
in [13]. We state the definition on skew shapes rather than just straight shapes.

Definition 2.7. Let T ∈ SVTm(λ/µ). We employ the following pairing rule for letters i
and i + 1. Assign − to every column of T containing an i but not an i + 1. Similarly,
assign + to every column of T containing an i + 1 but not an i. Then, successively pair
each + that is adjacent to a −, removing all paired signs until nothing can be paired.

The operator fi changes the i in the rightmost column with an unpaired − (if this
exists) to i + 1, except if the cell b containing that i has a cell to its right, denoted b→, that
contains both i and i + 1. In that case, fi removes i from b→ and adds i + 1 to b. Finally,
if no unpaired − exists, then fi annihilates T. The operator ei is the partial inverse of fi.

The weight wt(T) of T is the integer vector whose i-th component counts the number
of i’s that occur in T.

The above described operators ei and fi define a type Am−1 crystal structure on
SVTm(λ) [13, Theorem 3.9]. Their proof also holds for skew shapes.

Theorem 2.8. The crystal SVTm(λ/µ) of Definition 2.7 is a Stembridge crystal of type Am−1.

2.4 The residue map

In this section, we define the residue map from set-valued tableaux of skew shape to
321-avoiding decreasing factorizations in the 0-Hecke monoid. We then show in Theo-
rem 2.13 that the residue map intertwines with the crystal operators, proving that Hm,?

is indeed a crystal of type Am−1 (see Corollary 2.14).

Definition 2.9. Given T ∈ SVTm(λ/µ), we define the residue map res : SVTm(λ/µ)→ Hm

as follows. Label all cells (i, j) in λ/µ with `(λ) + j − i, where `(λ) is the number of
parts in λ. Produce a decreasing factorization h = hmhm−1 . . . h2h1 by declaring hi to be
the (possibly empty) sequence formed by taking the labels of all cells in T containing i
and then arranging these labels in decreasing order. This defines res(T) := h.

Example 2.10. Let T be the set-valued tableau of shape (2, 2)/(1)

T = 23 3

12
. We label the cells of T as follows: 231 32

123

.

To read off the third factor, we search for all cells containing 3; these cells have labels 1
and 2, so we have 21 in the third factor. Altogether, we obtain res(T) = (21)(31)(3).

The image of the residue map res is Hm,?, the set of 321-avoiding decreasing factor-
izations into m factors. In fact, res is a bijection from skew set-valued tableaux on the
alphabet [m] to Hm,? up to shifts in the skew shape. For this purpose, let us describe the
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inverse of the residue map. Let h = hmhm−1 . . . h2h1 ∈ Hm,?. Begin by filling m along
the diagonals labeled by the letters that appear in hm. As the resulting T is supposed to
be of skew shape, the cells containing m along increasing diagonals need to go weakly
down from left to right. If these diagonals are consecutive, then the cells have to be in
the same row of T since T is semistandard. Continue the procedure above by filling i
along the diagonals specified by hi for all i = m− 1, m− 2, . . . , 1, applying the condition
that the resulting filling should be semistandard.

Proposition 2.11. If h ∈ Hm,?, then the above algorithm is well-defined up to shifts along
diagonals. It produces a skew semistandard set-valued tableau T such that res(T) = h.

If the skew shape λ/µ of the tableau T is known, then one may simplify the procedure
above noting that the filling of i specified by letters in hi must occur along a horizontal
strip for all i = m, m− 1, . . . , 1. In this case, the recovered tableau T is unique.

Example 2.12. Let h = (61)(752)(75)(762). In the procedure to determine a suitable
skew tableau whose residue map is h, after filling 4’s along the diagonals with labels
1 and 6 respectively, due to semistandardness, the 3 in diagonal 2 is below the 4 in
diagonal 1, while the 3’s in diagonals 5 and 7 are respectively to the left and below the 4
in diagonal 6. Continuing with the remaining fillings, we have two possibilities:

T1 =

41

132

235 46

16 1237

∈ SVT4((4, 4, 1, 1)/(2, 2)) or T2 =

41

132

235 46

16 1237

∈ SVT4((3, 3, 1, 1, 1)/(1, 1, 1)).

Theorem 2.13. The crystal on set-valued tableaux SVTm(λ/µ) and the crystal on decreasing
factorizations Hm,? intertwine under the residue map. That is, the following diagram commutes:

SVTm(λ/µ) Hm,?

SVTm(λ/µ) Hm,?.

fk

res

f ?k

res

Corollary 2.14. The set Hm,?, together with crystal operators e?i and f ?i for 1 6 i < m and
weight function wt defined in Definition 2.3, is a Stembridge crystal.

3 Insertion algorithms

In this section, we discuss two insertion algorithms for decreasing factorizations in Hm

(resp. Hm,?). The first is the Hecke insertion introduced by Buch et al. [3], which we
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review in Section 3.1. We prove a relationship between Hecke insertion and the residue
map (see Theorem 3.5). In particular, this proves [13, Open Problem 5.8] for 321-avoiding
permutations. The second insertion is a new insertion, which we call ?-insertion, intro-
duced in Section 3.2. It goes from 321-avoiding decreasing factorizations in the 0-Hecke
monoid to pairs of (transposes of) semistandard tableaux of the same shape and is well-
behaved with respect to the crystal operators.

3.1 Hecke insertion

Hecke insertion was first introduced in [3] as column insertion. Here we state the row
insertion version as in [16]. In this section, we represent a decreasing factorization h =
hmhm−1 · · · h1, where hi = hi

1hi
2 . . . hi

`i
, by a decreasing Hecke biword[

k
h

]
=

[
m . . . m . . . 1 . . . 1
hm

1 . . . hm
`m

. . . h1
1 . . . h1

`1

]
.

We say that [k, h]t is 321-avoiding if h is 321-avoiding.

Example 3.1. Consider the decreasing Hecke factorization h = (2)(3)(31)(2). Then the
corresponding biword [k, h]t is [

k
h

]
=

[
4 3 2 2 1
2 3 3 1 2

]
.

Definition 3.2. Starting with a decreasing Hecke biword [k, h]t, we define Hecke row
insertion from the right. The insertion sequence is read from right to left. Suppose there
are n columns in [k, h]t. Start the insertion with (P0, Q0) being both empty tableaux. We
recursively construct (Pi+1, Qi+1) from (Pi, Qi). Suppose the (n− i)-th column in [k, h]t

is [y, x]t.
We describe how to insert x into Pi, denoted Pi ← x, by describing how to insert x

into a row R. The insertion may modify the row and may produce an output integer,
which will be inserted into the next row. First, we insert x into the first row R of Pi
following the rules below:

1. If x > z for all z ∈ R, then the insertion terminates in either of the following ways:

(a) If we can append x to the right of R and obtain an increasing tableau, the
result Pi+1 is obtained by doing so; form Qi+1 by adding a box with y in the
same position where x is added to Pi.

(b) Otherwise Pi+1 = Pi. Form Qi+1 by adding y to the existing corner of Qi
whose column contains the rightmost box of row R.
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2. Otherwise, there exists a smallest z in R such that z > x.

(a) If replacing z with x results in an increasing tableau, then do so. Let z be the
output integer to be inserted into the next row.

(b) Otherwise, row R remains unchanged. Let z be the output integer to be in-
serted into the next row.

The entire Hecke insertion terminates at (Pn, Qn) after we have inserted every letter
from the Hecke biword. The resulting insertion tableau Pn is an increasing tableau. If
k = (n, n− 1, . . . , 1), the recording tableau Qn is a standard set-valued tableau.

Example 3.3. Take [k, h]t from Example 3.1. Following the Hecke row insertion, we
compute its insertion tableau and recording tableau:

∅→ 2 → 2

1
→ 2

1 3
→ 2

1 3
→ 2 3

1 2
= P,

∅→ 1 → 2

1
→ 2

1 2
→ 2

1 23
→ 2 4

1 23
= Q.

Example 3.4. Note that the recording tableau for the Hecke insertion of Definition 3.2 is
not always a semistandard set-valued tableau. For example, for h = (21)(41) we have

P = 4

1 2
and Q = 22

1 1
.

However, Theorem 3.5 below states that in certain cases it is.

Theorem 3.5. Let T ∈ SVT(λ) and [k, h]t = res(T). Apply Hecke row insertion from the right
on [k, h]t to obtain the pair of tableaux (P, Q). Then Q = T.

Remark 3.6. Combining Theorems 2.13 and 3.5 shows that Hecke insertion from right to
left (as opposed to left to right as in [13]) intertwines the crystal on set-valued tableaux
and the ?-crystal, even though in general it is not always well-defined (see Exam-
ple 3.4). This resolves [13, Open Problem 5.8] when the decreasing factorizations are
321-avoiding. For more details see [14].

3.2 The ?-insertion

We define the new ?-insertion from 321-avoiding decreasing Hecke biwords [k, h]t to
pairs of tableaux P and Q, denoted by ?([k, h]t) = (P, Q), as follows.

Definition 3.7. Fix a 321-avoiding decreasing Hecke biword [k, h]t. The insertion is done
by reading the columns of this biword from right to left. Begin with (P0, Q0) being a pair
of empty tableaux. For every integer i > 0, we recursively construct (Pi+1, Qi+1) from
(Pi, Qi) as follows. Let [q, x]t be the i-th column (from the right) of [k, h]t. Suppose that
we are inserting x into row R of Pi.
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Case 1 If R is empty or x > max(R), form Pi+1 by appending x to row R and form Qi+1
by adding q in the corresponding position to Qi. Terminate and return (Pi+1, Qi+1).

Case 2 Otherwise, if x /∈ R, locate the smallest y in R with y > x. Bump y with x and
insert y into the next row of Pi.

Case 3 Otherwise, x ∈ R, so locate the smallest y in R with y 6 x and interval [y, x]
contained in R. Row R remains unchanged and y is to be inserted into the next
row of Pi.

Set (P, Q) = (P`, Q`) if [k, h]t has length `. Define the ?-insertion by ?([k, h]t) = (P, Q).
Furthermore, denote by P ← x the tableau obtained by inserting x into P. The

collection of all cells in P ← x, where insertion or bumping has occurred is called the
insertion path for P ← x. In particular, in Case 1 the newly added cell is in the insertion
path, in Case 2 the cell containing the bumped letter y is in the insertion path, and in
Case 3 the cell containing the same entry as the inserted letter is in the insertion path.

Example 3.8. Let [
k
h

]
=

[
7 7 7 6 5 5 4 2 2 1
4 2 1 4 3 2 2 5 4 4

]
.

Then we have ?([k, h]t) = (P, Q), where

P =

4

4

2 5

2 3 4

1 2 4

and Q =

7

5

4 7

2 5 7

1 2 6

. Furthermore P← 4 =

4

4

2

2 5

2 3 4

1 2 4

.

The cells in the insertion path of P← 4 are highlighted in yellow.

Lemma 3.9. Let [k, h]t be a 321-avoiding decreasing Hecke biword. Suppose that ?([k, h]t) =
(P, Q). Then: (1) Pt is semistandard and Q has the same shape as P. (2) Let x be an integer such
that xh is 321-avoiding. Then the insertion path for P← x goes weakly to the left.

Theorem 3.10. The ?-insertion is a bijection from the set of all 321-avoiding decreasing Hecke
biwords to the set of all pairs of tableaux (P, Q) of the same shape, where both Pt and Q are
semistandard and row(P) is 321-avoiding.

4 Properties of the ?-insertion

In this section, we show that the ?-insertion intertwines with the crystal operators. More
precisely, the insertion tableau remains invariant on connected crystal components un-
der the ?-insertion by employing certain micro-moves, see [14]. The ?-crystal on Hm,?
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intertwines with the usual crystal operators on semistandard tableaux on the recording
tableaux under the ?-insertion. We relate the ?-insertion to the uncrowding operation.

Proposition 4.1. For h ∈ Hm,? such that f ?k (h) 6= 0 for some 1 6 k < m, the ?-insertion
tableau for h equals the ?-insertion tableau for f ?k (h).

Proposition 4.2. Let T ∈ SSYT(λ) and (P, Q) = ? ◦ res(T). Then Q = T.

Theorem 4.3. For h ∈ Hm,? let (P?(h), Q?(h)) = ?(h) be the insertion and recording tableaux
under the ?-insertion of Definition 3.7. Then (1) f ?i (h) is defined if and only if fi(Q?(h)) is
defined and (2) if f ?i (h) is defined, then Q?( f ?i (h)) = fiQ?(h). In other words, the following
diagram commutes:

Hm,? SSYT

Hm,? SSYT.

Q?

f ?i fi

Q?

Remark 4.4. Theorem 4.3 and an analysis of the lowest weight elements provide another
proof via ?-insertion, in the case where w is 321-avoiding, of the Schur positivity of Gw
of [5] Gw = ∑µ β|µ|−`(w)gµ

wsµ, where gµ
w = |{T ∈ SSYTn(µ′) | wC(T) ≡ w}|.

Let λ, µ be partitions such that λ ⊆ µ and λ1 = µ1. A flagged increasing tableau of
shape µ/λ is a tableau of shape µ with fillings by positive integers in the skew shape
µ/λ such that for all 1 6 i 6 `(µ) all entries in the i-th row of the tableau are at most
i − 1 and such that this filling is both row strict and column strict. In particular, the
bottom row is empty. Denote the set of all flagged increasing tableaux of shape µ/λ by
Fµ/λ. Flagged increasing tableaux are also called elegant fillings by some authors [7, 1].

The following definition is based on the uncrowding operator introduced by Reiner,
Tenner and Yong [17, Definition 3.8].

Definition 4.5. Let T ∈ SVT(λ). Define an uncrowding operation on T as follows. Identify
the topmost row in T that contains cells with more than one letter and let x be the largest
letter in this row in a cell containing more than one letter. Remove x from this cell and
perform RSK row bumping with x into the rows above. The resulting tableau T′ is the
output of this operation. The uncrowding map, denoted uncrowd, is defined as follows.
Let T ∈ SVT(λ) with ext(T) = `.

• Start with P̃0 = T and Q̃0 = F, where F is the unique flagged increasing tableau of
shape λ/λ.

• For each 1 6 i 6 `, P̃i is obtained by performing the uncrowding operator on P̃i−1.
Suppose that cell C was added to form P̃i by removing the largest entry in cell B
in P̃i−1. Add a cell with entry k to Q̃i−1 at the same position as C, where k is the
difference in the row indices of cells B and C.
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• Terminate and return (P̃, Q̃) = (P̃`, Q̃`).

Example 4.6. Let T be the semistandard set-valued tableau

T =

5

4 4 5

2 23 3

1 1 1 12 234 5
. Perform an uncrowding operation to obtain

5

4

3 4 5

2 2 3

1 1 1 12 234 5
.

Proceeding with uncrowding the remainder of the excess entries and recording the
changes, we have uncrowd(T) = (P̃, Q̃), where

P̃ =

5 5

4 4

3 3 4

2 2 2 3

1 1 1 1 2 5
and Q̃ =

3 4

3

1 .

We remark that uncrowd : SVTm(λ)→ ⊔
µ SSYT

m(µ)×Fµ/λ, where the disjoint union
is taken over partitions µ with λ ⊆ µ and µ1 = λ1, is a bijection with inverse given
by the crowding map crowd. A proof of this fact can be found in [12] (see also [17]).
In addition, Monical, Pechenik and Scrimshaw in [13, Theorem 3.12] proved that the
crystal operators on SVTm(λ) intertwine with those on SSYTm(µ) under uncrowd. Here
we relate uncrowding with the ?-insertion.

Theorem 4.7. Let T ∈ SVTm(λ), (P̃, Q̃) = uncrowd(T), (P, Q) = ? ◦ res(T). Then Q = P̃.
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