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Uniquely Sorted Permutations
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Abstract. We say a permutation is uniquely sorted if it has exactly 1 preimage un-
der West’s stack-sorting map. In this extended abstract, we describe some of the rich
enumerative structure that the set of such permutations possesses. After stating a
characterization of uniquely sorted permutations, we study their enumeration, which
is given by Lassalle’s sequence and is connected to free probability theory. We then
consider five well-studied classes of posets defined on Dyck paths, establishing bijec-
tions between uniquely sorted permutations that avoid various patterns and intervals
in these posets. We end with several conjectures.
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1 Introduction

A permutation is an ordering of a set of positive integers, which we view as a word. Let Sn
denote the set of permutations of [n] := {1, . . . , n}. The normalization (sometimes called
the standardization) of a permutation π = π1 · · ·πn is the permutation in Sn obtained
by replacing the ith-smallest entry in π with i for all i. For example, the normalization
of 3649 is 1324. A permutation is normalized if it is equal to its normalization. Given
τ ∈ Sm, we say a permutation σ = σ1 · · · σn contains the pattern τ if there exist indices
i1 < · · · < im in [n] such that the normalization of σi1 · · · σim is τ. We say σ avoids τ if
it does not contain τ. Let Avn(τ(1), . . . , τ(r)) denote the set of permutations in Sn that
avoid the patterns τ(1), . . . , τ(r), and let Av(τ(1), . . . , τ(r)) =

⋃
n≥0 Avn(τ(1), . . . , τ(r)).

The enormous body of research concerning permutation patterns began in the 1960’s
with Knuth’s analysis of a “stack-sorting algorithm” in his book The Art of Computer
Programming [12]. Our focus is on West’s stack-sorting map, one of the variants of
Knuth’s algorithm that has received the most vigorous attention. This function, which
we denote by s, initially appeared in West’s Ph.D. thesis in 1990 [19]. The simplest way
to define the map s is as follows. First, s sends the empty permutation to itself. If π is a
nonempty permutation, then we can write π = LmR, where m is the largest entry in π.
We then define s(π) = s(L)s(R)m. For example,

s(416352) = s(41) s(352) 6 = s(1) 4 s(3) s(2) 56 = 143256.
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We refer the reader to [3, 8, 10] and the references therein for the history of the stack-
sorting map and related stack-sorting variants.

Traditionally, researchers have taken interest in t-stack-sortable permutations, which
are the permutations π such that st(π) is increasing. Here, st denotes the t-fold iterate
of s. It follows from Knuth’s analysis of his stack-sorting algorithm [12] that a permu-
tation is 1-stack-sortable if and only if it avoids the pattern 231 and that the number of
such permutations in Sn is the Catalan number Cn = 1

n+1(
2n
n ). Settling a conjecture of

West, Zeilberger proved [20] that the number of 2-stack-sortable permutations in Sn is
2

(n+1)(2n+1)(
3n
n ). There are now several proofs of this formula (see [8] and the references

therein), but they are all somewhat arduous. For each fixed t ≥ 3, the set of t-stack-
sortable permutations is extremely complicated [8].

West defined the fertility of a permutation π to be |s−1(π)| [19]. At a first glance,
computing fertilities is very complicated. Indeed, West devoted ten pages of his thesis to
computing the fertilities of some very specific permutations (a total of 3n− 4 permuta-
tions in Sn). Bousquet-Mélou defined a permutation to be sorted if its fertility is positive
[4]. She also found an algorithm for determining if a given permutation is sorted.

Throughout its first 25 years of existence, the investigation of West’s stack-sorting
map was full of very difficult questions concerning complicated sets of permutations.
Indeed, t-stack-sortable permutations and sorted permutations appear to be devoid of
much structure and, hence, are excruciatingly difficult to understand. However, after
developing methods for computing the fertilities of arbitrary permutations, the current
author found that there is actually a huge amount of interesting combinatorial structure
lurking beneath the surface of the stack-sorting map (see [7, 8, 10] and the references
therein). The goal of the present extended abstract is to expose one of the manifestations
of this structure: the set of uniquely sorted permutations.

Definition 1.1 ([10]). We say a permutation is uniquely sorted if its fertility is 1. Let Un
be the set of uniquely sorted permutations in Sn. Let Un(τ(1), . . . , τ(r)) be the set of
permutations in Un that avoid the patterns τ(1), . . . , τ(r).

This extended abstract is a summary of the main results from the papers [10] and
[7]. The first of these papers introduces and characterizes uniquely sorted permutations
and enumerates them via a bijection (which we will not describe here) with certain
weighted matchings. In fact, this bijection is the restriction of a larger bijection that
connects new combinatorial objects called “valid hook configurations” with the classical
cumulants of the free Poisson law. The paper [7] gives bijections between some sets of
pattern-avoiding uniquely sorted permutations and sets of intervals in posets of Dyck
paths. One of the interesting features here is that finding bijections that connect uniquely
sorted permutations to other objects is often not nearly as difficult as proving that these
maps are actually injective and/or surjective (though finding the maps is still difficult).
Therefore, we have omitted the proofs, directing the reader to the relevant articles where
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they appear. We end with several conjectures, many (but not all) of which were proved
in a recent paper by Mularczyk [15].

2 Counting Uniquely Sorted Permutations

A descent of a permutation π = π1 · · ·πn is an index i ∈ [n− 1] such that πi > πi+1. The
following theorem characterizes uniquely sorted permutations.

Theorem 2.1 ([10]). A permutation π = π1 · · ·πn is uniquely sorted if and only if it is sorted
and has exactly n−1

2 descents.

One immediate consequence of the preceding theorem is that every uniquely sorted
permutation has odd length. In order to make use of Theorem 2.1, we need a method for
determining whether or not a given permutation is sorted. We describe such a method
next; it is essentially equivalent to the method described by Bousquet-Mélou in [4].

The plot of a permutation π = π1 · · ·πn is the graph in R2 showing the points (i, πi)
for all i ∈ [n]. A hook H of π is drawn by starting at a point (i, πi), moving vertically
upward, and then moving horizontally to the right to connect with another point (j, πj).
The point (i, πi) is called the southwest endpoint of H, and (j, πj) is called the northeast
endpoint. We say a point (`, π`) lies weakly below H if i < ` ≤ j and π` ≤ πj. For example,
the image on the left in Figure 1 shows the plot of a permutation along with a single
hook whose southwest endpoint is (5, 9) and whose northeast endpoint is (11, 11). The
points lying weakly below this hook are (6, 4), (7, 8), (8, 1), (9, 6), (10, 10), and (11, 11).
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Figure 1: On the left is the plot of 2 7 3 5 9 4 8 1 6 10 11 12 along with one hook. The right
image shows the canonical hook configuration of this permutation.

Suppose we are given a permutation π with descents d1 < · · · < dk. We will attempt
to construct hooks H∗k , . . . , H∗1 (building them in this order). In general, we choose H∗` to
be the hook with southwest endpoint (d`, πd`) whose northeast endpoint is the lowest
point in the plot of π that lies above and to the right of (d`, πd`) and does not lie weakly
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below any of the hooks H∗k , . . . , H∗`+1 that have already been constructed. If this proce-
dure succeeds, we call (H∗1 , . . . , H∗k ) the canonical hook configuration of π. On the other
hand, if at any time during this procedure the hook H∗` does not exist, then π does not
have a canonical hook configuration. See the right image in Figure 1 for an example.

The next theorem follows from the much more general result that appears as Theorem
5.1 in [6].

Theorem 2.2 ([6]). A permutation is sorted if and only if it has a canonical hook configuration.

Theorems 2.1 and 2.2 give us a decent understanding of uniquely sorted permuta-
tions; we now describe their enumeration. Define a sequence (Am)m≥1 via the recurrence
relation

Am = (−1)m−1Cm +
m−1

∑
j=1

(−1)j−1
(

2m− 1
2m− 2j− 1

)
Am−jCj

along with the initial condition A1 = 1. As before, Cr is the rth Catalan number. Zeil-
berger conjectured that the terms in this sequence are all positive and, furthermore, that
they are increasing. This sequence is known as Lassalle’s sequence because Lassalle proved
Zeilberger’s conjecture using symmetric functions and hypergeometric series [14]. Ac-
cording to Lassalle, Novak pointed out that (−1)m−1Am is the (2m)th classical cumulant
of the standard semicircular probability distribution. Josuat-Vergès then found a combi-
natorial interpretation for the terms in Lassalle’s sequence via certain matchings that are
weighted by values of the Tutte polynomials of certain graphs [11]. In [10], Engen, Miller,
and the current author showed that the classical cumulants of the free Poisson law with
rate λ can be computed as simple sums over valid hook configurations. The proof relies
on an intricate bijection that, when restricted to uniquely sorted permutations, yields the
following theorem as a corollary.

Theorem 2.3 ([10]). For every k ≥ 0, we have |U2k+1| = Ak+1.

Theorem 2.3 leads to an interesting refinement of Lassalle’s sequence. Let Ak+1(`)
denote the number of permutations π = π1 · · ·π2k+1 ∈ U2k+1 such that π1 = `. It is rare
that one would study the first entry of a permutation, but that is because this statistic
is usually not too interesting. This is certainly not the case in the context of uniquely
sorted permutations.

Theorem 2.4 ([10]). If k ≥ 0 and 1 ≤ ` ≤ 2k + 1, then Ak+1(`) = Ak+1(2k + 2− `). In other
words, the sequence Ak+1(1), . . . , Ak+1(2k + 1) is symmetric.

The stack-sorting map tries to transform a permutation π ∈ Sn into a permutation
s(π) that is “closer” than π to the identity permutation 123 · · · n. Therefore, we should
expect permutations with many preimages under s to be close to the identity, meaning
that they should begin with small numbers. Conversely, we should expect permutations
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with few preimages to start with large numbers. Theorem 2.4 tells us that the uniquely
sorted permutations achieve a perfect balance in their first entries. In other words, when
it comes to the fertility of a permutation, 1 is not too big and not too small (this makes
sense because 1 is the average fertility of a permutation in Sn). That being said, The-
orem 2.4 is not at all clear from the definition of a uniquely sorted permutation; the
proof relies heavily on the bijection used to establish Theorem 2.3. In fact, the following
specific corollary is also not obvious a priori.

Corollary 2.5. If k ≥ 1, then there are no permutations in U2k+1 that start with the entry 1.

Proof. It is immediate from the definition of the stack-sorting map that every sorted
permutation in S2k+1 ends with the entry 2k + 1. In particular, the elements of U2k+1
all end with the entry 2k + 1. This implies that Ak+1(2k + 1) = 0, so it follows from
Theorem 2.4 that Ak+1(1) = 0.

There is one other strange interpretation of the numbers Ak+1(`) that is a conse-
quence of the bijection used to prove Theorem 2.3. If π ∈ Un, then we know by Theo-
rem 2.1 that π has exactly n−1

2 descents in {1, . . . , n− 1}. Let r be the largest element of
{1, . . . , n− 1} such that π has exactly n−r

2 descents in {r, . . . , n− 1}. We call the entry
πr+1 the hotspot of the permutation π.

Theorem 2.6 ([10]). For k ≥ 0, there are Ak+1(`) permutations in U2k+1 with hotspot `− 1.

Example 2.7. One can check that A3 = 5, so there are 5 uniquely sorted permutations
in S5. These are 21435, 31425, 32415, 32145, 42135. Inspecting the first entries in these
permutations shows that the sequence (A3(`))

5
`=1 is 0, 1, 3, 1, 0. The hotspots of these

permutations are, in order, 3, 2, 1, 2, 2, and this agrees with Theorem 2.6.

3 Pattern-Avoiding Uniquely Sorted Permutations

A Dyck path of semilength k is a lattice path in the plane consisting of k (1, 1) steps (also
called up steps) and k (1,−1) steps (also called down steps) that starts at the origin and
never passes below the horizontal axis. Letting U and D denote up steps and down
steps, respectively, we can view a Dyck path of semilength k as a word over the alphabet
{U, D} that contains k copies of each letter and has the property that every prefix has at
least as many U’s as it has D’s. It is well known that the number of such paths is Ck.

Let Dk be the set of Dyck paths of semilength k. In this section, we consider five
natural partial orders on Dk. Some of these partial orders are more commonly defined on
other sets of objects counted by Catalan numbers, but one can use bijections to transfer
the orders to the sets Dk. We omit the definitions of some of the following partial orders,
but they can all be found in [2] and [7]. We also direct the curious reader to the references
in those two articles for more historical information about these posets.
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• The kth Stanley lattice LS
k = (Dk,≤S) is a distributive lattice defined by declaring

that Λ ≤S Λ′ if Λ lies below or is equal to Λ′.

• The kth Tamari lattice LT
k = (Dk,≤T) is a well-studied lattice appearing in combi-

natorics, group theory, theoretical computer science, algebraic geometry, and alge-
braic topology. Their Hasse diagrams are the 1-skeletons of associahedra.

• The kth noncrossing partition lattice LK
k = (Dk,≤K) (also called the kth Kreweras lat-

tice) is really just the lattice NCk of noncrossing partitions ordered by refinement.
We have transferred this order from noncrossing partitions to Dyck paths for the
sake of consistency among the underlying sets in our various posets. Noncross-
ing partition lattices play a prominent role in a variety of areas, especially free
probability theory.

• The kth Pallo comb poset PCk = (Dk,≤Pallo) was introduced by Pallo in [16] as a
natural subposet of the Tamari lattice LT

k . This order was originally defined on sets
of binary trees, but we define it on Dk in [7].

• The antichain Ak is simply the poset on Dk with no nontrivial order relations.

Figure 2: The Hasse diagrams of our Dyck path posets for k = 3.
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An interval in a poset P is a pair (x, y) of elements of P such that x ≤ y. Let Int(P) be
the set of intervals of P. Our goal in this section is to give an overview of some bijections
between pattern-avoiding uniquely sorted permutations and intervals in the Dyck path
posets defined above.

3.1 Stanley Lattices and U2k+1(312)

Let π = π1 · · ·π2k+1 ∈ U2k+1(312). By Theorem 2.1, the permutation π has k descents.
For i ∈ [2k], let Λi = D if 2k + 1− i is a descent of π, and let Λi = U otherwise. Let
Λ′i = D if the entry 2k + 1− i appears to the right of 2k + 2− i in π, and let Λ′i = U
otherwise. Form the words Λ = Λ1 · · ·Λ2k and Λ′ = Λ′1 · · ·Λ′2k over the alphabet
{U, D}, and let ΛΛk(π) = (Λ, Λ′) (pronounce the symbol ΛΛ as “double lambda”). See
Figure 3.
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Figure 3: An example illustrating the definition of ΛΛ4. Imagine taking the purple
path drawn on the permutation and rotating it 180◦ to obtain the purple Dyck path
Λ on the bottom. Similarly, rotate the green path drawn on the permutation by 90◦

clockwise to obtain the reverse of the green Dyck path Λ′ on the top.

Theorem 3.1 ([7]). For k ≥ 0, the map ΛΛk : U2k+1(312) → Int(LS
k ) is a bijection. Conse-

quently,

|U2k+1(312)| = CkCk+2 − C2
k+1 =

6
(k + 1)(k + 2)2(k + 3)

(
2k
k

)(
2k + 2
k + 1

)
.

The first statement in Theorem 3.1 is proven in [7]. Although the definition of ΛΛk
is fairly tame, the proof that it is a bijection is very involved. In fact, the proof of
surjectivity relies on an “energy argument” similar to the one used to solve the game
“Conway’s Soldiers.” Note that it is not at all clear that the image of ΛΛk should even be
contained in Int(LS

k ). The formula appearing in the second half of Theorem 3.1 follows
from the enumeration of intervals in Stanley lattices, which is due to De Sainte-Catherine
and Viennot [17].
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3.2 Tamari Lattices, U2k+1(132), and U2k+1(231)

For each i ∈ [n], we define two “sliding operators” on Sn. The first, denoted1 swui,
essentially takes the points in the plot of a permutation π that lie southwest of the point
with height i and slides them up above all the points that are southeast of the point with
height i. We illustrate this operator in Figure 4. To define this more precisely, let Li
(respectively, Ri) be the set of elements of [i− 1] that lie to the left (respectively, right) of
i in π. If πj ≥ i, then the jth entry of swui(π) is πj. If πj < πi, then either πj ∈ Li or
πj ∈ Ri. If πj is the mth-smallest element of Ri, then the jth entry of swui(π) is m. If πj

is the mth-largest element of Li, then the jth entry of swui(π) is i−m.

Figure 4: The operator swu6 slides the points (shaded in pink) to the southwest of the
point with height 6 up above the points to the southeast (shaded in blue).

To define the second operator, we first define rot(π) (respectively, rot−1(π)) to be
the permutation in Sn whose plot is obtained by rotating the plot of π counterclockwise
(respectively, clockwise) by 90◦. The second sliding operator is swli, which is defined by

swli(π) = rot−1(swui(rot(π))).

The map swli takes the points to the southwest of the point in position i and slides them
to the left.

Define swu : Sn → Sn and swl : Sn → Sn by

swu = swu1 ◦ swu2 ◦ · · · ◦ swun and swl = swl1 ◦ swl2 ◦ · · · ◦ swln .

It is often convenient to consider the restrictions of swu and swl to Av(231) and Av(132).
In [7], it is shown that swu : Av(231) → Av(132) is a bijection; as far as we are aware,
this bijection is new.2 Transferring this result, one can then show that swl : Av(132) →
Av(312) is bijective as well.

We can now state the main theorem of this subsection. Recall the definition of ΛΛk
from the previous subsection.

1The name of the operator stands for “southwest up.”
2The paper [9] provides a definition of the map swu−1 : Av(132)→ Av(231) that is completely different

from the one given in [7]. Namely, for π ∈ Avn(132), we have swu−1(π) = s(π)−1 ◦ π. Here, s(π)−1

denotes the inverse of s(π) in the group Sn, and ◦ denotes the operation in that group.
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Theorem 3.2 ([7]). For k ≥ 0, the maps

ΛΛk ◦ swl : U2k+1(132)→ Int(LT
k ) and ΛΛk ◦ swl ◦ swu : U2k+1(231)→ Int(LT

k )

are bijections. Consequently,

|U2k+1(132)| = |U2k+1(231)| = 2
(3k + 1)(3k + 2)

(
4k + 1
k + 1

)
.

As with Theorem 3.1, the proof that the maps appearing in Theorem 3.2 are bijective
is quite long and involved. The formula appearing in the second half of Theorem 3.2
follows from the enumeration of intervals in Tamari lattices, which is due to Chapoton
[5].

3.3 Noncrossing Partition Lattices and U2k+1(312, 1342)

Recall that a set partition ρ of the set [k] is called noncrossing if there do not exist distinct
blocks B, B′ ∈ ρ and elements i1 < i2 < i3 < i4 in [k] with i1, i3 ∈ B and i2, i4 ∈ B′. The
noncrossing partition lattice NCk is the lattice of noncrossing partitions of [k] ordered by
refinement (see [13]). Earlier, we considered the lattice LK

k defined on Dyck paths (for
consistency), but it will be convenient to work with noncrossing partitions here.

The article [7] employs generating trees to show that permutations in U2k+1(312, 1342)
are in bijection with intervals in NCk. It is possible to trace through the generating tree
argument in order to obtain an explicit bijection, which we describe here.

Suppose we are given π ∈ U2k+1(312, 1342). Because π is sorted, we know from The-
orem 2.2 that it has a canonical hook configuration H = (H∗1 , . . . , H∗k ). Let W1, . . . ,Wk
be the northeast endpoints of the hooks in H listed in increasing order of height. Let U`

be the southwest endpoint of the hook whose northeast endpoint is W`. The partner of
W`, which we denote by V`, is the point immediately to the right of U` in the plot of
π. Let ρ and κ be the partitions of [k] obtained as follows. Place numbers `, m ∈ [k] in
the same block of ρ if V` appears immediately above and immediately to the left of Vm
in the plot of π. Then, close all of these blocks by transitivity. Place numbers `, m ∈ [k]
in the same block of κ if they are in the same block of ρ or if W` appears immediately
above and immediately to the left of Vm in the plot of π. Then, close all of these blocks
by transitivity. Let Υk(π) = (ρ, κ). Figure 5 shows example applications of Υ1, Υ2, Υ3, Υ4.

As mentioned above, one can show that Υk : U2k+1(312, 1342) → Int(NCk) is a bi-
jection. Doing so amounts to showing that this map agrees with the bijection obtained
using generating trees in [7]. This was not written out explicitly in that article, but the
proof of the following enumerative result (which follows from the generating tree argu-
ment) was. The specific formula in the next theorem comes from the enumeration of
intervals in noncrossing partition lattices, which is due to Kreweras [13].

Theorem 3.3 ([7]). For k ≥ 0, we have |U2k+1(312, 1342)| = 1
2k + 1

(
3k
k

)
.
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1 1 2 1 2 1 23 3 4

1 1 2 1 2 1 23 3 4

Figure 5: Illustrations of the maps Υ1, Υ2, Υ3, Υ4. The uniquely sorted permutations are
drawn with their canonical hook configurations. Each interval (ρ, κ) of noncrossing
partitions is drawn with ρ below κ.

3.4 Pallo Comb Posets and U2k+1(231, 4132)

Let C(x) =
1−
√

1− 4x
2x

be the generating function of the Catalan numbers. Aval and

Chapoton [1] proved that ∑
k≥0
| Int(PCk)|xk = C(xC(x)). In [7], the author proved that the

same generating function counts uniquely sorted permutations that avoid 231 and 4132.

Theorem 3.4 ([7]). We have ∑
k≥0
|U2k+1(231, 4132)|xk = C(xC(x)).

3.5 Dyck Path Antichains

Note that | Int(Ak)| = |Dk| = Ck since the intervals in the antichain Ak are simply the
pairs of the form (Λ, Λ) for Λ ∈ Dk.

Theorem 3.5 ([7]). For every nonnegative integer k, we have

|U2k+1(321)| = |U2k+1(231, 312)| = |U2k+1(132, 231)| = |U2k+1(132, 312)| = Ck.

In fact, we have bijections

ΛΛk : U2k+1(231, 312)→ Int(Ak), ΛΛk ◦ swl : U2k+1(132, 231)→ Int(Ak),

ΛΛk ◦ swu−1 : U2k+1(132, 312)→ Int(Ak).
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4 Conjectures

Recall from Section 2 that Ak+1(`) denotes the number of permutations in U2k+1 with
first entry ` (by Theorem 2.6, it is also the number of permutations in U2k+1 with hotspot
`− 1). We saw in Theorem 2.4 that the sequence Ak+1(1), . . . , Ak+1(2k + 1) is symmetric.
We also have the following conjecture. Recall that a sequence a1, . . . , am of nonnegative
real numbers is called log-concave if a2

i ≥ ai−1ai+1 for all i ∈ {2, . . . , m− 1}.

Conjecture 4.1 ([10]). For k ≥ 0, the sequence Ak+1(1), . . . , Ak+1(2k + 1) is log-concave.

The preceding conjecture implies the weaker statement that Ak+1(1), . . . , Ak+1(2k+ 1)
is unimodal; this statement has also not been proven. It would be interesting to prove
the unimodality of this sequence even if a proof of Conjecture 4.1 remains elusive.

The following table of 18 conjectures was given in [7]. If τ(1), τ(2) are the patterns
in a given row, then the conjecture is that the numbers U2k+1(τ

(1), τ(2)) appear as the
corresponding OEIS sequence [18]. In the time since the preprint [7] was posted, Mula-
rczyk proved half of the conjectures in the table [15]. She used a mixture of generating
function arguments and interesting bijections that link pattern-avoiding uniquely sorted
permutations with Dyck paths, S-Motzkin paths, and Schröder paths. We have indicated
the conjectures that she proved with the symbol †. Mularczyk also posed the problem
of considering sets of the form U2k+1(τ

(1), τ(2)) with both τ(1) and τ(2) in S4.

Patterns Sequence

† 312, 1432

† 312, 2431

† 312, 3421 A001764

† 132, 3412

† 231, 1423

312, 1243 A122368

Patterns Sequence

† 132, 3421

† 132, 4312 A001700

231, 1243

132, 2341
132, 4123

A109081

312, 2341 A006605

Patterns Sequence

312, 3241 A279569

312, 4321 A063020

132, 4231 A071725

† 231, 1432 A001003

† 231, 4312 A127632

231, 4321 A056010
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