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Extended Schur functions and 0-Hecke modules
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Abstract. Three bases of noncommutative symmetric functions have been described as
Schur-like: the immaculate symmetric functions, the noncommutative Schur functions,
and the shin functions. Each of these has a dual basis in quasisymmetric functions.
Dual bases of the former two have been given a representation-theoretic interpretation
in terms of 0-Hecke modules. We complete the picture by constructing 0-Hecke mod-
ules whose quasisymmetric characteristics are the extended Schur functions, the dual
basis to the shin functions. These modules are indecomposable.

Keywords: dual immaculate quasisymmetric functions, shin functions, quasisymmet-
ric Schur functions, extended Schur functions, extended tableaux, 0-Hecke algebra.

1 Introduction

The algebra Sym of symmetric functions has many bases of interest in algebraic com-
binatorics. Of central importance is the basis of Schur functions, due to its myriad
applications including to geometry of Grassmannians and representation theory of the
symmetric and general linear groups.

The algebra NSym of noncommutative symmetric functions generalizes Sym. Three
bases of NSym of particular interest due to their connection with Schur functions are the
immaculate basis introduced in [2], the noncommutative Schur basis introduced in [4], and
the shin basis introduced in [6]. These three bases are described in [5] as the canonical
Schur-like bases of NSym.

The algebra QSym of quasisymmetric functions is dual (as Hopf algebras) to NSym,
and contains Sym as a subalgebra. As is the case for NSym, there has been significant
interest in finding and studying bases of QSym that generalize the Schur basis of Sym.
The dual bases to the immaculate and noncommutative Schur bases are, respectively,
the dual immaculate [2] and quasi-Schur [10] bases, which have been widely studied. In
[1], the extended Schur basis of QSym was constructed as the stable limits of the polyno-
mials arising from Kohnert’s algorithm [11] applied to right-justified cell-diagrams. (In
comparison, the polynomials arising from Kohnert’s algorithm applied to left-justified
cell-diagrams are exactly the key polynomials (Demazure characters), whose stable limits
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form the Schur basis of Sym.) The extended Schur basis is exactly the dual basis to the
shin basis of NSym.

In [3], modules of the 0-Hecke algebra were constructed whose quasisymmetric charac-
teristics [7] are the dual immaculate quasisymmetric functions. Moreover in [14], 0-Hecke
modules were constructed whose quasisymmetric characteristics are the quasisymmetric
Schur functions. In this extended abstract, we outline how in [13] we construct 0-Hecke
modules whose quasisymmetric characteristics are the extended Schur functions, giving
a representation-theoretic interpretation of these functions and completing this picture
for the three canonical Schur-like bases of NSym. We also show that these 0-Hecke mod-
ules are indecomposable. In comparison, the modules for dual immaculate symmetric
functions are also indecomposable [3], but the modules for quasisymmetric Schur func-
tions are not in general indecomposable [14].

2 Background

2.1 Quasisymmetric functions

A composition α = (α1, . . . , αk) is a finite sequence of positive integers. We call α1, . . . , αk
the parts of α, and the length `(α) of α is k, the number of parts. We say that α is a
composition of n when ∑

`(α)
i=1 αi = n.

For a composition α = (α1, . . . , αk) of n, define S(α) to be the subset {α1, α1 +
α2, . . . , α1 + · · · + αk−1} of [n − 1]. Via the map α 7→ S(α), compositions of n are in
bijection with subsets of [n− 1].

Example 2.1. Consider the composition α = (2, 3, 2) of n = 7. Then S(α) = {2, 5} ⊂ [6].

Let C[[x1, x2, . . . ]] denote the algebra of formal power series of bounded degree in
infinitely many commuting variables, over the complex numbers. The algebra QSym
of quasisymmetric functions [9] is the subalgebra of C[[x1, x2, . . . ]] that consists of those
formal power series f satisfying

[xα1
i1
· · · xαk

ik
| f ] = [xα1

j1
· · · xαk

jk
| f ]

for every composition α = (α1, . . . αk) and any two sequences 1 ≤ i1 < · · · < ik and 1 ≤
j1 < · · · < jk, where [xα1

i1
· · · xαk

ik
| f ] denotes the coefficient of the monomial xα1

i1
· · · xαk

ik
when f is expanded in monomials.

The monomial and fundamental quasisymmetric functions {Mα} and {Fα} are two impor-
tant additive bases of quasisymmetric functions, indexed by compositions. They were
introduced in [9], and are defined by

Mα = ∑
i1<i2<···<ik

xα1
i1
· · · xαk

ik
and Fα = ∑

β refines α

Mβ,
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where a composition β refines a composition α if α can be obtained by summing consec-
utive entries of β.

Example 2.2. Let α = (2, 1, 2). We have

M(2,1,2) = ∑
i<j<k

x2
i xjx2

k

and
F(2,1,2) = M(2,1,2) + M(1,1,1,2) + M(2,1,1,1) + M(1,1,1,1,1).

2.2 The extended Schur basis of QSym

Define the diagram D(α) of a composition α to be an array of boxes with αi boxes in row i,
left-justified. We use French notation for composition diagrams, i.e., rows are numbered
from bottom to top.

Example 2.3. The diagram D(α) of α = (1, 3, 2) is shown below.

Given a composition α of n, define a standard extended tableau of shape α to be a filling
of the boxes of D(α) with the integers 1, 2, . . . n, each used exactly once, such that the
entries in each row of D(α) increase from left to right and the entries in each column
of D(α) increase from bottom to top. Denote the collection of all standard extended
tableaux of shape α by SET(α).

Remark 2.4. If α is a partition, i.e., α1 ≥ α2 ≥ · · · ≥ α`(α), then the standard extended
tableaux of shape α are exactly the standard Young tableaux of shape α.

We say an entry i of a standard extended tableau T is a descent of T if i is weakly to
the right of i + 1 in T. Define the descent composition Des(T) of T to be the composition
α such that S(α) is the set of all descents of T.

Example 2.5. The standard extended tableaux of shape (1, 3, 2), along with their descent
compositions, are shown below.

5 6
2 3 4
1

4 6
2 3 5
1

4 5
2 3 6
1

3 5
2 4 6
1

3 6
2 4 5
1

(1, 3, 2) (1, 2, 2, 1) (1, 2, 3) (1, 1, 2, 2) (1, 1, 3, 1)
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For compositions α, the extended Schur functions Eα were defined in [1] as the stable
limits of polynomials obtained by applying Kohnert’s algorithm [11] to certain right-
justified cell diagrams. Standard extended tableaux were also defined in terms of right-
justified diagrams in [1]; our definition is a vertical reflection of this definition.

The extended Schur functions form a basis of QSym and in fact expand positively
in the fundamental basis of QSym [1]. We may take the formula for their fundamental
expansion as our definition for the extended Schur functions.

Theorem 2.6 ([1]). Let α be a composition. Then

Eα = ∑
T∈SET(α)

FDes(T).

Example 2.7. By Example 2.5 we have

E(1,3,2) = F(1,3,2) + F(1,2,2,1) + F(1,2,3) + F(1,1,2,2) + F(1,1,3,1).

Every Schur function is in fact an extended Schur function. We may use this result to
define the celebrated Schur basis of symmetric functions:

Proposition 2.8 ([1]). If α is a partition, then the extended Schur function Eα is equal to the
Schur function sα.

The extended Schur basis of QSym thus contains the Schur basis of symmetric func-
tions. Other well-studied bases of QSym such as the fundamental and monomial qua-
sisymmetric functions, the quasisymmetric Schur functions, and the dual immaculate
quasisymmetric functions do not contain the Schur functions as a subset.

2.3 Noncommutative symmetric functions

The algebra NSym of noncommutative symmetric functions [8] is a noncommutative
analogue of the symmetric functions, generated by elements H1, H2, . . . with no rela-
tions. It has an additive basis {Hα} indexed by compositions α = (α1, . . . , αk), where the
complete homogeneous function Hα is defined to be the product Hα1 · · ·Hαk .

Three other important bases of NSym are the immaculate basis {Sα} introduced in [2],
the noncommutative Schur basis {S∗α} introduced in [4], and the shin basis {E∗α} introduced
in [6]. These three bases are described in [5] as the canonical Schur-like bases of NSym.

There is a natural projection χ from noncommutative symmetric functions to sym-
metric functions, defined by

χ(Hα) = hα1 hα2 · · · hα`(α) ,

where hi is the degree i complete homogeneous symmetric function: the sum of all monomials
of degree i.
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When α is a partition, we have

χ(Sα) = sα, χ(S∗α) = sα and χ(E∗α ) = sα,

by [2], [4], and [6] respectively. In this sense, all three bases are “Schur-like”.
When α is not a partition, the image under χ of these basis elements is in general

different. In [2] it is proved that χ(Sα) is the determinant of a matrix whose entries are
complete homogeneous symmetric functions; this reduces to the famous Jacobi-Trudi
identity in the case α is a partition. In [4] it is proved that χ(S∗α) = ssort(α), where
sort(α) is the partition obtained by rearranging the entries of α into weakly decreasing
order. In [6] it is proved that χ(E∗α ) = 0 whenever α is not a partition.

The algebra NSym is dual to QSym via the pairing 〈Hα, Mβ〉 = δα,β. Each of these
algebras inherit a coalgebra and Hopf algebra structure via this pairing. The basis of
NSym that is dual to the fundamental basis {Fβ} of QSym is the ribbon Schur functions
{rα}. Under this pairing, the extended Schur basis of QSym is dual to the shin basis
of NSym. In [6] it was proved that complete homogeneous functions expand positively
in the shin basis, which then implies via duality that extended Schur functions expand
positively into the monomial basis {Mβ} of QSym. Since extended Schur functions ex-
pand positively into the fundamental basis {Fβ} of QSym (Theorem 2.6), duality implies
the following result for shin functions.

Proposition 2.9 ([13]). The ribbon Schur functions expand positively in the shin basis of NSym
via the formula

rβ = ∑
β

Kα,βE∗α

where Kα,β is the number of T ∈ SET(α) such that Des(T) = β.

2.4 0-Hecke algebras

The 0-Hecke algebra Hn(0) is the algebra over C with generators T1, . . . , Tn−1, subject to
the following relations:

T2
i = Ti for all 1 ≤ i ≤ n− 1

TiTj = TjTi for all i, j with |i− j| ≥ 2

TiTi+1Ti = Ti+1TiTi+1 for all 1 ≤ i ≤ n− 2.

An additive basis of Hn(0) is given by {Tσ : σ ∈ Sn}, where Tσ = Ti1 Ti2 · · · Tir for
any reduced word si1si2 · · · sir for σ. The second and third relations above ensure Tσ is
well-defined.

The Grothendieck group G0(Hn(0)) is the quotient of the linear span of the isomor-
phism classes of the finite-dimensional representations of Hn(0), by the relation [Y] =



6 Dominic Searles

[X] + [Z] whenever there is a short exact sequence 0 → X → Y → Z → 0 of Hn(0)-
representations X, Y, Z.

The irreducible representations of Hn(0) are indexed by the 2n−1 compositions of n.
Let Fα denote the irreducible representation corresponding to the composition α. By
[12], Fα is one-dimensional and therefore equal to the span of some nonzero vector vα.
The structure of Fα as a Hn(0)-representation is given by the following action of the
generators Ti of Hn(0):

Ti(vα) =

{
vα if i /∈ S(α)

0 if i ∈ S(α).
(2.1)

Define
G =

⊕
n≥0
G0(Hn(0)).

The set {Fα} as α ranges over all compositions is an additive basis of G. Moreover, G
has a ring structure via the induction product, and there is a ring isomorphism ch : G →
QSym ([7]) defined by ch([Fα]) = Fα. For any Hn(0)-module X, ch([X]) is called the
quasisymmetric characteristic of X.

3 Modules for extended Schur functions

Our main goal is to interpret the extended Schur functions as quasisymmetric charac-
teristics of certain Hn(0)-modules. In particular, we construct a Hn(0)-module Xα for
each composition α of n such that the quasisymmetric characteristic ch([Xα]) is equal to
the extended Schur function Eα. We additionally show that for any composition α, the
module Xα is indecomposable.

Recall the extended Schur functions are the dual basis of QSym to the shin basis of
NSym. Interpretations of the dual bases of the immaculate and noncommutative Schur
bases as quasisymmetric characteristics of certain Hn(0)-modules are given in [3] and
[14] respectively. Providing such an interpretation for the extended Schur functions
completes this picture for the three canonical Schur-like bases of NSym.

We will construct the 0-Hecke module Xα as a quotient of a 0-Hecke module spanned
by a certain family of tableaux of shape α. It is not actually necessary to construct Xα as
a quotient, but doing so simplifies the proofs; see Remark 3.5. Given a composition α of
n, define a standard row-increasing tableau of shape α to be a filling of the boxes of D(α)
with the integers 1, . . . , n, each used exactly once, such that entries increase from left to
right along rows. Note that there are no conditions imposed on columns. Let SRIT(α)
denote the set of standard row-increasing tableaux of shape α.
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Given any T ∈ SRIT(α) and any 1 ≤ i ≤ n− 1, define

πi(T) =

{
T if i is weakly above i + 1 in T
si(T) otherwise

where si(T) denotes the filling of D(α) obtained from T by swapping the entries i and
i + 1. Notice that πi(T) ∈ SRIT(α), since πi cannot exchange i and i + 1 when they are
in the same row.

Example 3.1. Let α = (1, 3, 2) and let

T = 3 6
1 4 5
2

∈ SRIT(α).

Then π1(T) = π3(T) = π4(T) = T, while

π2(T) = s2(T) = 2 6
1 4 5
3

∈ SRIT(α).

and
π5(T) = s5(T) = 3 5

1 4 6
2

∈ SRIT(α).

Let Vα denote the C-vector space spanned by SRIT(α). In fact Vα is a 0-Hecke module:

Proposition 3.2 ([13]). The operators πi define a Hn(0)-action on Vα. Specifically, we have
πi(T) ∈ Vα for all T ∈ Vα and all 1 ≤ i ≤ n − 1, and the πi satisfy the relations for the
generators Ti of the 0-Hecke algebra.

In [13], it is proved by direct case-checking that the πi satisfy the 0-Hecke relations.
Proposition 3.2 can also be proved more simply by assigning to each SRIT a reading
word by reading the entries along rows from right to left, starting at the bottom row and
proceeding upwards. Interpreting the reading word as a permutation in one-line nota-
tion, it is straightforward to observe this defines an injective Hn(0)-module isomorphism
from SRIT(α) to the left regular representation of Hn(0). We further note the action in
Proposition 3.2 is in fact equivalent to the Hn(0)-action defined on words of content α in
[3], but we prefer to work directly with tableaux of shape D(α).

Let NSET(α) denote SRIT(α) \ SET(α), i.e., those elements of SRIT(α) that have a
column in which entries do not increase from bottom to top. Denote by Yα the vector
subspace of Vα spanned by NSET(α). It is straightforward to check that πi(T) ∈ NSET(α)
for any T ∈ NSET(α) and any 1 ≤ i ≤ n− 1. Therefore we have

Lemma 3.3 ([13]). The vector space Yα is an Hn(0)-submodule of Vα.
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Now define Xα to be the quotient module Vα/Yα. By definition, SET(α) is a basis of
Xα.

Theorem 3.4 ([13]). For any 1 ≤ i ≤ n− 1 and any composition α of n, the action of πi on Xα

is given by

πi(T) =


T if i is strictly left of i + 1 in T
0 if i and i + 1 are in the same column of T
si(T) if i is strictly right of i + 1 in T

for any T ∈ SET(α).

Remark 3.5. Theorem 3.4 is proved by confirming that πi(T) = T in the first case,
πi(T) ∈ NSET(α) in the second case, and πi(T) = si(T) ∈ SET(α) in the third case, all
of which are quick to check. It is also possible to show directly that the operators πi on
SET(α) as stated in Theorem 3.4 satisfy the 0-Hecke relations, but this requires laborious
case-checking.

Example 3.6. Let α = (1, 3, 2) and let

T = 3 6
2 4 5
1

∈ SET(α).

Then π1(T) = π2(T) = 0, π3(T) = π4(T) = T, while

π5(T) = s5(T) = 3 5
2 4 6
1

∈ SET(α).

To show the quasisymmetric characteristic of this module is Eα, we find a filtration of
Xα by Hn(0)-submodules. To this end, define a relation � on SET(α) by setting S � T if
S can be obtained by applying a (possibly empty) sequence of the πi operators to T.

Lemma 3.7 ([13]). The relation � is a partial order on SET(α).

Figure 1 below shows this partial order for SET(2, 3, 2), where the maximal element
is at the top and the arrows give the covering relations.

Let �t denote an arbitrary choice of extension of � to a total order, and suppose �t

orders the m elements of SET(α) as T1 �t T2 �t · · · �t Tm. For each 1 ≤ j ≤ m, define Xj
to be the C-linear span of all Tk ∈ SET(α) such that k ≤ j.

It follows immediately from the definitions of �t and Xj that Xj is a Hn(0)-module
for each 1 ≤ j ≤ m. Therefore,

0 := X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xm = Xα

is a filtration of Xα, in which each quotient module Xj/Xj−1 is one-dimensional, spanned
by Tj ∈ SET(α).
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6 7
3 4 5
1 2

6 7
2 4 5
1 3

5 7
3 4 6
1 2

5 7
2 4 6
1 3

5 6
3 4 7
1 2

4 7
3 5 6
1 2

5 6
2 4 7
1 3

4 7
2 5 6
1 3

4 6
3 5 7
1 2

4 6
2 5 7
1 3

3 7
2 5 6
1 4

3 6
2 5 7
1 4

π2 π5

π5
π2

π6
π4

π6 π4π2 π4π2
π6

π4
π6 π3π2

π3
π6

Figure 1: The partial order on SET(2, 3, 2), illustrating how elements of SET(2, 3, 2) are
obtained from others via sequences of the operators {πi}.
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Lemma 3.8 ([13]). For any 1 ≤ i ≤ n− 1 and any 1 ≤ j ≤ m, we have

πi(Tj) =

{
Tj if i /∈ S(Des(Tj))

0 if i ∈ S(Des(Tj)).

Therefore by (2.1), Xj/Xj−1 is isomorphic as Hn(0)-modules to FDes(Tj)
, whence

ch([Xj/Xj−1]) = FDes(Tj)
. Using this and the formula in Theorem 2.6 for expanding ex-

tended Schur functions in fundamental quasisymmetric functions establishes the main
result:

Theorem 3.9 ([13]). Let α be a composition of n. The quasisymmetric characteristic of the
Hn(0)-module Xα is the extended Schur function Eα.

The modules Xα for the extended Schur functions are indecomposable, as is the case
for the dual immaculate quasisymmetric functions but not the case for the quasisymmet-
ric Schur functions. To establish indecomposability of Xα in [13], we follow the approach
used in [3] and [14]. This involves first showing that Xα is cyclically generated [13]. In
particular, it is generated by the super-standard extended tableau Tsup

α , the standard ex-
tended tableau of shape α whose entries in the ith row are the first αi integers larger than
α1 + · · ·+ αi−1. (In Example 2.5, the leftmost SET is the super-standard extended tableau
of shape (1, 3, 2).) Figure 1 above shows how X(2,3,2) is generated by the super-standard
element of SET(2, 3, 2), which is at the top.

The following theorem can then be proved using properties of Tsup
α and techniques

from representation theory.

Theorem 3.10 ([13]). Let α be a composition of n. Then the Hn(0)-module Xα is indecomposable.
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