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Abstract. Anari, Gharan, and Vinzant showed that the basis generating functions for
all matroids are log-concave. In this paper, we show that Kirchhoff polynomials, i.e. the
basis generating functions for simple graphic matroids, are strictly log-concave. Our
key observation is that the Kirchhoff polynomial of a complete graph can be seen as the
irreducible relative invariant of a certain prehomogeneous vector space. Furthermore,
we prove that an algebra associated to a graphic matroid satisfies the strong Lefschetz
property and Hodge–Riemann bilinear relation at degree one.

Keywords: the complete graph, graphic matroids, Artinian Gorenstein algebras, the
strong Lefshcetz property, Hodge–Riemann relation, prehomogeneous vector spaces

1 Introduction

Recently, in [1], Anari, Gharan, and Vinzant showed that, for any matroid M, the basis
generating function FM satisfies log-concavity (more precisely, complete log-concavity)
on Rn

≥0. In other words, log FM is concave on Rn
≥0, that is the Hessian matrix HFM and

the gradient vector ∇FM of FM satisfy(
−FMHFM + (∇FM)>∇FM

)∣∣∣
x=a

is positive semidefinite

for any a ∈ Rn
≥0.

The basis generating functions for graphic matroids are called Kirchhoff polynomials.
In our main theorem, we show that, the Kirchhoff polynomial FΓ is strictly log-concave
on (R>0)

n for any simple graph Γ with n edges. In other words, for any a ∈ (R>0)
n,

log FΓ is strictly concave at a. In particular, the Hessian matrix HFΓ |x=a is non-degenerate
with n− 1 negative eigenvalues and one positive eigenvalue (see Theorem 3.2).
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Our main theorem is proved in two steps. First, we reduce our claim to the following
determinantal identity of the Hessian of the Kirchhoff polynomial FKr+1 of complete
graphs Kr+1 (cf. Theorem 3.1):

det HFKr+1
= (−1)n−1cr(FKr+1)

n−r−1,

where cr > 0 is a constant, and n := (r+1
2 ). Second, we show the above equality not

through direct computation, but rather by identifying FKr+1 with the unique irreducible
polynomial associated to a special GLr(C) representation or the so-called prehomoge-
neous vector space. Then, based on the general theory of prehomogeneous vector spaces
[10], the Hessian det HF of the relative invariant F is also a relative invariant of the same
representation. Hence it follows from the uniqueness of the relative invariant that

∃c ∈ C such that det HF = cFm.

We also apply the main theorem to the strong Lefschetz property and the Hodge–
Riemann bilinear relation of the graded Artinian Gorenstein algebra R∗Γ =

⊕r
`=0 R`

Γ =
R[x1, . . . , xn]/ Ann(FΓ) associated to any simple graph Γ. This algebra is defined for any
matroid M by Maeno and Numata. They conjectured that R∗M has the strong Lefschetz
property for any matroid M in an extended abstract [4] of the paper [5]. As an appli-
cation of our main theorem, we prove that this conjecture at degree one when M is a
graphic matroid. Since the Hodge–Riemann bilinear form of R1

Γ is given by the Hessian
HFΓ , we show that the Hodge–Riemann relation holds at degree one (see Theorem 4.4).

This paper is organized as follows. In Section 2, we introduce some concepts to give
our main theorem. In Section 3, we define the Kirchhoff polynomials of simple graphs,
and then prove our main result. In the last half of this section, we see that the connection
between the Kirchhoff polynomials of complete graphs and certain prehomogeneous
vector spaces. Finally, in Section 4, we conclude that our main result applies to algebras
associated to graphic matroids.

This article is a research announcement or extended abstract for the paper [8]. We
omit proofs and details that can be found in the main paper.

2 Preliminaries

In this section, we introduce some concepts that will be useful for our main theorem.
In Section 2.1, we define the strict log-concavity of a homogeneous polynomial. Then,
we recall a relationship between strict log-concavity and the Hessian of the polynomial.
Next, in Section 2.2, we introduce prehomogeneous vector spaces as a way of computing
the Hessian. Finally, in Section 2.3, we introduce the matroids, which are the main
objects of our theorem.
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2.1 Strict log-concavity and Hessians

Let F be a homogeneous polynomial of degree r in n variables with real coefficients,
where r ≥ 3. For F, HF denotes the Hessian matrix of F, and ∇F denotes the gradient
vector of F. We call det HF the Hessian of F.

Definition 2.1 (Strictly log-concave/log-concave). We say that F is log-concave (resp. strict-
ly log-concave) at a ∈ Rn if

(−FHF + (∇F)>∇F)|x=a

is positive semidefinite (resp. positive definite).

The relation between strict log-concavity and the Hessian can be seen as follows.

Remark 2.2. By easy arguments, we obtain

det
(
−FHF + (∇F)>∇F

)
= (−1)n−1 1

r− 1
Fn det HF.

Therefore F is strictly log-concave at a if and only if F(a) 6= 0, det HF
∣∣
x=a 6= 0, and F is

log-concave at a.

We assume that F is a polynomial with positive coefficients. Then tr HF ≥ 0. If
F is strictly log-concave, then its Hessian is non-degenerate. It follows from Cauchy’s
interlacing theorem that its Hessian has only one positive eigenvalue.

Theorem 2.3 (Cauchy’s interlacing theorem [2, Corollary 4.3.9]). For a real symmetric n× n
matrix A with eigenvalues α1 ≥ · · · ≥ αn, a vector v ∈ Rn, and the eigenvalues β1 ≥ · · · ≥ βn
of −A + v>v, they satisfy

β1 ≥ −αn ≥ β2 ≥ · · · ≥ −α2 ≥ βn ≥ −α1.

Corollary 2.4. If F is strictly log-concave at a ∈ (R>0)
n, then HF

∣∣
x=a has exactly n − 1

negative eigenvalues and exactly one positive eigenvalue. In particular,

(−1)n−1(det HF)|x=a > 0.

A multi-affine polynomial is a linear combination of square-free monomials. The fol-
lowing is used for our main theorem:

Lemma 2.5. Let F ∈ R[x1, . . . , xn] be a multi-affine homogeneous polynomial of deg F = r ≥ 3
with positive coefficients. For a subset I of [n] and 0 ≤ k ≤ n, we define

Cn−k
I>0 =

{
(zk+1, . . . , zn) ∈ Rn−k

≥0

∣∣∣ zj ≥ 0 (j /∈ I), zi > 0 (i ∈ I)
}

.

We assume that F is strictly log-concave on Cn
I>0. If

∂F
∂x1
6≡ 0,

∂F|x1=0

∂x2
6≡ 0, . . . ,

∂F|x1=···=xk−1=0

∂xk
6≡ 0

holds for some 0 ≤ k ≤ n− r, then F|x1=···=xk=0 ∈ R[xk+1, . . . , xn] is strictly log-concave on
Cn−k

I>0 .
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2.2 Prehomogeneous vector spaces

For a special polynomial, we have the following identity:

det HF = cF
n(r−2)

r ,

where c is non-zero (see Corollary 2.7). To prove this identity, we introduce the concept
of prehomogeneous vector spaces (cf. [10]).

Let (G, ρ, V) be a triplet of a connected linear algebraic group G, a finite dimensional
vector space V, and a rational representation ρ of G on V, all defined over C. We
call (G, ρ, V) a prehomogeneous vector space if there exists an algebraic G-invariant proper
subset S ⊂ V such that V \ S is a single open dence G-orbit. Then, we say that S
is the singular set of (G, ρ, V), and that (G, ρ, V) is irreducible when ρ is an irreducible
representation.

Let (G, ρ, V) be a prehomogeneous vector space. A not identically zero rational func-
tion F ∈ C(V) is called a relative invariant (with respect to χ) of (G, ρ, V) if there exists a
rational character χ ∈ Hom(G, C∗) which satisfies the following:

F(ρ(g)x) = χ(g)F(x) (g ∈ G, x ∈ V).

If F is a relative invariant corresponding to some character χ, then det HF is a relative
invariant corresponding to the character χN · (det)−2, where N = dim V and det : G →
C∗ : g 7→ det(ρ(g)).

The following is a fundamental proposition.

Proposition 2.6 (cf. [10, Proposition 12 in Section 4]). Let (G, ρ, V) be an irreducible preho-
mogeneous vector space. Then, there is at most one irreducible relative invariant polynomial F
up to constant multiple. In particular, any relative invariant has the form cFm for c ∈ C and
m ∈ Z.

We say that a prehomogeneous vector space (G, ρ, V) is regular if there exists a relative
invariant F ∈ C(V) such that its Hessian det HF is not identically zero on V. Then, we
have the following key identity of the Hessian of the relative invariant when (G, ρ, V) is
regular.

Corollary 2.7. Let (G, ρ, V) be a regular irreducible prehomogeneous vector space of dimension
n. If the degree of the relative invariant F is r, then, there exists a constant c ∈ C∗ such that

det HF = cF
n(r−2)

r .

2.3 Matroids

Here, we provide the basic terms of a matroid. A matroid M is a pair (E,B) of a finite
set E and a nonempty collection B of subsets of E satisfying the so-called basis exchange
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axioms: If B1 and B2 are in B and x ∈ B1 \ B2, then there is an element y ∈ B2 \ B1 such
that {y} ∪ (B1 \ {x}) ∈ B. See [9] for details. In this case, we call each B ∈ B a basis of M,
and each subset of a basis of M an independent set of M. We call e ∈ E a loop (resp. coloop)
if every basis does not contain e (resp. every basis contains e). We say that a matroid M
is simple if every subset of E with cardinality less than or equal to two is independent.

Example 2.8 (Graphic matroid). For any finite connected graph Γ = (V, E) with the
vertex set V and the edge set E, we call a subgraph T ⊆ Γ a spanning tree in Γ if T does
not contain any cycles and T passes through all vertices of Γ. Let BΓ be the set of all
spanning trees in Γ. Then M(Γ) = (E,BΓ) is a matroid. These matroids are called graphic
matroids.

Note that if M is a graphic matroid, then there exists a connected graph Γ such that
M(Γ) is isomorphic to M.

Example 2.9 (Submatroid). Let M = (E,B) be a matroid. For E′ ⊂ E, we define B′ by
B′ = { B ∈ B | B ⊂ E′ }. Then M′ = (E′,B′) is a matroid. We call M′ a submatroid of M.

Definition 2.10 (Basis generating function). For any matroid M = (E,B), we define the
basis generating function FM(x) of M by

FM(x) = ∑
B∈B

∏
i∈B

xi.

Example 2.11 (Kirchhoff polynomial). The basis generating function FM(Γ) for a graphic
matroid M(Γ) is called the Kirchhoff polynomial of Γ. In this case, we write FΓ = FM(Γ).

By basis exchange axioms, if B and B′ are bases of M, then |B| = |B′|. We say that
a matroid M has rank r if the number of elements of a basis of M is r. For a matroid
M = (E,B) of rank r, its basis generating function FM(x) is a multi-affine homogeneous
polynomial of degree r in |E| variables with coefficients equal to one. Hence, we have

FM(x) = FM(x)
∣∣
xe=0 + xe

∂

∂xe
FM(x).

Moreover

FM(x)
∣∣
xe=0 =

{
0 if e is a coloop,
FM\e(x) otherwise,

∂

∂xe
FM(x) =

{
0 if e is a loop,
FM/e(x) otherwise,

where M \ e (M/e) is the deletion (contraction) of M with respect to e. Hence, for any
e ∈ E that is not a loop or a coloop, we have

FM(x) = FM\e(x) + xeFM/e(x).
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Let B ∈ B. Every element e ∈ E \ B is not a coloop. Hence, for the matroid M0 obtained
by deleting some elements e1, . . . , ek ∈ E \ B from M, we have

FM0 = FM|xe1=···=xek=0.

Example 2.12. Every Kirchhoff polynomial is obtained from the Kirchhoff polynomial
of the complete graph with the same number vertices by substituting zero for some
variables. In other words, every simple graphic matroid is a submatroid of the simple
graphic matroid of the complete graph.

Note that, for any matroid M on [n] = { 1, 2, . . . , n }, log-concavity of FM(x) on Rn
≥0

is already known in [1, Theorem 4.2].

Theorem 2.13 ([1, Theorem 4.2]). For any matroid M, FM(x) is log-concave on Rn
≥0.

If M is not simple, then det(−FMHFM + (∇FM)T(∇FM)) is identically zero, in partic-
ular, it cannot be positive definite at any point in Rn. See [8] for more details.

Below, we prepare some lemmas for our main theorem.

Lemma 2.14. Let M be a matroid on E. Fix a basis B ∈ B of M. For S = { j1, . . . , jk } ⊂ E \ B,
and j ∈ E \ (B ∪ S),

∂FM|xj1
=···=xjk

=0

∂xj
= F(M\S)/j 6= 0 (2.1)

if j is not a loop.

Since the basis generating function FM(x) of any simple matroid M satisfies the con-
dition (2.1) by Lemmas 2.5 and 2.14, we have the following.

Lemma 2.15. Let M be a simple matroid on [n] of rank r ≥ 3. For any basis B, we assume
that FM is strictly log-concave on Cn

B>0, where Cn
B>0 is the same as Lemma 2.5. Then for any

submatroid M0 := M \ {j1, . . . , jk} of rank r, FM0 is strictly log-concave on Cn−k
B0>0 for any basis

B0 of M0.

Let Γ = (V, E) be a simple graph with |E| = n. For a spanning tree T, we define

Cn
T>0 =

{
a ∈ Rn

≥0
∣∣ zi > 0 (i ∈ T), zj ≥ 0 (j /∈ T)

}
(⊃ (R>0)

n).

Then we can find the following corollary to Lemma 2.15.

Corollary 2.16. Let Γ = (V, E) be a simple connected graph with |V| = r + 1 ≥ 3 and
|E| = n ≥ 3. For each spanning tree T in Γ, we assume that FΓ is strictly log-concave on
Cn

T>0 (⊃ (R>0)
n). Then for any connected subgraph Γ′ = (V′, E′) with |V′| = r + 1 and

|E′| = n− k, FΓ′ is strictly log-concave on Cn−k
T′>0 (⊃ (R>0)

n−k) for any spanning tree T′ in Γ′.
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3 Main result

In this section, we will prove our main result that the Kirchhoff polynomial of each
simple graph is strictly log-concave on Rn

>0 (see Theorem 3.2).

3.1 Main result

First, we consider the Kirchhoff polynomial of the complete graph. As stated in Sec-
tion 2.2, for the relative invariant of an irreducible prehomogeneous vector space, its
Hessian has the form cFm. We can show that the Kirchhoff polynomial of the complete
graph can be realized as the relative invariant. We will prove Theorem 3.1 in Section 3.2.

Theorem 3.1. Let n = (r+1
2 ). We have

det HFKr+1
= (−1)n−1cr(FKr+1)

n−r−1,

where cr = 2n−r(r− 1).

The Kirchhoff polynomial is the basis generating function for a graphic matroid by
Example 2.11. By Theorem 2.13, we know that the Kirchhoff polynomial is log-concave.
Note that FΓ(x) > 0 on Cn

T>0 for each spanning tree T. Based on Remark 2.2, the
Kirchhoff polynomial is strictly log-concave on Cn

T>0 if and only if its Hessian does not
vanish on Cn

T>0. Hence Theorem 3.1 tells us that, for any spanning tree T, the Kirchhoff
polynomial of the complete graph is strictly log-concave on Cn

T>0. By Example 2.12 and
Corollary 2.16, we obtain the following.

Theorem 3.2 (Main result). For any simple connected graph Γ = (V, E) with |V| = r + 1 ≥ 3
and |E| = n ≥ 3, the Kirchhoff polynomial FΓ(x) is strictly log-concave on (R>0)

n. In other
words,

(−FΓHFΓ + (∇FΓ)
T∇FΓ)|x=a

is positive definite at any a ∈ (R>0)
n. In particular, HFΓ |x=a is non-degenerate, with n − 1

negative eigenvalues and exactly one positive eigenvalue. Thus,

(−1)n−1(det HFΓ)|x=a > 0.

Moreover, for each spanning tree T in Γ, FΓ is strictly log-concave on Cn
T>0 (⊃ (R>0)

n).

3.2 Proof of Theorem 3.1

Here we study the Kirchhoff polynomials more precisely, and give a proof of Theo-
rem 3.1.
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We see that the Kirchhoff polynomial is realized as the determinant of some matrix.
This is called the matrix-tree theorem (cf. [11, Theorem VI.29]): Let Eij be the r× r matrix
such that the (i, j)-component is one and the others are zero. For a graph Γ = (V, E)
with |V| = r, we associate a variable xe to each edge e ∈ E, and define the Laplacian LΓ of
Γ indexed by vertices as

LΓ = ∑
e={i,j}∈E

xe(Eii − Eij − Eji + Ejj).

Then the Kirchhoff polynomial FΓ is equal to any cofactor of its Laplacian LΓ. In other
words, for a graph Γ = (V, E) and any 1 ≤ i, j ≤ |V|,

FΓ = (−1)i+j det(L(ij)
Γ ),

where L(ij)
Γ denotes the submatrix of LΓ obtained by removing the ith row and jth col-

umn.
For a graph, we associate xij = xji = xe to each edge e = {i, j}. For the complete

graph Kr+1, the entries in Laplacian LKr+1 =
(
`ij
)

1≤i,j≤r+1 are

`ij =

{(
∑r+1

k=1 xik

)
− xii (if i = j),

−xij (otherwise).

One can see that L(11)
Kr+1

is a symmetric matrix and {xij}1≤i<j≤r+1 gives a coordinate of the
vector space Sym(r, C), which consists of all r× r symmetric matrices over C.

Proposition 3.3. We have{
L(11)

Kr+1

∣∣
x=a

∣∣∣ a = (aij)i<j, aij ∈ C
}
= Sym(r, C).

Therefore the Kirchhoff polynomial FKr+1 can be regarded as a function from Sym(r, C) to C. In
other words, we can regard the Kirchhoff polynomial as the following function:

FKr+1 = det : Sym(r, C)→ C.

Example 3.4. The Laplacian matrix LK4 of the complete graph K4 is

LK4 =


x12 + x13 + x14 −x12 −x13 −x14

−x21 x21 + x23 + x24 −x23 −x24
−x31 −x32 x31 + x32 + x34 −x34
−x41 −x42 −x43 x41 + x42 + x43

 .
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The (1, 1) minor L(11)
K4

of LK4 is

L(11)
K4

=

x21 + x23 + x24 −x23 −x24
−x32 x31 + x32 + x34 −x34
−x42 −x43 x41 + x42 + x43

 .

Note that L(11)
K4

is a symmetric matrix and {xij}1≤i<j≤r+1 gives a coordinate of Sym(3, C).
Hence we have {

L(11)
K4

∣∣
x=a

∣∣∣ a = (aij)i<j, aij ∈ C
}
= Sym(3, C).

In [10], irreducible prehomogeneous vector spaces have already been classified. Here,
we focus on the following prehomogeneous vector space, whose relative invariant is
given by the Kirchhoff polynomial of the complete graphs. See [10, Proposition 3 in
Section 5] or [10, Section 7, I-(2)] for details on Proposition 3.5.

Proposition 3.5 (cf. [10]). Let ρ be the representation of GLr(C) on Sym(r, C) such that

ρ(P)X = PXPT (P ∈ GLr(C)).

Then (GLr(C), ρ, Sym(r, C)) is a regular irreducible prehomogeneous vector space. Moreover,
the relative invariant is given by det : Sym(r, C)→ C.

As stated in Proposition 3.3, the Kirchhoff polynomial FKr+1(x) of the complete graph
Kr+1 is the relative invariant of the prehomogeneous vector space in Proposition 3.5.
Evaluation of (det HFKr+1

)
∣∣
x=(1,1,...,1) was performed the second author [13]. Note that we

used Cayley’s theorem FKr+1(1, 1, . . . , 1) = (r + 1)r−1 at the second equality in Proposi-
tion 3.6 (see [11, Theorem VI. 30] for details).

Proposition 3.6 ([13, Theorem 3.3]). For the complete graph Kr+1,

(det HFKr+1
)
∣∣
x=(1,1,...,1) = (−1)n−12n−(r+1)(r + 1)r+1+n(r−3)(r− 1)

= (−1)n−12n−r(r− 1)(FKr+1(1, 1, . . . , 1))n−r−1,

where n = (r+1
2 ).

By Corollary 2.7 and Propositions 3.5 and 3.6, we have Theorem 3.1.

4 Applications

In this section, we define a graded Artinian Gorenstein algebra RΓ associated to a graph
Γ (more generally, to a matroid), as introduced by Maeno–Numata [5]. Then, using strict
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log-concavity of FΓ at any a ∈ (R>0)
n, we prove that La := a1x1 + · · · + anxn ∈ R1

FΓ

satisfies the strong Lefschetz property at R1
FΓ

.
First, we define an Artinian Gorenstein algebra associated to each homogeneous poly-

nomial. For a homogeneous polynomial F ∈ R[x1, . . . , xn] of degree r, define an ideal
Ann(F) and a quotient algebra R∗F by

Ann(F) =
{

P ∈ R[x1, . . . , xn]

∣∣∣∣ P
(

∂

∂x1
, . . . ,

∂

∂xn

)
F = 0

}
,

R∗F =
r⊕

`=0

R`
F = R[x1, . . . , xn]/ Ann(F).

Then R∗F is a graded Artinian Gorenstein algebra. Conversely, every graded Artinian
Gorenstein algebra can be represented as above by some homogeneous polynomial. See
[6, Proposition 2.1, Theorem 2.1 and Remark 2.3] for more details.

We recall the concepts of the strong Lefschetz property and the Hodge–Riemann
bilinear relation.

Definition 4.1 (Strong Lefschetz property). We say that L ∈ R1
F satisfies the strong Lef-

schetz property at degree ` if the following multiplication map is bijective:

×Lr−2` : R`
F → Rr−`

F ,

f 7→ Lr−2` f .

Definition 4.2 (Hodge–Riemann relation). We say that L ∈ R1
F satisfies the Hodge–

Riemann relation at degree ` if the Hodge–Riemann bilinear form

Q`
L : R`

F × R`
F → R,

(ξ1, ξ2) 7→ [ξ1Lr−2`ξ2]

is negative definite on Ker(Lr−1), where [−] : Rr
F
∼−→ R is the isomorphism as

P 7→ P
(

∂

∂x1
, . . . ,

∂

∂xn

)
F.

We note that, for a graded Artinian Gorenstein algebra R∗F associated to a homo-
geneous polynomial F, the Hodge–Riemann bilinear form Q1

L at degree one is non-
degenerate if and only if L satisfies the strong Lefschetz property at degree one. We
also note that if F(a) > 0, then La satisfies the Hodge–Riemann relation at R1

F if and
only if Q1

La
is non-degenerate and has only one positive eigenvalue. See the proof of [6,

Theorem 3.1] for more details.
We will use the following criterion, which is a special case of the general criterion in

[6, Theorem 3.1] and [12, Theorem 4].
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Theorem 4.3 ([6, Theorem 3.1], [12, Theorem 4]). Assume that x1, . . . , xn ∈ R1
F is a basis.

An element La := a1x1 + · · ·+ anxn ∈ R1
F satisfies the strong Lefschetz property at degree one

if and only if F(a1, . . . , an) 6= 0 and det HF|x=a 6= 0, where HF is the Hessian matrix of F.

Next, we consider the Artinian Gorenstein algebra R∗FM
associated to the basis gener-

ating function FM of a matroid M, in particular, the Kirchhoff polynomial FΓ of a simple
graph Γ. Let R∗ be R∗FΓ

.
By our main result Theorem 3.2, we have the following.

Theorem 4.4. Consider a simple graph Γ = (V, E) with |V| = r + 1 ≥ 3 and |E| = n ≥ 3.
For a = (a1, . . . , an) ∈ (R>0)

n, we define La = a1x1 + · · ·+ anxn ∈ R1. Then we have the
following:

1. The linear form La satisfies the strong Lefschetz property at degree one.

2. The Hodge–Riemann bilinear form

Q1
La

: R1 × R1 → R, (ξ1, ξ2)→ [ξ1Lr−2
a ξ2]

is non-degenerate. Moreover, Q1
La

has n− 1 negative eigenvalues and one positive eigen-
value.

Remark 4.5. Related topics are studied in [3]. Huh and Wang study another class of
algebras associated to matroids in the paper.

Remark 4.6. Recently, strict log-concavity of the basis generating functions for simple
matroids has been proven in [7]. Murai, Nagaoka, and Yazawa use relations between
strong Lefschetz property and Hodge–Riemann relation to prove.
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