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Complexes of graphs with bounded independence
number
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Abstract. Let G = (V, E) be a graph and n a positive integer. Let In(G) be the simplicial
complex whose simplices are the subsets of V that do not contain an independent set
of size n in G. We study the collapsibility numbers of the complexes In(G) for various
classes of graphs, focusing on the class of graphs with maximum degree bounded by
∆. As an application, we obtain the following result:

Let G be a claw-free graph with maximum degree at most ∆. Then, every collection of⌊(∆
2 + 1

)
(n− 1)

⌋
+ 1 independent sets of size n in G has a rainbow independent set

of size n.
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1 Introduction

Let X be a simplicial complex and d a non-negative integer. Let σ ∈ X be a simplex that
is contained in a unique maximal face τ of X. If |σ| ≤ d, the operation of removing from
X the face σ and all faces containing it is called an elementary d-collapse. A complex X
is called d-collapsible if there exists a sequence of elementary d-collapses that reduces X
to the void complex ∅. The collapsibility number of X, denoted by C(X), is the minimum
integer d such that X is d-collapsible.

The notion of d-collapsibility of a simplicial complex was introduced by Wegner in
[17]. His motivation was the study of intersection patterns of convex sets in Euclidean
space: Let K = {K1, . . . , Kn} be a family of convex sets in Rd. The nerve of K is the sim-
plicial complex N(K) = {I ⊂ {1, 2, . . . , n} : ∩i∈IKi 6= ∅} . Wegner proved the following:

Theorem 1.1 (Wegner [17]). Let K be a finite family of convex sets in Rd. Then C(N(K)) ≤ d.

In recent years, the notion of d-collapsibility was further investigated (see e.g. [14,
15, 16]), and several combinatorial applications were established (see e.g. [7]). One such
combinatorial consequence of d-collapsibility is the following result, due to Kalai and
Meshulam:
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Theorem 1.2 (Kalai and Meshulam [12]). Let X be a d-collapsible simplicial complex on vertex
set V. Let V1, . . . , Vd+1 be a partition of V into d + 1 non-empty sets. If {v1, v2, . . . , vd+1} ∈ X
for every choice of vertices v1 ∈ V1,. . . , vd+1 ∈ Vd+1, then there exists some 1 ≤ i ≤ d + 1 such
that Vi ∈ X.

Theorem 1.2 is a special case of [12, Theorem 2.1]. In the case where X is the nerve of
a family of convex sets in Rd, Theorem 1.2 specializes to Lovász’s well known Colorful
Helly Theorem.

In this paper, we study the collapsibility of certain simplicial complexes associated to
graphs, defined as follows:

Let G = (V, E) be a (simple) graph. A set I ⊂ V is called an independent set in G if no
two vertices in I are adjacent in G. The independence number of G, denoted by α(G), is the
maximal size of an independent set in G. For U ⊂ V, we denote by G[U] the subgraph
of G induced by U. For every integer n ≥ 1, we define the simplicial complex

In(G) = {U ⊂ V : α(G[U]) < n}.

For example, I2(G) is the clique complex of G, i.e. U ∈ I2(G) if and only if G[U] is a
complete graph. For any graph G, the complex I1(G) is just the empty complex {∅}.

Our main motivation for the study of the complexes In(G) is the following problem,
presented by Aharoni, Briggs, Kim, and Kim in [5]:

Let G be a graph, and let F = {A1, . . . , Am} be a family of (not necessarily distinct)
independent sets in G. An independent set A of size n ≤ m in G is called a rainbow
independent set with respect to F if it can be written as A = {ai1 , . . . , ain}, where 1 ≤ i1 <
i2 < · · · < in ≤ m and aij ∈ Aij for each 1 ≤ j ≤ n.

For a positive integer n, let fG(n) be the minimum integer t such that every collection
of t independent sets of size n in G has a rainbow independent set of size n.

The connection between the complexes In(G) and the parameters fG(n) is given by
the following result, which follows by a standard application of Theorem 1.2 (see e.g.
[6]).

Proposition 1.3. Let G be a graph. Then fG(n) ≤ C(In(G)) + 1.

Thus, any upper bound on the collapsibility number of the complex In(G) provides
a corresponding bound for fG(n).

The study of rainbow independent sets originated as a generalization of the “rainbow
matching problem” in graphs (note that a matching in a graph is an independent set in
its line graph); see e.g. [3, 4, 8]. The study of rainbow matchings via collapsibility
numbers was initiated in [6], and further developed in [10]. In [11], the Leray number, a
homological variant of the collapsibility number, of complexes of graphs with bounded
matching number is studied, and some applications to rainbow matching problems are
found.
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Here, we study the collapsibility numbers of the complexes In(G) for several classes
of graphs. We obtain tight upper bounds for the classes of chordal graphs and k-colorable
graphs. Our main focus is on the class of graphs with maximum degree bounded by ∆.
For graphs in this class we obtain tight upper bounds in the cases n = 2 and n = 3,
and in the case ∆ ≤ 2 (for general n). Furthermore, in the case ∆ = 3, we find new
lower bounds for the collapsibility numbers, implying that a certain natural extension of
a conjecture in [5] does not hold in general. The proof of the lower bounds is topological;
it follows by bounding the Leray numbers of our complexes.

By combining Proposition 1.3 with our different bounds on the collapsibility numbers
of the complexes In(G), we obtain new proofs for several of the results on rainbow
independent sets appearing in [5]. Moreover, we obtain a new upper bound for fG(n) in
the case of bounded degree claw-free graphs.

Remark. This manuscript is an extended abstract. Full proofs and details can be found
in the full paper, [13].

2 Upper bounds on collapsibility numbers

Although the concept of d-collapsibility has been relatively well studied, little emphasis
has been placed on finding general methods for bounding the collapsibility number of
a simplicial complex. In [6] and [10], a strategy analogous to Wegner’s proof in [17] of
the d-collapsibility of nerves of convex sets in Rd was applied. Here, we present a set of
bounds of a different nature.

The bounds appearing in this section are the main technical tools used for our results
on the collapsibility of the complexes In(G), presented in Sections 3 and 4. Moreover,
we believe these bounds may be of independent interest, and expect them to be useful
in the study of other families of simplicial complexes as well.

Let X be a simplicial complex on vertex set V. For U ⊂ V, the subcomplex of X
induced by U is the complex X[U] = {σ ∈ X : σ ⊂ U}.

For any vertex v ∈ V, we define the deletion of v in X to be the subcomplex

X \ v = {σ ∈ X : v /∈ σ} = X[V \ {v}].

Let τ ⊂ V. We define the link of τ in X to be the subcomplex

lk(X, τ) = {σ ∈ X : σ ∩ τ = ∅, σ ∪ τ ∈ X}.

Note that lk(X, τ) = ∅ unless τ ∈ X. If τ = {v}, we write lk(X, v) = lk(X, {v}).
Our starting point is the following basic bound, due to Tancer:

Lemma 2.1 (Tancer [16, Prop. 1.2]). Let X be a simplicial complex on vertex set V, and let
v ∈ V. Then

C(X) ≤ max{C(X \ v), C(lk(X, v)) + 1}.
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Based on Lemma 2.1, we obtain the following results, which bound the collapsibility
number of a simplicial complex in terms of the collapsibility numbers of certain of its
subcomplexes:

Lemma 2.2. Let X be a simplicial complex, and let σ = {v1, . . . , vk} ∈ X. For every 0 ≤ i ≤
k− 1, define σi = {vj : 1 ≤ j ≤ i}. Let d ≥ k. If for all 0 ≤ i ≤ k− 1,

C(lk(X \ vi+1, σi)) ≤ d− i,

and
C(lk(X, σ)) ≤ d− k,

then C(X) ≤ d.

Lemma 2.3. Let X be a complex on vertex set V, and let B ⊂ V. Let < be a linear order on the
vertices of B. Let P = P(X, B) be the family of partitions (B1, B2) of B satisfying:

• B2 ∈ X.

• For any v ∈ B2, the complex

lk(X[V \ {u ∈ B1 : u < v}], {u ∈ B2 : u < v})

is not a cone over v.

If C(lk(X[V \ B1], B2)) ≤ d− |B2| for every (B1, B2) ∈ P , then C(X) ≤ d.

The proofs of Lemmas 2.2 and 2.3 consist of straightforward inductive applications
of Lemma 2.1.

A missing face of a complex X is a set τ ⊂ V such that τ /∈ X, but σ ∈ X for any σ ( τ.
The following bound follows by an inductive application of Lemma 2.2:

Proposition 2.4. Let X be a simplicial complex on vertex set V. If all the missing faces of X are
of dimension at most d, then

C(X) ≤
⌊

d|V|
d + 1

⌋
.

Moreover, equality C(X) = d|V|
d+1 is obtained if and only if X is the join of r = |V|

d+1 disjoint
copies of the boundary of a d-dimensional simplex (or equivalently, if the set of missing faces of
X consists of r disjoint sets of size d + 1).

Proposition 2.4 can be seen as the “collapsibility version” of [1, Proposition 5.4].

3 Collapsibility numbers of the complexes In(G)

In this section we present our main results, upper bounds on the collapsibility numbers
of In(G) for different families of graphs G. The proofs are mostly omitted, but some
remarks are made about the methods applied in each case.
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3.1 Chordal graphs and k-colorable graphs

Recall that a graph G is chordal if it contains no cycle of length at least 4 as an induced
subgraph.

Theorem 3.1. Let G = (V, E) be a chordal graph and n ≥ 1 an integer. Then C(In(G)) ≤
n− 1. Moreover, if α(G) ≥ n, then C(In(G)) = n− 1.

It is a well known fact that any chordal graph contains a simplicial vertex; that is, a
vertex whose set of neighbours forms a clique in the graph. The proof of Theorem 3.1
relies on the application of Lemma 2.1 with respect to such a simplicial vertex v.

A graph G = (V, E) is said to be k-colorable if its vertex set V can be partitioned into
k parts V1, . . . , Vk so that each Vi is independent in G.

Proposition 3.2. Let G be a k-colorable graph and n ≥ 1 an integer. Then C(In(G)) ≤ k(n− 1).

Proposition 3.2 follows from the stronger fact that for a k-colorable graph G, the
dimension of the complex In(G) is at most k(n − 1) − 1. The proof is simple: Any
simplex σ ∈ In(G) contains no independent set of size n. In particular, given a proper
k-coloring of G, σ contains at most n− 1 vertices from each color class. So, |σ| ≤ k(n− 1).

The sharpness of the bound can be demonstrated by taking G to be the complete
k-partite graph G = Kn,...,n (see Section 5).

3.2 Graphs with bounded maximum degree

One of the main conjectures in [5] is the following.

Conjecture 3.3 (Aharoni, Briggs, Kim, and Kim [5]). Let G be a graph with maximum degree
at most ∆, and let n be a positive integer. Then

fG(n) ≤
⌈

∆ + 1
2

⌉
(n− 1) + 1.

It is shown in [5] that Conjecture 3.3 is true for ∆ ≤ 2 and for n ≤ 3. Moreover, for
every n and ∆, an example of a graph G achieving equality is presented. In the general
case, the best bound observed by Aharoni et al. is fG(n) ≤ ∆(n− 1) + 1.

It is natural to ask whether the following extension of Conjecture 3.3 holds:

Question 3.4 (Aharoni [2]). Let G be a graph with maximum degree at most ∆, and let n be a
positive integer. Does the following bound hold?

C(In(G)) ≤
⌈

∆ + 1
2

⌉
(n− 1).

Our main results for this family of graphs are the following:
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Theorem 3.5. Let G = (V, E) be a graph with maximum degree at most ∆, and let n ≥ 1 be an
integer. Then C(In(G)) ≤ ∆(n− 1).

The bound in Theorem 3.5 is tight only for ∆ ≤ 2. In the case n ≤ 3 we can prove the
following tight bounds, for general ∆:

Theorem 3.6. Let G = (V, E) be a graph with maximum degree at most ∆. Then

C(I2(G)) ≤
⌈

∆ + 1
2

⌉
.

Theorem 3.7. Let G = (V, E) be a graph with maximum degree at most ∆. Then

C(I3(G)) ≤
{

∆ + 2 if ∆ is even,
∆ + 1 if ∆ is odd.

The proof of Theorem 3.5 divides into two cases: The more difficult case is when
∆ ≤ 2; the proof in this case proceeds by first applying Lemma 2.2 in order to reduce
the problem to the case of chordal graphs, and then using Theorem 3.1. The case ∆ > 2
is easier, and follows from Brooks’ Theorem on the chromatic number of graphs with
bounded degree and Proposition 3.2.

Theorem 3.6 follows quite simply by an application of Lemma 2.1 and Proposition 2.4,
based on the observation that for any vertex v ∈ V, all the vertices in the subcomplex
lk(I2(G), v) are neighbours of v in G, and therefore lk(I2(G), v) contains at most ∆ ver-
tices.

Our most technically challenging result is Theorem 3.7. The main ingredient in the
proof is the following claim:

Proposition 3.8. Let G = (V, E) be a graph with maximum degree at most ∆. For a vertex
v ∈ V, let NG(v) be the set of neighbours of v in G. Let A = {a1, a2} be an independent set
of size 2 in G. Assume that there exists an independent set in G of the form {a1, w, w′}, where
w, w′ ∈ NG(a2), or there exists an independent set of the form {a2, v, v′}, where v, v′ ∈ NG(a1).
Then

C(lk(I3(G), A)) ≤
{

∆ if ∆ is even,
∆− 1 if ∆ is odd.

We give a sketch of the proof:

Sketch of proof. Let v /∈ NG(a1) ∪ NG(a2). Then A ∪ {v} is an independent set of size
3 in G; hence, v /∈ lk(I3(G), A). So, we may assume without loss of generality that
V = A ∪ NG(a1) ∪ NG(a2).

Let B = NG(a1)∩NG(a2) and U = (NG(a1)∪NG(a2)) \ B. Since the maximum degree
of a vertex in G is at most ∆, we have

|NG(a1) ∪ NG(a2)| = |NG(a1)|+ |NG(a2)| − |NG(a1) ∩ NG(a2)| ≤ 2∆− |B|.
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So, |U| ≤ 2∆− 2|B|.
Write B = {u1, . . . , uk}. Let P = P(lk(I3(G), A), B) be the family of partitions (B1, B2)

of B satisfying:

• B2 ∈ lk(I3(G), A).

• For any ui ∈ B2, the complex

lk(I3(G)[V \ {uj ∈ B1 : j < i}], A ∪ {uj ∈ B2 : j < i})

is not a cone over ui.

Let (B1, B2) ∈ P , and let X = lk(I3(G)[V \ B1], A ∪ B2). Note that the vertex set
of X is contained in U. Since X is a subcomplex of I3(G), its missing faces are either
independent sets of size 3 in G, or subsets of size 2 of such independent sets. We will
show that all the missing faces are of the latter kind: Let τ ⊂ U be a missing face of X.
Assume for contradiction that |τ| = 3. Then, τ forms an independent set in G, and for
any τ′ ⊂ τ of size 2, τ′ ∈ X; that is, τ′ ∪ (A ∪ B) does not contain an independent set of
size 3 in G.

The vertex a1 is adjacent to at least 2 vertices of τ. Otherwise, there would be a set
τ′ ⊂ τ of size 2 such that τ′ ∪ {a1} forms an independent set in G, a contradiction to τ

being a missing face. Similarly, a2 is adjacent to at least 2 vertices of τ. Therefore, there
exists a vertex in u ∈ τ that is adjacent to both a1 and a2. That is, u ∈ B. But this is a
contradiction to τ ⊂ U and U ∩ B = ∅.

Since all the missing faces of X are of size 2, by Proposition 2.4 we obtain

C(X) ≤ |U|
2
≤ 2∆− 2|B|

2
= ∆− |B| ≤ ∆− |B2|. (3.1)

Therefore, by Lemma 2.3, C(lk(I3(G), A)) ≤ ∆.
This finishes the proof for the case of even ∆. The odd ∆ case consists of considerably

more work, so we only state the main steps in the proof:
Assume that ∆ is odd. For B2 6= B, we have by (3.1), C(X) ≤ ∆− |B| ≤ ∆− 1− |B2|.
We are left to show that, whenever (∅, B) ∈ P , the complex lk(I3(G), A ∪ B) is (∆−

|B| − 1)-collapsible. This is proved by showing that the complex does not satisfy the
equality case in Proposition 2.4. Note that this is the only step where the additional
conditions on G stated in the the proposition are needed.

Theorems 3.5 to 3.7 settle Question 3.4 affirmatively in the special cases where ∆ ≤ 2
or n ≤ 3. Unfortunately, the bound in Question 3.4 does not hold in general: In Section 5
we present a family of counterexamples to the case ∆ = 3.
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4 Rainbow independent sets

Combining the bounds from Section 3 with Proposition 1.3, we can recover several of
the upper bounds for fG(n) first proved by Aharoni, Briggs, Kim, and Kim in [5]:

Corollary 4.1 ([5, Theorem 3.20]). Let G = (V, E) be a chordal graph and n ≥ 1 an integer.
Then fG(n) ≤ n.

Corollary 4.2 ([5, Theorem 4.1]). Let G be a k-colorable graph and n ≥ 1 an integer. Then
fG(n) ≤ k(n− 1) + 1.

Corollary 4.3 ([5]). Let G = (V, E) be a graph with maximum degree at most ∆ and n ≥ 1 an
integer. Then fG(n) ≤ ∆(n− 1) + 1.

Corollary 4.4 ([5, Theorem 5.6]). Let G = (V, E) be a graph with maximum degree at most ∆.
Then

fG(2) ≤
⌈

∆ + 1
2

⌉
+ 1.

Corollary 4.5 ([5, Theorem 5.7]). Let G = (V, E) be a graph with maximum degree at most ∆.
Then

fG(3) ≤
{

∆ + 3 if ∆ is even,
∆ + 2 if ∆ is odd.

The following bound, however, is new: Recall that a graph is called claw-free if it does
not contain the complete bipartite graph K1,3 as an induced subgraph.

Theorem 4.6. Let G be a claw-free graph with maximum degree at most ∆. Then

fG(n) ≤
⌊(

∆
2
+ 1
)
(n− 1)

⌋
+ 1.

Theorem 4.6 shows that Conjecture 3.3 holds for the subclass of claw-free graphs
with maximum degree at most ∆, in the case where ∆ is even. The proof relies on the
following result:

Proposition 4.7. Let G = (V, E) be a claw-free graph with maximum degree at most ∆, and let
n ≥ 1 be an integer. Let A be an independent set of size n− 1 in G. Then,

C(lk(In(G), A)) ≤
⌊
(n− 1)∆

2

⌋
.

The main observation is that, since G is claw free, any vertex outside of the indepen-
dent set A is adjacent to at most 2 vertices in A. This enables us to apply an argument
very similar to the one used in the proof of Proposition 3.8.
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5 Lower bounds on Leray numbers

For i ≥ −1, let H̃i(X) be the i-th reduced homology group of X with real coefficients. We
say that X is d-Leray if for any induced subcomplex Y of X, H̃i(Y) = 0 for all i ≥ d. The
Leray number of X, denoted by L(X), is the minimum integer d such that X is d-Leray.

The following observation, due to Wegner, relates the Leray number of a complex X
to its collapsibility number:

Lemma 5.1 (Wegner [17]). Let X be a simplicial complex. Then C(X) ≥ L(X).

In this section we present some examples establishing the sharpness of our different
bounds on the collapsibility of In(G). Also, we present a family of counterexamples to
the conjectural bound presented in Question 3.4, in the case of graphs with maximum
degree at most 3.

5.1 Extremal examples

Let n be an integer, and k be an even integer. Let Gk,n be the graph obtained from a cycle

of length
(

k
2 + 1

)
n by adding all edges connecting two vertices of distance at most k

2
in the cycle. Note that Gk,n is a k-regular graph, i.e. every vertex has degree exactly k.
Moreover, Gk,n is claw-free.

In [5] it is shown that fGk,n(n) ≥
(

k
2 + 1

)
(n − 1) + 1. In particular, this shows the

tightness of Theorem 4.6, in the case of even maximum degree. Moreover, by Proposi-
tion 1.3, we obtain

C(In(Gk,n)) ≥ fGk,n(n)− 1 ≥
(

k
2
+ 1
)
(n− 1).

This shows that the bound in Question 3.4, whenever it holds, is tight. A different way
to show this is as follows.

Proposition 5.2.

H̃i(In(Gk,n)) =

{
R if i =

(
k
2 + 1

)
(n− 1)− 1,

0 otherwise.

In particular, L(In(Gk,n)) ≥
(

k
2 + 1

)
(n− 1).

The proof follows from the fact that the complex In(Gk,n) can be described as the join
of k

2 + 1 disjoint copies of the boundary of an (n− 1)-dimensional simplex; hence, it is

homotopy equivalent to a
((

k
2 + 1

)
(n− 1)− 1

)
-dimensional sphere.

Similarly, for G = Kn,...,n, the complete k-partite graph with parts of size n, the com-
plex In(G) is the join of k disjoint copies of the boundary of an (n − 1)-dimensional
simplex. Therefore, C(In(G)) ≥ k(n− 1), showing the bound in Proposition 3.2 is tight.
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5.2 A negative answer to Question 3.4

Let G = (V, E) be the dodecahedral graph. We can represent G as a generalized Petersen
graph (see [18]), as follows:

V = {a1, . . . , a10, b1, . . . , b10}
and

E = {{ai, bi}, {ai, ai+1}, {bi, bi+2} : i = 1, 2, . . . , 10},
where the indices are taken modulo 10.

Every vertex in G is adjacent to exactly 3 vertices; that is, G is 3-regular. The maxi-
mum independent sets in G are the sets

Ii = {ai, ai+2, ai+5, ai+7, bi−2, bi−1, bi+3, bi+4}
for i = 1, . . . , 5 (again, the indices are to be taken modulo 10). In particular, α(G) = 8.

Proposition 5.3. Let G = (V, E) be the dodecahedral graph. Then,

H̃i(I8(G)) =

{
R4 if i = 15,
0 otherwise.

In particular, L(I8(G)) ≥ 16.

We obtain C(I8(G)) ≥ L(I8(G)) ≥ 16 > 2 · (8− 1) = 14. Therefore, I8(G) does not
satisfy the bound in Question 3.4. However, it is not hard to check that fG(8) ≤ 11. So,
G does not contradict Conjecture 3.3. The proof of Proposition 5.3 follows by a standard
application of Alexander duality and the Nerve theorem (see e.g. [9]).

The next result will aid us in constructing more examples of complexes that do not
satisfy the bound in Question 3.4:

Theorem 5.4. Let G be the disjoint union of the graphs G1, . . . , Gm. For 1 ≤ i ≤ m, let
ti = α(Gi) and let `i = L(Iti(Gi)). Let t = ∑m

i=1 ti = α(G) and ` = L(It(G)). Then,

` =
m

∑
i=1

`i + m− 1.

The proof relies on the following claim.

Proposition 5.5. Let G be the disjoint union of the graphs G1, . . . , Gm. For 1 ≤ i ≤ m, let
ti = α(Gi). Let t = ∑m

i=1 ti = α(G). Then, H̃k(It(G)) = 0 if and only if for every choice of
integers k1, . . . , km satisfying ∑m

i=1 ki = k− 2m + 2, H̃ki(Iti(Gi)) = 0 for all 1 ≤ i ≤ m.

Combining Theorem 5.4 with Proposition 5.3, we obtain:

Corollary 5.6. Let Gk be the union of k disjoint copies of the dodecahedral graph. Then

L(I8k(Gk)) ≥ 17k− 1.

Note that the graphs Gk are 3-regular, and L(I8k(Gk))
8k−1 ≥ 17k−1

8k−1 > 21
8 > 2. Thus, the

complexes I8k(Gk) do not satisfy the bound in Question 3.4.
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6 Open questions

In this paper we showed that the answer to Question 3.4 is positive in several cases,
but negative in general. It would be interesting to decide for which values of ∆ and n
the bound in Question 3.4 holds. Alternatively, one could try to characterize the graphs
satisfying the bound for all values of n.

The following is a weaker result, which may hold for general bounded degree graphs:

Conjecture 6.1. Let G = (V, E) be a graph with maximum degree at most ∆, and let n ≥ 1 be
an integer. Let A be an independent set of size n− 1 in G. Then,

C(lk(In(G), A)) ≤
⌊
(n− 1)∆

2

⌋
.

For the subclass of claw-free graphs, this is proved in Proposition 4.7. Conjecture 6.1
would imply the bound fG(n) ≤

⌊(
∆
2 + 1

)
(n− 1)

⌋
+ 1 (by the same argument as the

one used to prove Theorem 4.6), settling Conjecture 3.3 in the case of even ∆.
Another possible direction is to focus on the family of claw-free bounded degree

graphs. We showed in Theorem 4.6 that Conjecture 3.3 holds for graphs in this family
when ∆ is even. In the case of odd ∆, although we obtain good upper bounds for fG(n),
the question remains unsettled. It would also be interesting to prove the corresponding
tight upper bound on the collapsibility number of In(G), at least for the case of even ∆.

We know, by Proposition 5.3, that the bound in Question 3.4 does not hold for graphs
with maximum degree at most 3. The following question arises:

Question 6.2. What is the smallest positive integer g(n) such that the following holds: For every
graph G with maximum degree at most 3, C(In(G)) ≤ g(n)?

By Theorem 3.5 and Proposition 5.2 we have 2(n− 1) ≤ g(n) ≤ 3(n− 1) for all n ≥ 1,
and, by Corollary 5.6, g(8k) ≥ 17k− 1 for all k ≥ 1. Improving either the upper or lower
bounds for g(n) may be of interest.

Acknowledgements

We thank Jinha Kim for her insightful comments during the early stages of this research.
We thank the anonymous referees for their helpful comments.

References

[1] M. Adamaszek. “Extremal problems related to Betti numbers of flag complexes”. Discrete
Appl. Math. 173 (2014), pp. 8–15. Link.

http://dx.doi.org/10.1016/j.dam.2014.04.006


12 Minki Kim and Alan Lew

[2] R. Aharoni. Personal communication. 2019.

[3] R. Aharoni and E. Berger. “Rainbow Matchings in r-Partite r-Graphs”. Electronic J. Combi-
natorics 16.1 (2009), p. 119. Link.

[4] R. Aharoni, E. Berger, M. Chudnovsky, D. Howard, and P. Seymour. “Large rainbow match-
ings in general graphs”. European J. Combin 79 (2019), pp. 222 –227. Link.

[5] R. Aharoni, J. Briggs, J. Kim, and M. Kim. “Rainbow independent sets in certain classes of
graphs”. 2019. arXiv:1909.13143.

[6] R. Aharoni, R. Holzman, and Z. Jiang. “Rainbow fractional matchings”. Combinatorica
(2019). Link.

[7] N. Alon and G. Kalai. “A simple proof of the upper bound theorem”. European J. Combin
6.3 (1985), pp. 211–214. Link.

[8] J. Barát, A. Gyárfás, and G. Sárközy. “Rainbow matchings in bipartite multigraphs”. Period.
Math. Hungar. P 74.1 (2017), pp. 108–111. Link.

[9] A. Björner, L. Butler, and A. Matveev. “Note on a combinatorial application of Alexander
duality”. J. Combin. Theory Ser. A 80.1 (1997), pp. 163–165. Link.

[10] J. Briggs and M. Kim. “Choice functions in the intersection of matroids”. Electronic J. Com-
binatorics 26.4 (2019), P4.26. Link.

[11] A. Holmsen and S. Lee. “Leray numbers of complexes of graphs with bounded matching
number”. 2020. arXiv:2003.11270.

[12] G. Kalai and R. Meshulam. “A topological colorful Helly theorem”. Adv. Math. 191.2 (2005),
pp. 305–311. Link.

[13] M. Kim and A. Lew. “Complexes of graphs with bounded independence number”. 2019.
arXiv:1912.12605.

[14] J. Matoušek and M. Tancer. “Dimension Gaps between Representability and Collapsiblity”.
Discrete Comput. Geom. 42 (2009), pp. 631–639. Link.

[15] M. Tancer. “d-collapsibility is NP-complete for d ≥ 4”. Electron. Notes Discrete Math. 34
(2009), pp. 53–57. Link.

[16] M. Tancer. “Strong d-collapsibility”. Contrib. Discrete Math. 6.2 (2011), pp. 32–35. Link.

[17] G. W. “d-Collapsing and nerves of families of convex sets”. Arch. Math. 26.1 (1975), pp. 317–
321. Link.

[18] M. Watkins. “A theorem on Tait colorings with an application to the generalized Petersen
graphs”. J. Combin. Theory. 6.2 (1969), pp. 152–164. Link.

https://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i1r119
http://dx.doi.org/10.1016/j.ejc.2019.01.012
https://arxiv.org/abs/1909.13143
http://dx.doi.org/10.1007/s00493-019-4019-y
http://dx.doi.org/10.1016/S0195-6698(85)80029-9
http://dx.doi.org/10.1007/s10998-016-0172-x
http://dx.doi.org/10.1006/jcta.1997.2794
http://dx.doi.org/10.37236/8844
https://arxiv.org/abs/2003.11270
http://dx.doi.org/10.1016/j.aim.2004.03.009
https://arxiv.org/abs/1912.12605
http://dx.doi.org/10.1007/s00454-008-9091-9
http://dx.doi.org/10.1016/j.endm.2009.07.009
http://dx.doi.org/10.11575/cdm.v6i2.62104
http://dx.doi.org/10.1007/BF01229745
http://dx.doi.org/10.1016/S0021-9800(69)80116-X

	Introduction
	Upper bounds on collapsibility numbers
	Collapsibility numbers of the complexes In(G)
	Chordal graphs and k-colorable graphs
	Graphs with bounded maximum degree

	Rainbow independent sets
	Lower bounds on Leray numbers
	Extremal examples
	A negative answer to mainconjcollapsibilityversion

	Open questions

