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Abstract. We show that the symplectic and orthogonal character analogues of Ok-
ounkov’s Schur measure (on integer partitions) are determinantal, with explicit corre-
lation kernels. We apply this to prove certain Borodin–Okounkov–Gessel-type results
concerning Toeplitz+Hankel and Fredholm determinants; a Szegő-type limit theorem;
an edge Baik–Deift–Johansson-type asymptotical result for certain symplectic and or-
thogonal analogues of the poissonized Plancherel measure; and a similar result for
actual poissonized Plancherel measures supported on “almost symmetric” partitions.
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1 Introduction and main results

Background. Okounkov’s Schur measure [25], along with the time-extended Schur
process of Okounkov–Reshetikhin [26], are prototypical examples of discrete determi-
nantal point processes that have figured prominently in probability and statistical me-
chanics (the Kardar–Parisi–Zhang (KPZ) [17] universality class), combinatorics, enumer-
ative geometry, integrable hierarchies, and other areas. The Schur measure has been ex-
tended to free boundary (the pfaffian) cases in [2, 8], cylindric boundaries [11], and also
in other directions. For the combinatorial and probabilistic sides of the issue, mostly of
concern to us, see the review [13].

Here we are concerned with a so-called extension of the Schur measure to “root sys-
tem types other than A”. To wit, the classical Cauchy identities (orthogonality relations)
for the irreducible characters of the symplectic and orthogonal groups, pairing one such
function with a Schur polynomial, read as follows—see [23, 29] and references therein:

∑
λ

spλ(X)sλ(Y) = ∏
1≤i<j≤N

(1− yiyj) ∏
1≤i,j≤N

1
(1− yixj)(1− yix−1

j )
,

∑
λ

oλ(X)sλ(Y) = ∏
1≤i≤j≤N

(1− yiyj) ∏
1≤i,j≤N

1
(1− yixj)(1− yix−1

j )
.

(1.1)
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Here X = (x±1
1 , . . . , x±1

N ), Y = (y1, . . . , yN) are sets of variables/parameters (combinato-
rially, they are alphabets). The orthogonal identity above is the one for even orthogonal
groups; for the odd case one replaces X by X̃ = (x±1

1 , . . . , x±1
N , 1) and modifies the right-

hand side appropriately by multiplying by ∏1≤i≤N(1− yi)
−1. We can build probability

measures msp/o (/ stands throughout for or) on integer partitions out of them via

msp(λ) ∝ spλ(X)sλ(Y), mo(λ) ∝ oλ(X)sλ(Y) (1.2)

(viewing the x’s and y’s as numbers). These are normalized in the obvious way via (1.1).
In this note we show that msp and mo are determinantal measures: their n-point cor-

relation functions are given by determinants of simple kernels which we write explicitly.
These measures should be viewed analogously to Okounkov’s Schur measure [25]. More
precisely, they are certain “type B, C and D” analogues of Schur measures.

We further consider three applications: one to the study of certain Toeplitz+Hankel
determinants previously encountered in random matrix theory; the second and third
are asymptotic results where Kardar–Parisi–Zhang (KPZ)-type kernels and distributions
appear in the edge limit: the Airy2→1 and a certain dual, as well as the Airy kernel and
the classical Tracy–Widom GUE distribution.

Outline. In the rest of the Introduction we present the main results. We sketch the
proofs in Section 2, and make some concluding remarks in Section 3.

Main results. We now list the main results. All but Theorem 1.6 appear with detailed
proofs in [6]. Theorem 1.6 is new. We use throughout the standard notation language
associated to integer partitions and symmetric functions as can be found in [24]. Letters
like λ, µ, α, β are all reserved for partitions.

We find it convenient to use the language of specializations. A specialization ρ is just
a sequence of numbers (pn(ρ))n≥1—its values on the powersum symmetric functions—
assembled into the generating series H(ρ; z) := exp(∑n≥1 pn(ρ)zn/n). The values on the
complete homogeneous symmetric functions can be read from the equation H(ρ; z) =

∑k≥0 hk(ρ)zk. In this language, the Schur functions, (universal) symplectic, and orthogo-
nal characters are defined via the Jacobi–Trudi h-formulae1:

sλ(ρ) = det[hλi−i+j(ρ)],

spλ(ρ) =
1
2

det[hλi−i+j(ρ) + hλi−i−j+2(ρ)], oλ(ρ) = det[hλi−i+j(ρ)− hλi−i−j(ρ)]
(1.3)

with all determinants of size `(λ) (the length of λ).

1There are similar formulas in terms of the elementary symmetric functions en’s. See, e.g. [4]. We
also note we view such characters as lifted from being Laurent polynomials to the algebra of symmetric
functions.
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Fix two specializations ρ+, ρ− and consider the following (possibly complex) proba-
bility measures on partitions

msp(λ) = Z−1
sp spλ(ρ

+)sλ(ρ
−), mo(λ) = Z−1

o oλ(ρ
+)sλ(ρ

−) (1.4)

where the normalization constants are the lifted versions of the right-hand side of (1.1):

Zsp/o = exp ∑k≥1

(
pk(ρ

+)pk(ρ
−)

k ± p2k(ρ
−)

2k − p2
k(ρ
−)

2k

)
(we take + for sp and − for o). Our

main result is as follows.

Theorem 1.1. Assume that the specializations ρ± are such that k−1pk(ρ
±) = O(rk

±) for some
constants r± > 0 with min(1, 1/r+) > r− > 0. Fix ki ∈ Z + 1/2 ∀1 ≤ i ≤ n. Then the
measures msp and mo are determinantal:

msp/o({k1, . . . , kn} ⊂ {λi − i + 1/2}) = det[Ksp/o(ki, k j)]1≤i,j≤n (1.5)

with correlation kernels given by

Ksp(a, b) =
∫

z

∫
w

F(z)
F(w)

(1− w2)

(1− wz)(1− wz−1)

dzdw
(2πi)2za+3/2w−b+1/2 ,

Ko(a, b) =
∫

z

∫
w

F(z)
F(w)

(1− z2)

(1− wz)(1− wz−1)

dzdw
(2πi)2za+3/2w−b+1/2

(1.6)

where F(z) := H(ρ+;z)
H(ρ−;z)H(ρ−;z−1)

and the contours are simple closed counterclockwise curves
around 0 such that min(1/|w|, 1/r+, 1/r−) > |z| > |w| > r− > 0.

The contour integrations above, while analytical, have the simple combinatorial mean-
ing of coefficient extraction. In other words what we really obtain are the generating
series for the kernels. Nonetheless, they are quite useful in performing analytical com-
putations (like steepest descent analysis).

The first application we consider is to the study of certain Toeplitz+Hankel determi-
nants which appeared in random matrix theory [22] (and which are similar to the ones
of Baik–Rains [2] who study longest increasing subsequences of random involutions).

Start with a function f (z) = exp(R+(z) + R−(z)) = ∑k∈Z fkzk (the symbol)2, where
R±(z) = ∑k≥1 ρ±k z±k for appropriately chosen numbers (ρ±k )k≥1 (chosen so that the
exponents in the right-hand sides of Theorem 1.3 are absolutely convergent). Let f̌ (z) :=
f (−z)−1 having Fourier coefficients ( f̌k)k∈Z. Consider the following Toeplitz+Hankel
determinants:

D1
n = det[ fi−j + fi+j]0≤i,j≤n−1, D2

m = det[ f̌i−j − f̌i+j+2]0≤i,j≤m−1,

D3
n = det[ fi−j − fi+j+2]0≤i,j≤n−1, D4

m = det[ f̌i−j + f̌i+j]0≤i,j≤m−1.
(1.7)

These determinants can be written as observables for the measures msp/o, and lead
to the following symplectic/orthogonal variants of the Gessel formulae of [20].

2The fk’s are the Fourier coefficients of f , and f = exp R+ exp R− is its Wiener–Hopf factorization.
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Theorem 1.2. It holds that:

1
2

D1
n = ∑

λ:`(λ)≤n
spλ(ρ

+)sλ(ρ
−), D2

m = ∑
λ:λ1≤m

spλ(ρ
+)sλ(ρ

−),

D3
n = ∑

λ:`(λ)≤n
oλ(ρ

+)sλ(ρ
−),

1
2

D4
m = ∑

λ:λ1≤m
oλ(ρ

+)sλ(ρ
−).

(1.8)

Furthermore, a consequence of the above and the (lifted) Cauchy identities is the
following asymptotic Szegő-type result.

Theorem 1.3. It holds that:

lim
n→∞

1
2

D1
n = lim

m→∞
D2

m = exp ∑
k≥1

(
kρ+k ρ−k + ρ−2k −

k(ρ−k )
2

2

)
,

lim
n→∞

D3
n = lim

m→∞

1
2

D4
m = exp ∑

k≥1

(
kρ+k ρ−k − ρ−2k −

k(ρ−k )
2

2

)
.

(1.9)

Using different methods, the result was first proved by Johansson [22], and reproved
subsequently by Basor–Ehrhardt, Dehaye and Deift–Its–Krasovsky in [5, 18, 19].

We further have a Borodin–Okounkov-type [14] result of the form Toeplitz+Hankel =
Fredholm—see also [31]. It appears in [5] in a different purely analytical form. We note
that the right-hand sides below are Fredholm determinants.

Theorem 1.4. It holds that:

D2
m = Zsp · det(1− Ksp)`2{m+ 1

2 ,m+ 3
2 ,... },

1
2

D4
m = Zo · det(1− Ko)`2{m+ 1

2 ,m+ 3
2 ,... } (1.10)

where Zsp/o are as above; and where Ksp/o are as in Theorem 1.1 and we assume the same
conditions on ρ± as in thm. cit.

Similar results hold for D1 and D3 via duality between largest parts and lengths of
partitions. We omit the details.

We remark that all of the above is purely algebraic combinatorial. I.e., if one removes
all the analytical convergence conditions, the statements still make sense at the level of
formal power series. In particular it is entirely possible that the analytical conditions we
impose for convergence can be relaxed.

As a different type of application, for a positive real θ, we consider the measures

Psp(λ) ∝ spλ(pl2θ)sλ(plθ), Po(λ) ∝ oλ(pl2θ)sλ(plθ) (1.11)

where plθ is the Plancherel specialization sending the first powersum p1 to θ and all the
rest to 0. These are signed measures3 (in some sense, analogues of Okounkov’s Schur

3Nevertheless, for fixed θ > 0, Psp/o(λ) become positive for |λ| large enough—see also (2.6).
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version of the poissonized Plancherel measure on partitions) whose edge asymptotic be-
havior (as θ → ∞) we analyze in detail. See [6] for the bulk behavior as well. We believe
that (at the edge) the behavior of these measures is universal, common to all symplec-
tic/orthogonal Schur measures having certain properties. The following theorem is then
an analogue of the Baik–Deift–Johansson [1] theorem on (poissonization of) the longest
increasing subsequence of random permutations.

Theorem 1.5. We have:

lim
θ→∞

Psp

(
λ1 − 2θ

θ1/3 ≤ s
)
= det(1−A+

2→1), lim
θ→∞

Po

(
λ1 − 2θ

θ1/3 ≤ s
)
= det(1−A−2→1)

(1.12)
where the Fredholm determinants on the right are on L2(s, ∞) of the operators given by the
following kernels:

A±2→1(x, y) :=
∫ ∞

0
Ai(x + s)Ai(y + s)ds±

∫ ∞

0
Ai(x− s)Ai(y + s)ds (1.13)

with Ai is the Airy Ai function (solution of y′′ = xy decaying exponentially at ∞).

We can prove more: for n = 1, 2, 3, 4 . . . fixed, the largest first n points of {λi − i} in
the appropriate (edge) scaling of Theorem 1.5 converge, in the sense of finite dimensional
distributions, to the first n points of the A+

2→1 process for Psp and the A−2→1 process for
Po. We omit the statement for brevity.

Let us remark that A+
2→1 is the Airy2→1 kernel of Borodin–Ferrari–Sasamoto [12]. It

appears in the scaling limit of TASEP with half-flat initial conditions—see also [9]. The
associated distribution (Fredholm determinant) above interpolates between the Tracy–
Widom [30] GUE distribution and the corresponding GOE [32] distribution—see [12].

The kernel A−2→1 appears to be new, and could be described as the dual (in the sense
of symmetric functions) of A+

2→1.
Finally, let us consider the following sets of almost-symmetric partitions:

A = {α = (a1, a2, . . . |a1 + 1, a2 + 1, . . . )}, B = {β = (b1 + 1, b2 + 1, . . . |b1, b2, . . . )}
(1.14)

where the coordinates above are Frobenius coordinates [24]. Clearly the partitions in B are
the transposed of those in A. Fix again a θ > 0 and consider the (actual) probability
measures on A, B given by the poissonized dimensions of the respective (symmetric
group) representations (i.e. dim λ is the number of standard Young tableaux of shape λ):

PA(α) = e−θ2/2 θ|α| dim α

|α|! , PB(β) = e−θ2/2 θ|β| dim β

|β|! . (1.15)

(Note the weights are identical, but the supports are different for PA, PB.) We have
the following Baik–Deift–Johansson-type asymptotic result for the largest part of such
partitions.
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Theorem 1.6. We have:

lim
θ→∞

PA

(
α1 − 2θ

θ1/3 ≤ s
)
= lim

θ→∞
PB

(
β1 − 2θ

θ1/3 ≤ s
)
= F2(s) := det(1−A2) (1.16)

where F2(s) is the Tracy–Widom GUE distribution [30] given as the Fredholm determinant on
L2(s, ∞) of the Airy kernel A2(x, y) :=

∫ ∞
0 Ai(x + s)Ai(y + s)ds.

As above, we can state and prove a more general result showing convergence of the
largest (few) parts of such partitions to the corresponding particles in the Airy ensemble.
We omit the statements for brevity.

2 A sketch of the proofs

Proofs of Theorems 1.2 to 1.4. The argument that proves Theorem 1.2 is similar to that
used by Gessel [20]. It is a simple application of the Cauchy–Binet identity together
with the Jacobi–Trudi (both the h and e ones) formulae for the Schur, symplectic, and
orthogonal functions. The missing link is to observe, as Tracy–Widom have done for the
Schur measure [31], that the Fourier coefficients of the logarithm of f , the numbers ρ±k
for k ≥ 1, naturally define specializations ρ± via the formulas pk(ρ

±) = ρ±k .
Theorem 1.3 is just a consequence of the symplectic and orthogonal Cauchy identities

(the identities (1.1) where we lift the X, Y parameters to more generic specializations by
just replacing the powersums pn(X), pn(Y) by the ones for the specializations). The
restricted Cauchy sums on the right-hand side of the equations of Theorem 1.2 just go to
the appropriate unrestricted Cauchy sums in the limit, and the latter are then equal to the
Cauchy kernels Zsp/o (by definition the right-hand sides of Theorem 1.3, and nothing
else than the lifts of the right-hand sides of (1.1) to arbitrary specializations).

Finally, Theorem 1.4 is based on the following observation of Borodin–Okounkov [14]:
on one hand, D2 and D4 are gap probabilities (that no parts of λ are bigger than m) of
the appropriate symplectic/orthogonal measures via the Gessel-like formulae of Theo-
rem 1.2. On the other hand, since by our main Theorem 1.1 such measures are deter-
minantal, gap probabilities are, by inclusion–exclusion, Fredholm determinants (up to the
normalizing constants Zsp/o needed to make the restricted Cauchy sums actual proba-
bilities).

Proof of Theorem 1.1. We now sketch the proof of our main theorem. Aided by a con-
struction of [4] and the analogous Schur result and techniques of Okounkov [25], we use
infinite wedge formalism to construct our correlation functions (observables) as certain
expectations inside fermionic Fock space. A Wick lemma then gives the determinantal
structure. To sketch the proof, we concentrate on the symplectic measure. The orthogo-
nal case can be arrived at combinatorially by applying the symmetric function involution
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ω sending ω(hn) = en, as in this case ω(spλ) = oλ′ . We recall below basic facts about
fermionic Fock space, see [25, 4, 6] for more details.

We denote by F the fermionic Fock space, the Hilbert space spanned by the orthonor-
mal basis |S〉, where S ⊂ Z′ := Z+ 1/2 with |S∩Z′+| < ∞ and |Z′−− S| < ∞. Elements
of S are particles. We use bra–ket notation throughout. A basis vector |S〉 is the semi-
infinite wedge product |S〉 = s1 ∧ s2 ∧ s3 ∧ · · · where s1 > s2 > s3 > · · · are particle
positions. States S are in 1–1 correspondence with pairs (λ, c), where λ is a partition and
c ∈ Z is the charge. The correspondence is (λ, c)←→ S(λ, c) := {λi− i + 1/2+ c, i ≥ 1}.
It implies the grading F = ⊕c∈ZFc where Fc is spanned by partitions λ of charge
c, which we denote by |λ, c〉. Importantly, we omit the c if c = 0 and write |λ〉 for
|λ, 0〉 ∈ F0. In fact, we are only interested in the subspace F0. The vector |0〉, corre-
sponding to the empty partition (of charge 0), is called the vacuum vector.

For k ∈ Z′, define the free fermionic creation operator ψk|S〉 := k ∧ |S〉 with ψ∗k its
adjoint under the inner product 〈λ, c|µ, d〉 = δλ,µδc,d. Roughly speaking, ψk tries to add
a particle to the configuration S, while ψ∗k tries to remove one (with an appropriate sign
in both cases). Both kill the vector if a particle is there at site k (for ψk) or is absent (for
ψ∗k ). These operators satisfy the canonical anti-commutation relations (CAR) {ψk, ψ∗`} =
δk,`, {ψk, ψ`} = {ψ∗k , ψ∗`} = 0, k, ` ∈ Z′ and we collect them into generating series ψ(z) :=
∑k∈Z′ ψkzk, ψ∗(w) := ∑k∈Z′ ψ

∗
k w−k. We build the bosonic operators αn out of fermions

as follows: αn := ∑k∈Z′ ψk−nψ∗k for n = ±1,±2, . . . We have α∗n = α−n, and αn|0〉 =
0, n > 0. These operators satisfy the canonical commutation relations (CCR) [αn, αm] =
nδn,−m and commute thusly with the fermionic fields: [αn, ψ(z)] = znψ(z), [αn, ψ∗(w)] =
−wnψ∗(w). Further define the following so-called half-vertex operators Γ±(ρ), Γsp±(ρ) (for
ρ a specialization) by

Γ±(ρ) := exp

(
∑
n≥1

pn(ρ)α±n

n

)
, Γsp±(ρ) := exp ∑

n≥1

1
n

(
pn(ρ)α±n +

α±2n

2
− α2

±n
2

)
.

(2.1)
They have the property of having (skew) Schur functions and (lifted) symplectic charac-
ters as matrix elements (see [4] for the latter), as follows:

sµ/λ(ρ) = 〈λ|Γ+(ρ)|µ〉 = 〈µ|Γ−(ρ)|λ〉, spλ(ρ) = 〈0|Γsp+(ρ)|λ〉 = 〈λ|Γsp−(ρ)|0〉. (2.2)

and commute among themselves and with the fermionic fields ψ, ψ∗ thusly4:

Γsp+(ρ
+)Γ−(ρ−) = H(ρ+; ρ−)hsp(ρ

−)Γ−(Y)Γ−1
+ (ρ−)Γsp+(ρ

+),

Γ±(ρ−)ψ(z) = H(ρ−; z±1)ψ(z)Γ±(ρ−), Γ±(ρ−)ψ∗(w) = H(ρ−; w±1)−1ψ∗(w)Γ±(ρ−),

Γsp+(ρ
+)ψ(z)Γ−1

sp+(ρ
+) = H(ρ+; z)ψ(z)Γ−1

+ (z), (2.3)

Γsp+(ρ
+)ψ∗(w)Γ−1

sp+(ρ
+) = (1− w2)H(ρ+; w)−1ψ∗(w)Γ+(w)

4We only list the relevant commutations for our purposes.
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where H(ρ; ρ′) := exp ∑n≥1 pn(ρ)pn(ρ′)/n and hsp(ρ) := exp ∑n≥1

(
p2n(ρ)

2n − p2
n(ρ)
2n

)
. We

note in passing the first relation above already implies the symplectic Cauchy identity.
To find the correlation functions, starting from the simple observation that ψkψ∗k |λ〉

picks out only the configurations |λ〉 satisfying k ∈ {λi − i + 1/2}, we can write the n-

point correlation functions as 1
Z

[
z

k1
1 ...zkn

n

w
k1
1 ...wkn

n

] 〈
Γsp+(ρ+) (∏n

i=1 ψ(zi)ψ
∗(wi)) Γ−(ρ−)

〉
where

[·] stands for coefficient extraction and we used 〈A〉 := 〈0|A|0〉. Moreover, we have the
Wick lemma5〈

Γsp+(ρ
+)

(
n

∏
i=1

ψ(zi)ψ
∗(wi)

)
Γ−(ρ−)

〉
= det

i,j

〈
Γsp+(ρ

+)T (ψ(zi)ψ
∗(wj))Γ−(ρ−)

〉
(2.4)

which follows from the determinantal evaluation

det
i,j

1
(1− wizj)(1− wiz−1

j )
=

∏i<j(zi − zj)(wi − wj)(1− wiwj)(1− z−1
i z−1

j )

∏i,j(1− wizj)(1− wiz−1
j )

. (2.5)

The matrix elements inside the determinant can be evaluated using commutation rela-
tions above between the Γ operators and the ψ(z), ψ∗(w)’s leading to the stated generat-
ing series of our kernels. The fact that coefficient extraction can be turned into contour
integrals is routine and this finishes the proof.

Proof of Theorem 1.5. The proof goes via classical steepest descent analysis. It consists
of two parts. The first part is to show that the kernels for Psp/o, determinantal with
F(z) = exp θ(z − z−1) in the notation of Theorem 1.1, converge to the corresponding
A±2→1 kernels. For the edge limit, we scale the particle positions a, b in the kernel K(a, b)
as (a, b) = 2θ + θ1/3(x, y) as θ → ∞. In this asymptotic regime, it can be proven via a by
now standard (almost “folklore”) limiting argument that in the integral representation
of K(a, b) the only non-vanishing contribution comes from a neighborhood of size θ1/3

of the double critical point z = 1 of the action S(z) = z − z−1 − 2 log z. Scaling then
the integration variables as (z, w) = (eζθ−1/3

, eωθ−1/3
), this contribution becomes finite. It

becomes the standard Airy 2-to-1 kernel of [12] in the case of the sp measure (and A−2→1
otherwise), in a slightly different representation written as a double contour integral—
see [6, 12] for the actual formula and the first reference for more details (along with
another slightly different proof starting from Bessel-like kernels).

The second part is to show that the finite-size discrete Fredholm determinants con-
verge to the Fredholm determinants of the Airy-like operators. This uses the same anal-
ysis as above plus a Hadamard-type bound on determinants. The argument is standard,

5Recall the time ordering notation T (ψ(zi)ψ
∗(wj)) = ψ(zi)ψ

∗(wj) if i ≤ j and = −ψ∗(wj)ψ(zi) other-
wise.
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see e.g. [15]. Moreover, the same argument can be used to prove multi-point results: the
first few parts of the discrete models converge to the first few parts in the continuous
ensemble—see again [15] for the classical Plancherel measure, but the structure of the
argument is the same.

Proof of Theorem 1.6. We first show how to obtain said Plancherel measures from
symplectic and orthogonal ones. First one has (see e.g. [4] and references therein)

spλ(ρ) = ∑
α∈A

(−1)|α|/2sλ/α(ρ), oλ(ρ) = ∑
β∈B

(−1)|β|/2sλ/β(ρ). (2.6)

Putting ρ = 0 gives spλ = (−1)|λ|/2 if λ ∈ A and 0 otherwise (similarly for o and
B). Thus we choose specializations for msp/o as ρ+ = 0, ρ− = pliθ (the imaginary unit
is needed to cancel the sign just above). The measures are then determinantal with
correlations given by Theorem 1.1 with F(z) = exp[−iθ(z + z−1)]. Changing −iz 7→ z
(and similarly for w) changes the action to the one from the previous proof and then
all the above arguments apply. One difference is that under this latter rotation, the
factor (say for the sp case) 1−w2

(1−wz)(1−w/z) inside the integral changes to 1+w2

(1+wz)(1−w/z) and

then only the term (1− w/z)−1 contributes asymptotically. This is responsible for the
“collapse” to the Airy 2 kernel (as opposed to the more general ones from Theorem 1.5).

3 Concluding remarks

In this paper we showed how symplectic and orthogonal characters lead to (a priori
complex) probability measures which are in turn determinantal point processes. We
have also shown how these results have interesting finite and asymptotic applications.
We make a few concluding remarks.

First, other than the asymptotic statements of Theorems 1.5 and 1.6, the other proofs
are or can be made combinatorial. Furthermore, the Szegő limit Theorem 1.3 can even
be made bijective. For specializations into variables and given the Gessel formula (itself
combinatorially following from Cauchy–Binet), it is equivalent to the classical Cauchy
identity from (1.1). The latter has a purely combinatorial proof in terms of tableaux
insertion algorithms. For the symplectic version of such algorithms see Sundaram’s
thesis [28].

Second, consider the following Cauchy–Littlewood identities [24], proven bijectively
(using insertion algorithms) by Burge [16]:

∑
λ∈A

sλ(x1, . . . , xN) = ∏
i<j

(1 + xixj), ∑
λ∈B

sλ(x1, . . . , xN) = ∏
i≤j

(1 + xixj). (3.1)
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They lead to natural measures on partitions, and such measures are determinantal (first
proved by Rains [27, Section 7], the result is also a corollary of Theorem 1.1). The case
xi = θ/N, N → ∞ leads to our Plancherel measures PA/B. More mysteriously, the case
of all xi = 1 (in fact even the generic case) yields a bijection between size N or N + 1
Aztec diamonds and certain Young tableaux (symmetric plane partitions with diagonal
slice in A or B), as both sets of objects are in bijection with 0− 1 triangles of numbers: one
bijection is via the Burge correspondences [16], the other via a growth diagram version
of the shuffling algorithm as described in [7]. It would be interesting to see how one
can exploit this. The asymptotic analysis of the general such measures would also be
interesting to perform.

Third, the measures PA/B can be viewed, using the terminology of [8], as one free-
boundary Schur measures, and their asymptotic analysis seems to complete the one for
such measures introduced in the work of Baik–Rains [2, 3]. See also [8] for a similar take
on the rest of such free boundary measures.

Fourth and connected to the previous paragraph, it would be interesting to give
measures PA/B (along with the generalizations above-described) corner-growth/longest
increasing subsequence interpretations similar to the classical ones of Baik–Rains [2]. In
fact, this would be interesting in full generality for symplectic and orthogonal measures.
One partial answer to the latter can be found in [10]. What seem to be missing are
appropriate Greene (or even Schensted) theorems [21].
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