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Abstract. We prove a conjecture of Lecouvey, which proposes a closed, positive com-
binatorial formula for symplectic Kostka–Foulkes polynomials, in the case of rows of
arbitrary weight. To show this, we transform the cyclage algorithm in terms of which
the conjecture is described into a different, more convenient combinatorial model, free
of local constraints. In particular, we show that our model is governed by the situation
in type A. We expect our approach to lead to a proof of the conjecture in the general
case.

Résumé. Nous prouvons une conjecture de Lecouvey proposant une formule close
positive pour les polynômes de Kostka–Foulkes symplectiques, dans le cas des lignes
de poids quelconque. Pour cela, nous transformons l’algorithme de cyclage grâce
auquel la conjecture est énoncée en un modèle combinatoire plus simple, sans con-
traintes locales. En particulier, nous démontrons que notre modèle est contrôlé par la
situation en type A. Cette approche permet d’entrevoir une preuve de la conjecture
dans le cas général.

Keywords: combinatorial representation theory, Kostka–Foulkes polynomials, Lecou-
vey’s conjecture, charge, Type C

1 Introduction

The main motivation for this work is understanding an interplay between combinatorics
and representation theory which is highly manifested in the structure of so-called Kostka–
Foulkes polynomials. Let g be a complex, simple Lie algebra of rank n. Kostka–Foulkes
polynomials Kλ,µ(q) are defined for two dominant integral weights as the transition coef-
ficients between two important bases of the ring of symmetric functions in the variables
x = (x1, ..., xn) over Q(q): Hall–Littlewood polynomials Pλ(x; q) and Weyl characters
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χµ(x). They are q-analogues of weight multiplicities [5], affine Kazhdan–Lusztig poly-
nomials [11, 5], and appear in various other situations in geometric and combinatorial
representation theory (see [14] and references therein). We refer the reader to [2] for
a precise definition of Kostka–Foulkes polynomials and recommend [14] as a thorough
reference.

Due to their interpretation as Kazhdan–Lusztig polynomials, we know that Kostka–
Foulkes polynomials have nonnegative integer coefficients. This fact leads to one of the
most important unsolved problems in combinatorial representation theory:

Problem 1.1. Find a set T (λ, µ) and a combinatorial statistic ch : T (λ, µ) → Z≥0 such
that the Kostka–Foulkes polynomial Kλ,µ(q) is the generating function of T (λ, µ) with
respect to ch. In other words find T (λ, µ) and ch such that

Kλ,µ(q) = ∑
T∈T (λ,µ)

qch(T). (1.1)

Since Kλ,µ(q) are q-deformations of weight multiplicities then #T (λ, µ) = Kλ,µ(1) is
the dimension of the µ-weight space of the irreducible, finite dimensional g-module of
highest weight λ. In particular, in order to tackle Problem 1.1 and find an appropriate set
T (λ, µ), it seems natural to seek for an object which parametrizes the aforementioned
µ-weight space of the irreducible, finite dimensional g-module of highest weight λ. This
approach turned out to be very succesful in type An−1, that is when g = sl(n, C). In this
case dominant integral weights are identified with partitions of at most n− 1 parts, and
a natural candidate for T (λ, µ) is the set SSYT(λ, µ) of semistandard Young tableaux
of shape λ and weight µ. In this context, Foulkes conjectured the existence of such a
statistic [3], which was explicitly found by Lascoux and Schützenberger [7]. They called
their statistic charge (which explains our abbreviation ch used also in the general context
of arbitrary type) and established the celebrated formula of Problem 1.1 in type An−1.
A thorough introduction to Kostka–Foulkes polynomials in type An−1 and the charge
statistic from a purely combinatorial point of view is carried out in [12]. We refer the
reader to [1] for a beautiful exposition and proof of (1.1), which makes use of a recursive
formula for computing Kostka–Foulkes polynomials due to Morris [13].

In this work, we focus on Problem 1.1 for type Cn, that is, in case of the symplectic Lie
algebra g = sp(2n, C). To the best of our knowledge this is the only case of Problem 1.1
having an explicit conjectural solution, which was formulated by Lecouvey in [9]. In this
case, the dominant integral weights λ, µ can again be identified with partitions of at most
n parts. The candidate for the set T (λ, µ) which features in Lecouvey’s conjecture is the
set of symplectic tableaux, which we will denote by SympTabn(λ, µ), and which are also
known as Kashiwara–Nakashima tableaux [4]. These are defined to be semistandard



Symplectic Kostka–Foulkes polynomials I 3

Young tableaux with some additional constraints (see [9]) and entries in the ordered
alphabet

Cn = {n < · · · < 1 < 1 < · · · < n},
such that the shape of a tableau is given by λ and its weight by µ. Here, the weight of
a tableau with entries in Cn is defined slightly differently than the weight of a tableau
of type An−1 and is given by the vector (an, ..., a1), where ai is the difference between
the number of occurrences of i’s and i’s in T. Lecouvey defined a charge statistic chn :
SympTabn(λ, µ)→ Z≥n by analogy with the situation in type An−1, which makes use of
the column insertion of a letter into a semistandard tableau. See the full version of this
work [2] or [9] for more details.
Before we describe Lecouvey’s conjectural solution to Problem 1.1 involving cyclage
it is worth mentioning that a solution to Problem 1.1 in type Cn in the weight zero
case has been given recently in [10, Theorem 6.13], using the combinatorial model for
T (λ, µ) in terms of the so-called King tableaux introduced in [6]. However, this relies on
an interpretation of the Kostka–Foulkes polynomials in terms of generalized exponents
which only holds in this special case of weight zero, so that there is little hope to tackle
the general weight case with this approach.

1.1 Main result and methodology

In order to define the statistic chn : SympTabn(λ, µ) → N and formulate his conjecture,
Lecouvey used a symplectic version of column insertion, which he introduced in [8],
to define a symplectic cyclage operation CycC which transforms a symplectic tableau
T ∈ SympTabn into a symplectic tableau CycC(T) ∈ SympTabm for m ≥ n. The statistic
chn is defined as follows. Let T ∈ SympTabn be a symplectic tableau. In [9], Lecouvey
showed that there exists a non-negative integer m such that Cycm

C (T) is a column C(T)
of weight zero. We denote by m(T) the smallest non-negative integer with this property.
For a symplectic column C of weight zero we set EC = {i ≥ 1|i ∈ C, i + 1 /∈ C}. The
charge of C is defined by

chn(C) = 2 ∑
i∈EC

(n− i),

and the charge of an arbitrary symplectic tableau T is defined by

chn(T) = m(T) + chn(C(T)).

Lecouvey [9] conjectured the following solution of Problem 1.1 in type Cn:

Conjecture 1.2. Let µ, λ be partitions with at most n parts. Then

KCn
λ,µ(q) = ∑

T∈SympTabn(λ,µ)
qchn(T). (1.2)
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Our main result reads as follows.

Theorem 1.3. Let λ = (p) and µ = (µn, . . . , µ1) be an arbitrary partition. Then Conjeture 1.2
holds true:

KCn
λ,µ(q) = ∑

T∈SympTabn(λ,µ)
qchn(T).

A pivotal point in our methodology, and one which we expect will have impact on
the study of the general case of Conjeture 1.2, is a reformulation of Lecouvey’s construc-
tion in the setting of Theorem 1.3 by providing a new algorithm to compute Cyck

C(T)
for arbitrary integer k. The big advantage of our approach is that in Algorithm 2, which
completes this task, we are able to eliminate local constraints which appear in the origi-
nal construction in two different contexts:

• we need to compute Cyck−1
C (T) in order to compute Cyck

C(T);

• for each column of Cyck−1
C (T), we need to insert boxes recursively into consecutive

subcolumns of size 2.

In order to eliminate the second constraint we give a formula for inserting an entry into
a whole column at once, which is given by [2, Proposition 3.3]. Although more techni-
cal in appearance, our new definition allows us to have a full grasp of the symplectic
cyclage procedure. We show in Proposition 2.5 that for a partition λ = (p) which con-
sists of one row and for an arbitrary partition µ the symplectic tableau Cyck

C(T), where
T ∈ SympTabn(λ, µ), is given by Algorithm 2. The main philosophy of Algorithm 2 is
that in order to compute Cyck

C(T), it is enough to only apply CycA to certain standard
Young tableaux and then apply a very simple function which changes the entries of the
outcome.

As an application, we are able to compute chn(T) directly from T and, using a simple
recurrence for Hall–Littlewood polynomials of type C proved by Lecouvey in [9, Theo-
rem 3.2.1.], we deduce Theorem 1.3. We believe that our strategy might lead us to the
solution of Conjeture 1.2 in the full generality. Indeed, the restriction λ = (p) is due
to the fact that symplectic tableaux of row shape coincide with semistandard tableaux
with entries in the alphabet Cn (see Proposition 1.4). In particular, there exists a unique
standard tableau of shape (p), and Algorithm 2 consists in applying CycA multiple times
to this unique tableau. It seems likely that in the more general case there exists a “right”
labelling of the boxes of any symplectic tableau T of arbitrary shape, such that a very
similar procedure could be followed to compute Cyck

C(T) and therefore chn. So far, this
question remains open and we will be investigating this question in the future. The full
version of this work, [2], which contains the full proofs of all the results presented in this
extended abstract, will be submitted elsewhere.
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1.2 Notation

A composition α � n of size n ∈ Z≥0 is a sequence of non-negative integers α :=
(α1, α2, . . . ) ∈ Z

Z>0
≥0 such that ∑i αi = n and such that αi = 0 implies that αi+1 = 0

for any i ∈ Z>0 In particular, there are only finitely many non-zero αi and we denote
their number by `(α) calling it the length of composition α. We will also use the notation
|α| = n. A partition is a composition with non-decreasing entries. We denote the set
of compositions of size n by Compn, the set of partitions of size n by Partn and we set
Comp :=

⋃
n Compn, respectively Part :=

⋃
n Partn. To any α ∈ Compn we associate its

diagram defined by Dα = {(i, j) : 1 ≤ i ≤ α−j, j ≤ −1} ⊂ Z>0 ×Z<0. The elements
of Dα, referred to as boxes, are linearly ordered by the so-called reading order, which is
a variant of lexicographic order: (i1, j1) ≤ (i2, j2) ⇐⇒ j1 > j2 or j1 = j2, i1 < i2. For
an ascending chain (A,≺), that is a linearly ordered alphabet with minimal element a
and for b ∈ A we denote the b-th box of Dα in reading order by �b, or by b whenever
it does not lead to a confusion. For any composition α � n we define a tableau T of
shape α and entries in A to be a filling of the boxes of the diagram of α by elements
from alphabet A, that is a map T : Dα → A. The content of a tableau T of shape α is
the multiset of its entries. When A is a countable ascending chain (with the minimal
element a), we say that a tableau has weight β = (β1, β2, . . . ) when its content is given
by the multiset {aβ1 , (a+�)β2 , . . . , (a+�k)βk+1 , . . . }, where a+� denotes the successor of
a, and a+�k+1 := a +�k +�. We denote the set of semistandard Young tableaux of shape
α and weight β with entries in A by SSYTA(α, β).

Let n be a positive integer and λ, µ partitions with at most n parts. The following
proposition justifies why we do not need the defining properties of symplectic tableaux
in this work. It is a direct consequence of Definition in [9].

Proposition 1.4. Let λ = (p) and µ be a partition. Then

SympTabn(λ, µ) =
⋃

k1,...,kn∈Z≥0

SSYTCn(λ, (kn + µn, kn−1 + µn−1, . . . , k1 + µ1, k1, . . . , kn)).

We are interested in the set of symplectic tableaux since these objects give a natural
basis of the µ weight space of an irreducible g–module of highest weight λ in type C. In
particular, KCn

λ,µ(1) = | SympTabn(λ, µ)|.

2 The shift and content algorithms.

In this section we will construct the new algorithm computing Cyck
C(T) for arbitrary

k > 0 and for T ∈ SympTab((p)), that is T is a symplectic tableau of row shape. Our al-
gorithm does not rely on the particular form of Cyck−1

C (T), which allows us to overcome
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the problem of controlling many local dependencies present in Lecouvey’s original algo-
rithm. This construction is the main ingredient in the proof of Theorem 1.3. Reordering
the parts of a composition α � n gives a partition λ ` n. Note that λ can be also seen
as the result of lifting all the boxes in each column of α so that after the lift, the boxes
in the given column are lying in consecutive rows starting from the first row. For this
reason, we denote by grav the map Compn → Partn, α 7→ λ and call it the gravity map.
This map is naturally also defined on tableaux.

2.1 Shifting

n ∈ Z≥0 and define shift : Compn → Compn as follows

shift(α) =

{
α if α = (1l, 0, . . . ) for some l ∈ Z≥0;
α− ei + ei+1 otherwise;

where ei = ( 0, . . . , 0︸ ︷︷ ︸
i− 1 times

, 1, 0 . . . ) and i = min{j | αj = maxk αk}. We define the operator

simp : Comp×Part→ Comp×Part

by the following recursive algorithm:

Algorithm 1 Defining simp(α, µ).

Input: A partition µ and a composition α.
Output: A pair (β, ν) ∈ Comp×Part.

β = α

ν = µ

while max βk = ν1 do
ν = ν \ ν1
β = β \max βk

end while

We extend the domain of the operator shift : Comp×Part→ Comp×Part by:

shift(α, µ) =

{
(shift(α), µ) if (α, µ) 6= simp(α, µ);(
shift

(
simp(α, µ)1

)
, simp(α, µ)2

)
otherwise;

where simp(α, µ)i denotes the i-th coordinate of simp(α, µ). For the geometric intuition
behind these definitions, see [2, Section 2.4].



Symplectic Kostka–Foulkes polynomials I 7

Lemma 2.1. [2, Lemma 2.6] For any pair (α, µ) ∈ Comp×Part there exists an integer m and
a partition ν such that shiftm(α, µ) = ((1l), ν) and is a fixed point of shift (for some l ≥ 0), that
is ν1 6= 1.

We define

mµ(α) = min{m| shiftm+1(α, µ) = shiftm(α, µ)}. (2.1)

Corollary 2.2. [2, Corollary 2.7]. In the special case α = (p), |µ| ≤ p we have

mµ(α) = ∑
i
(i− 1)µi +

(p− |µ|)(p− |µ|+ 2`(µ)− 1)
2

.

2.2 The content function.

Given a composition α and two boxes b and b′ in α such that b < b′ in the reading order,
their distance in α is defined by

δα(b, b′) = rowα(b′)− rowα(b)− χ
(

colα(b) ≥ colα(b′)
)
,

where, for a condition C , we define χ(C ) = 1 if C is satisfied, and χ(C ) = 0 oth-
erwise, and rowk(s) and colk(s) denote the row and column index of s counted from
top to bottom and from left to right, respectively. In Algorithm 2 we define a tableau
which we show to be equal to Cyck(T). Note that Algorithm 2 decomposes the set of
boxes into two disjoint sets. The first set contains the boxes which had no associated
partners; we call such a box b a single. All the other boxes are matched into pairs by
associating their partners; for such a box b we denote by partner(b) its partner (note that
partner(partner(b)) = b).

Example 2.3 (Weight zero). Let T be a tableau of shape (2q) and weight zero (note that
all tableaux of weight zero must have an even number of boxes). We may label its boxes
by elements in the interval [q, q] ⊂ C. We have α = shiftk((2q), 0)1 = shiftk((2q)), and
the content of a given box in Tk is given by

Tk(S) =

{
T(S) + δα(S, S) if S > 0,

Tk(S) if S < 0.

Boxes S and S are always partners, and they will hence have opposite contents in Tk
for each k ≤ m(T).
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Algorithm 2 Defining the tableau Tk.

Input: Nonnegative integers k, k1, . . . , kn and a partition µ = (µn, . . . , µ1).
Output: The tableau Tk : [1, |α|]→ C of shape α.

p = ∑n
i=1(2ki + µi)

α = shiftk((p), µ)1
nred = `(µ)− `(shiftk((p), µ)2) . nred counts the number of reductions performed
so far
R = n− nred+1
Iα = {n + nred

kn , . . . , r + nred
kr , r− 1 + nred

kr−1+µr−1 , . . . , 1 + nred
k1+µ1 , (1 +

nred)k1 , . . . , (n + nred)kn}
fα : [1, |α|]→ Iα s.t. fα is the unique non-decreasing bijection . fα is the natural
labeling of elements in the multiset Iα

D = min{S ∈ [1, |α|] | fα(S) is unbarred} . D = ∑n
i ki + ∑r−1

i µi + 1
D′ = max{S ∈ [1, |α|] | fα(S) is barred} . D′ = ∑n

i ki + ∑r−1
i µi

M = 1
while D ≤ |α| do

partners = False
X = fα(D) + δα(D′, D)
while partners == False do

if X < M + nred or M ≥ R then
partners = True
Tk(D′) = X, Tk(D) = X (the boxes D′ and D are said to be partners)
D = D + 1, D′ = D′ − 1

else
Tk(S) = M + nred for all S ∈ [D′ − µM + 1, D′]
D′ = D′ − µM
M = M + 1

end if
end while

end while

Example 2.4.

Let T = 3 3 3 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 3 .

Then n = 3, (k3, k2, k1) = (1, 3, 4) and µ = (µ3, µ2, µ1) = (3, 2, 1). We would like
to compute T78. Since p = 22, we know that α = shift78((22), µ)1 which is equal to
(2, 2, 3, 4, 3, 3, 2). Moreover shift78((22), µ)2 = (2, 1), thus nred = 1, R = 3 and Iα =

{4, 35, 25, 24, 33, 4}.
Let us first assign labels to all the boxes in α according to the reading order:
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1 2

3 4

5 6 7

8 9 10 11

12 13 14

15 16 17

18 19

.

Note that at the beginning of our algorithm D = 12, D′ = 11 and M = 1. We perform
the algorithm described above to find a partner box for 12 in α and to calculate their
contents. Since

δα(11, 12) = 0,

we have that X = fα(12) + δα(11, 12) = 2 = M + nred. Therefore 12 and 11 are not
partners, and T78(11) = 2, D′ = 10, M = 2. Thus 11 is a single and we are still looking
for a partner for 12. X = fα(12) + δα(10, 12) = 2 < 3 = M + nred now, which means
that partner(12) = 10 so Tk(12) = Tk(10) = 2 and D = 13, D′ = 9. Similarly as before
partner(13) = 9 so Tk(13) = Tk(9) = 2 and D = 14, D′ = 8. At this step our tableau has
the following form:

2 2 2

2 2

.

Note that now
δα(8, 14) = 1,

so 8 and 14 are not partners since X = fα(14) + δα(8, 14) = 2 + 1 = M + nred. Therefore
8 and 9 are singles and T78(7) = T78(8) = 3, D′ = 6, M = 3. But now M ≥ 3 = R so our
algorithm will assign partners at every step: (14, 6), (15, 5), (16, 4), (17, 3), (18, 2), (19, 1).
Moreover, the distances between partners are as follows:

δα(6, 14) = δα(5, 15) = 2,
δα(4, 16) = 3,
δα(3, 17) = 4,
δα(2, 18) = 5,
δα(1, 19) = 6.
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Since

fα(6) = fα(5) = 2,
fα(4) = fα(3) = fα(2) = 3,

fα(1) = 4,

we obtain the following tableau T78:

10 8

7 6

4 4 3

3 2 2 2

2 2 4

4 6 7

8 10

.

In [2], we show the following proposition, which is the key ingredient in the proof of
our main result.

Proposition 2.5. Let µ = (µn, µn−1, . . . , µ1) be a partition, `(µ) = #{i : µi > 0}, and let
T ∈ SympTabn((p), µ). Then

Cyck
C(T) = red(grav(Tk)), (2.2)

where the reduction operation is as defined in [9, Section 4.3], see also [2, Section 3.4].

Idea of proof. The idea of the proof is to carry out a careful, recursive study of the cyclage,
and in particular insertion algorithms of Lecouvey. In particular, we need a slightly
different definition of Lecouvey’s insertion algorithm, which can be found in [2, Propo-
sition 3.3]. Although the idea of the proof is simple, it is rather involved due to the
technical nature of the symplectic insertion algorithm. The reader is therefore referred
to the full version of this work, see [2, Section 4].

3 A proof of Lecouvey’s conjecture for one row and gen-
eral weight

In this section we are going to apply (2.2) to prove Theorem 1.3. We need the following
proposition due to Lecouvey, which is an easy consequence of the following Morris
recurrence formula described in [9]:
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Proposition 3.1. [9, Proposition 3.2.3.] Let µ = (µn, µn−1, . . . , µ1) be a partition and p ≥ |µ|
be a positive integer. Then

KCn
(p),µ(q) = q fn(µ) · ∑

T∈SympTabn((p),µ)
qθn(T)

where fn(µ) = ∑n
i=1(n− i)µi and

θn(T) =
n

∑
i=1

(2(n− i) + 1)ki,

where T ∈ SSYTabCn((p), (kn + µn, kn−1 + µn−1, . . . , k1 + µ1, k1, . . . , kn)).

Proof of Theorem 1.3. Let T be as in the statement of Proposition 3.1. Proposition 2.5 (see
[2, Section 3.4]) implies that m(T) = min{k : Tk = Tk+1}, which is simply equal to
mµ((p)) defined by (2.1). Let us compute EC(T). Notice that C(T) is a column of weight
0 and length ∑i ki. Therefore, for any �,�+ 1 ∈ I>0 we have

C(T)(�+ 1)− C(T)(�) = δshape(C(T))
(

partner(�+ 1),�+ 1
)
−

− δshape(C(T))
(

partner(�),�
)
= 2.

Therefore EC(T) consists of all positive entries of C(T) and due to the construction given
by Algorithm 2 we know that nred = `(µ), thus

EC(T) = {i + `(µ) + 2j : 1 ≤ i ≤ n, ∑
l≤i−1

kl ≤ j < ∑
l≤i

kl}.

Finally, using Corollary 2.2 we may calculate (see [2]):

chn(T) = fn(µ) + θn(T)

and comparing this with Proposition 3.1 finishes the proof.
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