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Abstract. The graph associahedron is a simple polytope defined by associating a
graph on n + 1 vertices with the n + 1 facets of a simplex in n dimensions, and truncat-
ing the faces of the simplex corresponding to connected subgraphs. The faces of this
new polytope correspond to a lattice of tubings of the graph.

In this paper we generalize the graph associahedron by associating the vertices of
graphs with the facets of simple polytopes, and truncating faces of the polytope based
on connected subgraphs with restrictions. In the special case where the initial polytope
is a hypercube, we examine connected subgraphs of graphs with positive and negative
vertices. Certain graphs give us the permutahedron, the associahedron, the type Bn

permutahedron, and polytopes conjectured to be of bi-Catalan combinatorial type.
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1 Introduction

The graph associahedron KG for a graph G on vertices [n + 1] is a polytope obtained by
associating subsets of [n + 1] with faces of a simplex in n dimensions, and truncating
the faces associated with induced connected subgraphs. The lattice of faces of the graph
associahedron is dual to the simplicial complex of tubings for G, where a tube is a
connected proper subgraph of G and a tubing is a collection of pairwise-compatible
tubes [in a certain sense]. This polytope is well-studied, and is a generalization of the
associahedron. The nestohedron is a polytope generalizing the associahedron and graph
associahedra. A building set as defined by [9] is a set of subsets of [n + 1] with certain
properties, and truncation of faces of the simplex in a certain order according to sets in
the building set give nestohedra, as proven in the graph associahedron case by [6].

This paper generalizes the notions of nestohedron and graph associahedron; instead
of truncating faces of a simplex, we truncate the faces of any simple polytope P . We
define P-building sets which generalize building sets, and define the P-nestohedron as the
simple polytope resulting from truncating faces of P in the P-building set. Define a P-
graph as a graph obtained by removing edges from the facet adjacency graph of P . For
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a P-graph G, define the P-graph associahedron as the nestohedron obtained by truncating
nonempty faces of P associated with connected induced subgraphs of G.

In this paper we focus on the case where P is an n-dimensional hypercube. A
hypercube-graph is a graph on vertices ±[n] without (i,−i) edges. Tubes are subgraphs
of ±[n] which induce connected subgraphs and which do not contain {i,−i} as a subset;
tubings are collections of tubes which satisfy pairwise-compatibility conditions. We con-
sider several examples of hypercube-graph associahedra, which are isomorphic to the
permutahedron, the associahedron, the type Bn permutahedron, and a polytope conjec-
tured to be related to bi-Catalan combinatorics, among others.

During the final production of this extended abstract, the author found a paper con-
taining an equivalent definition to the P-nestohedron, in [8]. We are working to incor-
porate this research in our coming paper.

2 P-Building Sets and P-Nestohedra

Consider a simple, convex, full-dimensional polytope P in the vector space Rn. The
face lattice denoted by L(P) is the poset generated by faces of P , ordered by inclusion.
The set of facets is notated facets(P). If I is a subset of facets(P), define FI to be the
intersection

⋂
F∈I F.

Definition 2.1. A building set B for the polytope P is a subset B ⊆ 2facets(P) such that

1. For each I ∈ B, the face FI is nonempty

2. For two sets I, J ∈ B where I ∩ J 6= ∅, if FI ∩ FJ = FI∪J is nonempty, then I ∪ J ∈ B.

3. For every facet F ∈ facets(P), the singleton set {F} is contained in B.

We may refer to a building set for a polytope P as a P-building set for brevity.

Definition 2.2. A subset N of a building set B is called nested or a nested set if:

1. The intersection
⋂

I∈N FI is nonempty

2. For any collection of sets S1, . . . , Sk ∈ N such that for any Si, Sj, Si 6⊆ Sj and k ≥ 2,
their union

⋃k
i=1 Si is not contained in B.

Sets S1, . . . , Sk ∈ B are called compatible if {S1, . . . , Sk} is a nested set.

Example 2.3. Consider a cube in three dimensions with pairs of opposing faces {−1, 1},
{2,−2}, and {3,−3}. The set B = {{1, 2, 3}, {2, 3,−1}, {1, 2}, {2, 3}, {1}, {2}, {3}, {−1},
{−2}, {−3}} is a valid building set. Some examples of nested sets in N (B) are the set
{{1, 2, 3}, {1}, {3}}, {{1}, {3}, {−2}}, and the empty set. The set {{1}, {3,−1}} is not
nested because the face F{1,−1,3} is empty, and the set {{1}, {2}, {−3}} is not nested
because {1} ∪ {2} = {1, 2} ∈ B.
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Figure 1: An example of a nestohedron generated from a cube by the building set B
from Example 2.3. First the corners F1,2,3 and F2,3,−1 are truncated, and then the edges
F1,2, F2,3, F3,−1 are truncated. Truncating a facet does not change the face lattice.

Definition 2.4. Given a P-building set B, let N (B) be the poset of nested sets ordered
by reverse inclusion. Let N (B) be the poset, N (B) ∪ {B}, again ordered by reverse
inclusion. Because B is not a nested set, but contains every other nested set as a subset,
N (B) is obtained by adding an element 0̂ to N (B).

Definition 2.5. Given a polytope Q with a proper nonempty face F, there exists a hyper-
plane H = {x : ax = c} defining a halfspace H− = {x : ax ≤ c} such that F ⊂ Rn\H−,
and all vertices of Q\F lie in H−. The hyperplane H is the truncating hyperplane, and
the polytope H− ∩Q is the polytope obtained by truncating Q by the face F.

Definition 2.6. Consider a building set B for a simple polytope P and a linear ordering
S1, . . . , Sk of B, such that Si ⊃ Sj implies i ≤ j. The nestohedron of B on P is the polytope
Trunc((S1, . . . , Sk),P). We denote this polytope KPB.

Example 2.7. Figure 1 shows the construction of a cube-nestohedron, or the nestohedron
defined by a building set on the cube.

The following theorem validates the notation KPB by showing that any choice of
ordering of B satisfying conditions given in Definition 2.6 gives us the same polytope
up to combinatorial isomorphism.

Theorem 2.8. The face lattice of KPB is isomorphic to the poset N (B).

The notion of a P-building set defined in this paper is a special case of the definition
of a building set for lattices, defined in [4] and here called a lattice building set. We use
results from [4] to prove Theorem 2.8.

Definition 2.9 ([4, Definition 2.2]). A lattice building set for a lattice L is a set G ⊆ L\0̂
such that, for any element x ∈ L\0̂, the set max{g ∈ G : g ≤ x} = {g1, . . . , gk} has the
property that the interval [0̂, x] is isomorphic to the product of intervals ∏k

i=1[0̂, gi] by
the lattice isomorphism mapping (0, . . . , gi, . . . , 0) to gi.



4 Jordan Almeter

Proposition 2.10. Given a simple polytope P , if a set B is a P-building set, then B ∪ 1̂ is a
lattice building set of the dual face lattice of P .

Proof. If L is the dual face lattice of P and B is a building set, then for any set S corre-
sponding to a nonempty face FS, the set Bmax≤FS is the set of faces FS1 , FS2 , . . . , FSk where
S1, . . . , Sk is a partition of S. Because L is simplicial, [0, FS] = ∏k

i=1[0, FSi ]. As a result,
B ∪ {1̂} is a lattice building set.

Definition 2.11 ([4, Definition 2.7]). A lattice-nested set is a subset of a building set N ⊂ G
such that, for any antichain {x1, . . . , xn} ⊂ N, the join x1 ∨ · · · ∨ xn is not in G.

If an intersection of faces is empty, then their join in the dual face lattice is 1̂. The
following proposition is then trivial:

Proposition 2.12. For a building set B of a simple polytope P , every set N ⊂ B is nested under
N ⊂ B if and only if it is a lattice-nested set of the dual face lattice of P under lattice-building
set B ∪ {1̂}.

The following proposition describes a combinatorial blow-up BlxL; it is a generalization
of stellar subdivision. When L is dual to the face lattice of a simple polytope P , the
combinatorial blowup of a face F is dual to the face lattice of the truncation of P at face
F [8]. The following result proves Theorem 2.8.

Theorem 2.13 ([4, Theorem 3.4]). Given a lattice L with building set G, and some linear
extension G = {G1, . . . , Gt} with Gi > Gj implying i < j, the simplicial complex of lattice
nested sets under G is isomorphic to the combinatorial blow-up BlGt(BlGt−1(· · ·BlG1 L)).

In the case where P is a simplex, we recover the definition of building sets for sim-
plices as described in [9, Section 7].

Proposition 2.14. For a simplex ∆, a set B ⊆ 2facets ∆ with facets ∆ /∈ B is a building set if and
only if it is a ∆-building set. A ∆-nestohedron is a nestohedron as defined in [9].

2.1 Graphical P-Building Sets and P-Graph Associahedra

In this section, we provide the definition of the graph associahedron on the simplex,
which has been explored before, and then define its generalization, the P-graph associ-
ahedron. We then prove the graph associahedron on the simplex is in fact a special case
of the P-graph associahedron.

Given a graph G∆ on n + 1 vertices, we can define the graphical building set BG∆ as
the set of proper subsets S ⊂ [n + 1] such that the induced graph G∆|S is connected. The
nestohedron of the simplex generated by BG∆ is the graph associahedron. This definition
is in line with [9] and [6].
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In graph associahedron terminology, tubes of G∆ are defined as sets in BG∆ , and
tubings are defined as nested sets of G∆. Compatibility is defined such that t1, t2 ∈ BG
are compatible if and only if t1 ⊂ t2, t2 ⊂ t1, or t1, t2 are disjoint and t1 ∪ t2 is neither a
tube nor the set [n + 1]. A set is nested if and only if its support is a proper subgraph
and all tubes are pairwise compatible.

While the vertices of a graph in a graph associahedron can be easily associated with
facets of a simplex, we need to define a special type of graph to associate the facets of a
polytope P with vertices of a graph.

Definition 2.15. The facet adjacency graph is a graph whose vertices are facets of P , with
an edge between two facets i, j if and only if i, j intersect. Any graph G which can be
obtained by deleting edges from the adjacency graph of a polytope P is called a P-graph,
or a graph on P .

For any P-graph we can define the following building set:

Proposition 2.16. The set BG for a graph G on a simple polytope P is the set of subsets S ⊂
facets(P) such that FS is nonempty and G|S is a connected graph. This set is a P-building set,
called the graphical P-building set.

Proof. The set BG satisfies parts 1 and 3 of Definition 2.1. When two sets I1, I2 ∈ BG
intersect, the set I1 ∪ I2 induces a connected graph, and if FI1∪I2 is nonempty, then I1 ∪
I2 ∈ BG, satisfying part 2 of the definition.

Definition 2.17. The graph associahedron for a graph G on a simple polytope P is the
nestohedron on P generated by the P-building set BG. We can call this the P-graph
associahedron, and use the notation KPG.

The following is an application of Proposition 2.14.

Corollary 2.18. Consider an n-dimensional simplex ∆n and a ∆n−graph G. Then the ∆n-graph
associahedron K∆nBG is exactly the graph associahedron.

Because nested sets for a graphical P-building set generalize graph tubings, we can
use the following terminology for graph associahedra on any polytope:

Definition 2.19. Given a P-graph G, all sets in the graphical P-building set are called
tubes, and all nested sets are called tubings. Two tubes t1, t2 are compatible if Ft1∪t2 is
nonempty and either t1 ⊂ t2, t2 ⊂ t1, or t1, t2 are disjoint and non-adjacent.

Proposition 2.20. A tubing T = {t1, . . . , tk} of a P-graph is valid if and only if all tubes in T
are nonempty and, given their support U =

⋃
t∈T t, the face FU is nonempty.
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3 Hypercube-Graph Associahedra

Define the n-dimensional hypercube, or n-cube, Cn = {x ∈ Rn| − 1 ≤ xi ≤ 1}, and label
the 2n facets with numbers in ±[n], such that i is associated with the xi ≤ 1 facet and −i
is associated with the −xi ≤ 1 facet. Cn is a simple polytope. Each facet i intersects with
every other facet except for −i, and a set of facets S ⊆ ±[n] has a nonempty intersection
if and only if S does not contain a subset of the form {i,−i}.

As a result, the facet adjacency graph of the hypercube is the graph on ±[n] where
every vertex i is adjacent to every other vertex except for −i. A hypercube-graph is then
any graph on ±[n] without any (i,−i) edges. The following propositions are immediate:

Proposition 3.1. A tube t of a graph G on an n-dimensional hypercube is any subset of ±[n]
which induces a connected graph in G and such that {i,−i} 6⊆ t for any i ∈ ±[n].

Proposition 3.2. Two tubes t1, t2 are compatible if {i,−i} 6⊆ t1 ∪ t2 for any i ∈ ±[n], and one
of the following is true:

1. Either t1 ⊂ t2 or t2 ⊂ t1,

2. t1, t2 are disjoint, and t1 ∪ t2 induces a disconnected graph in G.

In the hypercube case, a set of tubes is a valid tubing if and only if all tubes are pairwise
compatible.

While the choice of truncating hyperplanes in Definition 2.6 does not impact the face
lattice of the nestohedron, we choose a standard set of normal vectors to the truncating
hyperplanes for the hypercube graph associahedron as follows.

Definition 3.3. Given a tube t, define the weight vector wt ∈ {−1, 0, 1}n as the vector in
(Rn)∗such that wt(i) = 1 if i ∈ t, wt(i) = −1 if −i ∈ t, and wt(i) = 0 otherwise.

Remark 3.4. This definition of weight vector coincides with a notion of fundamental
weights used in root systems. Given a set of simple roots, the fundamental weights are
dual to the coroots associated with the simple roots. Up to scaling, the orbit of a set
of fundamental weights in the type Bn root system are vectors of the form {−1, 0, 1}n,
which are exactly the possible weight vectors of the hypercube-graph.

Proposition 3.5. For every tube t in an n-cube graph G, there exists an inequality of the form
wtx ≤ |t| − ε which truncates the face Ft.

The choice of ε when repeatedly truncating a hypercube must be made such that
cuts are not made too deep. The following realization is motivated by the construction
provided in [2]. The proof of Theorem 3.6, which gives a recursive formula for the
coordinates of vertices, is omitted from this abstract due to length.
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Theorem 3.6. A realization of the n-cube-graph associahedron G whose vertices are vectors with
integer coefficients can be defined by the linear inequalities

{wt · x ≤ |t|3n−1 −
⌊

3|t|−2
⌋

: t is a tube in G}.

The following theorem regarding the facets of the hypercube-graph associahedron is
based on work from [6], and specifically adapts [6, Theorem 2.9] for the hypercube case.

Definition 3.7. The reconnected complement G∗t for a hypercube-graph G is the graph
obtained by removing the vertices t ∪ −t from G and adding an edge between two ver-
tices a, b if either {a, b} or {a, b} ∪ t is connected.

This graph differs from the usual reconnected complement graph for the simplex-
graph, as in addition to removing the vertices in t, we are removing the vertices in
−t. The reconnected complement of the hypercube graph is a hypercube graph on an
(n− |t|)-cube graph, and so the hypercube-associahedron KG∗6 is (n− |t|)-dimensional.

Define Gt to be the graph induced by the tube t. Treat this graph as a simplex-graph,
and the graph associahedron KGt is (|t| − 1)-dimensional.

Theorem 3.8. Given a Cn-cube graph G with tube t, the facet of KCn G associated with the tube
t is isomorphic to the product K∆|t|−1

Gt ×KCn−|t|G
∗
t .

Proof. There is a trivial bijection between tubes of Gt and tubes of G contained in t.
Consider the map ρ from the set of tubes of G∗t to the set of tubes compatible with t

but not contained in t, defined as

ρ(t′) =

{
t′ ∪ t If t′ ∪ t is connected in G
t′ otherwise.

This map is a bijection. Upon inspection, two tubes t′, t′′ are compatible if and only
if ρ(t′), ρ(t′′) are compatible. Extending ρ to a mapping on tubings induces a poset
isomorphism between tubings of G∗t and tubings of G not containing any subset of t as
an element. Finally, the map p : N (BGt) ×N (BG∗t ) → N (BG) defined as p(T, T∗) =
{t} ∪ T ∪ ρ(T′) is an isomorphism, proving Theorem 3.8.

Corollary 3.9. Every face of a hypercube graph associahedron is isomorphic to the product of
either a set of simplex-graph associahedra, or a lower-dimensional hypercube graph-associahedron
and a set of simplex-graph associahedra.

Conjecture 3.10. Any non-connected P-graph associahedron is combinatorially isomor-
phic to the Minkowski sum of the graph associahedra of its corresponding subgraphs.
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Figure 2: Notable hypercube graphs for the 4-dimensional hypercube. The top left
graph has vertices labeled with members of ±[4], with dashed lines connecting vertices
corresponding to opposing facets; these are not actual edges in the hypercube graph.
From top left to bottom right: an empty graph, a full adjacency graph, a 2Kn graph,
a single path graph, a double path graph, the Gn Pell graph, the Hn companion Pell
graph, and a single Kn graph.

4 Special Cases of Hypercube-Graph Associahedra

This section details the properties of hypercube graph associahedra for special graphs.
Figure 2 shows a list of noteworthy graphs for the case n = 4 for reference, while Figure 3
shows the 3-dimensional realizations of some of these graphs.

4.1 Full Adjacency Graph and the type Bn permutahedron

Suppose G is the adjacency graph of the facets of a hypercube in n dimensions; this is
the graph on vertices ±[n] with edges between i, j if i 6= −j. This is the most edges a
hypercube-graph can have.

The type Bn permutahedron as the orbit of a generic point under the type Bn re-
flection group; this is equivalent to the convex hull of all permutations of a point
(±p1, . . . ,±pn) for distinct nonzero values p1, . . . , pn.

Proposition 4.1. The graph associahedron on the hypercube for the full adjacency graph of the
hypercube is the type Bn permutahedron.

Proof. The construction given in Theorem 3.6 for the full adjacency graph gives the orbit
of the point (3n−1, 3n−1 − 1, . . . , 3n−1 − 3n−2).
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Figure 3: Examples of hypercube-graph associahedra in 3 dimensions. The graphs
here are the full adjacency graph, the 2Kn graph, the single path graph, and the double
path graph.

4.2 2Kn Graphs and the type An permutahedron

Define the 2Kn graph to be the graph on a hypercube consisting of a complete graph on
[n] and a complete graph on [−n].

The type An permutahedron is the orbit of a generic point under the type An re-
flection group; it is also the graph associahedron of the complete graph Kn+1 on an
n-dimensional simplex.

Proposition 4.2. The hypercube graph associahedron of the 2Kn graph is combinatorially iso-
morphic to the type An permutahedron.

Proof. There exists an isomorphism between the complex of graph tubings on the 2Kn
hypercube-graph, and the set of graph tubings on the complete Kn+1 simplex-graph.
Consider a tube t in the 2Kn graph. This tube is either a subset of [n] or a subset of −[n].
If t ⊂ [n], then define φ(t) = t. If t ∈ −[n], define φ(t) = ([n]\|t|) ∪ {n + 1}, where
|t| = {|i| : i ∈ t}. If t ⊂ t′ then φ(t) ⊂ φ(t′) or φ(t′) ⊂ φ(t). If t, t′ are disjoint but
compatible, with t′ ⊂ −[n], then t ⊆ [n]\|t′|, and we find that φ(t) ⊂ φ(t′).

As compatibility is preserved, this is an isomorphism between the nested complex
of the 2Kn hypercube graph associahedron and the nested complex of the Kn+1 simplex
graph associahedron.

As an aside, this particular construction appears independently in another paper:

Proposition 4.3. The graph associahedron for the 2Kn graph on the hypercube is identical to the
graph multiplihedron for the complete graph as defined in [3].
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4.3 Single Path Graph and the Type An associahedron

Define the single path graph to be the hypercube graph consisting of a path on the vertices
1, 2, . . . , n. We know that the type An associahedron is the simplex graph associahedron
for the path graph on n + 1 vertices, and we find the following result:

Proposition 4.4. The hypercube graph associahedron of the single path graph is combinatorially
isomorphic to the type An associahedron.

Proof. We prove that the normal fan is equal to the type An linear cluster fan. The simple
roots of the type An fan are of the form α1, . . . , αn, and the almost positive roots are of the
form −αi and β j,k = ∑k

i=j αk. Describing the rules found in [7], with a linear deformed
Coxeter element τ = σ1 · · · σn, we find that negative root −αi is compatible with other
negative roots, and −αi, β j,k are compatible if and only if i /∈ [j, k]. In addition, roots βi,j
and βk,l with i ≤ k are compatible if and only if i = k, or i < k and j /∈ [k + 1, l + 1].
With a bijection between the roots βi,j and tubes [i, j], and −αi and tubes {−i}, we find
that this compatibility relation is isomorphic to the compatibility relation that −i and
[j, k] are compatible if and only if i /∈ [j, k], and two intervals [i, j], [k, l] are compatible
if and only if they are either nested, or if they are disjoint, and [i + 1, j + 1] ∩ [k, l] =
[i, j] ∩ [k + 1, l + 1] = ∅, which we see is equivalent to not being adjacent.

4.4 Double Path graph and Coxeter Bi-Catalan Combinatorics

Define the double path graph to be the hypercube graph which consists of a path from 1
to n and a path from −1 to −n.

Proposition 4.5. There are (2n
n ) maximal tubings of the double path graph on the hypercube,

which are in bijection with north-east lattice paths.

Proof. Given a k-vertex path graph, there exists a bijection φk between maximal tubings
and Dyck paths above the diagonal from (0, 0) to (k, k).

Every maximal tubing of a double path graph on ±[n] partitions the set [n] into
positive and negative vertices. The components of the tubing are paths P1, . . . , Pk with
sizes p1, . . . , pk, alternating between positive and negative vertices, as shown in Figure 4.

Define the map φ from tubings of the double path graph to north-east lattice paths.
Define φ to be the concatenation of paths φ′p1

(P1), . . . , φ′pk
(Pk), where φ′k(P) = φk(P) if

P is a tubing on k positive vertices, and if P is a path on negative vertices, then φ′k(P)
is the mirror image path of φk(P) obtained by replacing north steps with east steps and
vice-versa. This map is a bijection, as every lattice path can be decomposed into a series
of Dyck paths depending on where the path crosses the diagonal.

The linear bicluster fan is the bicluster fan of the linear Coxeter element in the type
An Coxeter group, as defined in [1]. It is the common refinement of the linear cluster fan
and its antipodal inverse. The following conjecture is a direct result from Conjecture 3.10.
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Figure 4: An example of a tubing of a double path graph on 7 vertices, along with an
associated north-east lattice path.

Figure 5: G5 on left and H5 on right.

Conjecture 4.6. The normal fan to the double-path hypercube-graph associahedron is
the linear bi-cluster fan of type An.

4.5 Single Kn Graph and the Stellohedron

Define the single Kn graph to be the graph on the hypercube consisting of the complete
graph Kn on vertices in [n], and vertices in −[n] as isolated vertices. The stellohedron is
the graph associahedron of the complete bipartite Kn,1 graph. It is mentioned in [10].

Proposition 4.7. The hypercube graph associahedron for the single Kn graph is isomorphic to
the stellohedron.

Proof. Tubes on positive vertices of this graph must be contained in each other to be
compatible, and each tube in a maximal tubing contains exactly one vertex contained in
no smaller tube. As a result, a tubing gives an ordering of the positive vertices contained
in the tubing. The negative tubes are all singletons. As a result, a tubing partitions [n]
into two sets and associates an ordering on one of the subsets. This establishes a bijection
between arrangements of [n] and tubings of the single Kn graph.

4.6 Pell Numbers and Companion Pell Numbers

Define the graph Gn on ±[n] containing edges (i,−(i + 1)) for 1 ≤ i < n. Define the
graph Hn as the graph Gn with added edge (−1, n). Examples are shown in Figure 5.

Theorem 4.8. The number of tubings of the Gn graph is the nth Pell number [11, Sequence
A002203] The number of tubings of the Hn graph is the (n + 1)th companion Pell number [11,
Sequence A002203].
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In [5], there is a lattice of sashes which corresponds to the weak order on Pell permu-
tations. The following conjecture has been confirmed for n ≤ 7:

Conjecture 4.9. The 1-skeleton of the graph associahedron for Gn, ordered by the func-
tional (1, . . . , n) on Rn, gives the lattice of Pell permutations under weak order.
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