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On the combinatorics of LLT polynomials in Sp2n
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Abstract. LLT polynomials were originally defined as q-generating functions for tuples
of semistandard tableaux and later generalized to arbitrary Lie type. We introduce a
combinatorial definition at q = 1 for LLT polynomials of type C as a similar generating
function over tuples of symplectic tableaux. The definition uses a correspondence
between symplectic tableaux and oscillating tableaux that is used to give a proof of a
Cauchy identity for Sp2n using Berele insertion, generalizing the combinatorial proof
of Schur-Weyl duality for Sp2n.

Résumé. Les polynômes LLT étaient définis à l’origine comme des fonctions généra-
trices de q pour les tuplets de tableaux semistandard, puis généralisés au type de Lie
arbitraire. Nous introduisons une définition combinatoire à q = 1 pour les polynômes
de type C de type LLT en tant que fonction génératrice similaire sur des tuplets de
tableaux symplectiques. La définition utilise une correspondance entre des tableaux
symplectiques et des tableaux oscillants, utilisée pour donner la preuve d’une identité
de Cauchy pour Sp2n en utilisant l’insertion de Berele, généralisant la preuve combi-
natoire de la dualité Schur-Weyl pour Sp2n.

Keywords: LLT polynomials, symplectic tableaux, oscillating tableaux, type C

1 Introduction

LLT polynomials were first defined by Lascoux, Leclerc, and Thibon [11] in their study
of plethystic substitutions of Hall-Littlewood polynomials. They have since then enjoyed
a wide range of applications, from branching rules in the modular representation theory
of Sn [10] to crystal base theory of Uq(ŝln) Fock spaces [11] to the combinatorics of
Macdonald polynomials [4] and diagonal coinvariants [5]. Of chief interest to this author
is their last role above, in which LLT polynomials are used to give a monomial expansion
of Macdonald polynomials by relating the dinv statistic of fillings of a Young diagram
to the inversion statistic of LLT polynomials.

At the time of their origination, LLT polynomials, known as “spin" and “cospin" rib-
bon Schur functions, were conjectured to be Schur positive when indexed by a tuple
of straight shapes. This was later proved [12] using the positivity of certain Kazhdan-
Lusztig polynomials, and then extended slightly in [5] to when the indexing tuple con-
sists of n-cores. The case of arbitrary skew shapes was then proved by Grojnowski and
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Haiman [3], and in their work, they expanded the definition of LLT polynomials to all
complex reductive Lie groups. Together with the combinatorial expansion of Macdon-
ald polynomials into LLT polynomials, this gave another proof of Macdonald positivity,
although still building on a heavily geometric proof.

The problem addressed at hand is to provide a combinatorial description of LLT
polynomials in the case of Sp2n, for which we have the following main result:

Definition/Theorem 1.1. Let G = Sp2n and fix a Levi L = GLr1 ×⋯× GLr`−1 × Sp2r` , and
weights β = (β(1), . . . , β(`)), γ = (γ(1), . . . , γ(`)) ∈ X+(L). For 1 ≤ j ≤ `, choose Rj so that
γ̃(j) ∶= γ(j) + (R

rj
j ) and β̃(j) + (R

rj
j ) have all part sizes at least n. For k >> 0 sufficiently

large, define
τττ = (β̃′)c, each complement taken in a ((k + n)rj) box

σσσ = (γ̃′)c, each complement taken in a (krj) box

The LLT polynomials of type G = Sp2n at q = 1 are

G
(k)
β,γ(z±1

k+1, . . . , z±1
k+n; q = 1) = ∑

T∈Symp(τττ/σσσ)
zT

the sum over all skew symplectic tableaux of shape τττ/σσσ.

The theorem in the above statement is that the LLT polynoimals as defined above
coincide with the algebro-geometric definition given in [3] at q = 1 (see Theorem 4.2
below). The proof uses a combinatorial result interesting in its own right between sym-
plectic tableaux and oscillating tableaux:

Proposition 1.2. There is a bijection between (horizontal) semistandard oscillating tableaux from
∅ to λ in k steps, with all parts at most N, and symplectic tableaux of shape λc, the complement
taken in an (Nk) box.

This was recently and independently shown in [14]. In particular, this gives a connec-
tion between weight multiplicities of irreducible representations of Sp2n (as indexed by
symplectic tableaux) and the multiplicities of irreducible representations inside tensor
powers of the standard representation (as indexed by oscillating tableaux).

Given that LLT polynomials were used to give a monomial expansion for Macdonald
polynomials, it follows that a combinatorial formula for Sp2n LLT polynomials could
illuminate a similar expansion for type C Macdonald polynomials. As it stands, Mac-
donald polynomials are defined for any root system, but with only a combinatorial (and
geometric) understanding in type A. What’s more, the general type LLT polynomials,
as defined below in (2.1), coincide with Hall-Littlewood polynomials when the indexing
Levi L is the torus T, and hence a combinatorial formula for LLT polynomials could
lead towards a formula for Kostka-Foulkes polynomials akin to Lascoux and Schutzen-
berger’s celebrated and mysterious charge formula in type A. A charge statistic for other
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Lie types has been proposed in [13] for Kashiwara-Nakashima tableaux, and in fact the
current problem was suggested to the author after first trying to extend the charge for-
mula to type C for King tableaux.

This paper is organized as follows. In section 2 we provide the Lie theory background
needed to roughly define general LLT polynomials and we recall the original definition
of LLT polynomials for GLn. In section 3 we define the combinatorial objects that arise in
Sp2n and exhibit the underlying combinatorial bijection between symplectic tableaux and
oscillating tableaux. In section 4 we expound on the connection between combinatorial
LLT polynomials and general type LLT polynomials, and state our main result. We
conclude in section 5 with future directions of researChapter

2 Preliminaries

In the current setting we work over the ring Z[u±1] and we set q = u2. We let G denote a
complex reductive Lie group with g = Lie(G) and we fix the Cartan data (X, X∨, Π, Π∨)

consisting of the weight and coweight lattices X, X∨ and the sets of simple roots αi ∈

Π ⊆ X and simple coroots α∨i ∈ Π∨ ⊆ X∨. We let X+, X++ denote the set of dominant
and regular dominant weights, respectively. The reader should keep in mind the specific
cases G = GLn and G = Sp2n, in which the dominant weights are non-increasing integer
sequences (λ1 ≥ ⋯ ≥ λn) and (λ1 ≥ ⋯ ≥ λn ≥ 0), respectively, and regular dominant
weights those sequences that are strictly increasing.

Let L be a Levi subgroup of G with Weyl group WJ for a parabolic subset J. Fix a

dominant weight η ∈ X+ in the fundamental alcove on a level k of g so that StabW̃
(η) = WJ .

Recall here that on level k, W̃ acts on η in the usual way for w ∈ W f , but as translations
by multiples of k for λ ∈ X. More concretely, for GLn and Sp2n, the fundamental alcoves
consist of the partitions λ with λ1 ≤ k and λ1 ≤ k/2, respectively. For G = GLn and
L = GLr1 ×⋯×GLr` , we can choose k, η such that

k > η1 = ⋯ = ηr1 > ηr1+1 = ⋯ = ηr1+r2 > ⋯ > 0 = ⋯ = 0

Now, for a regular dominant weight β ∈ X++(L), we can find w ∈ W f such that

µ ∶= w(η + kβ) ∈ X++ ∩ W̃ ⋅ η

and the resulting µ is unique if we require w ∈ W J . Surprisingly enough, in GLn this is
simply the usual combinatorics of k-cores and k-quotients. More specifically, if we let
ρ, ρL denote the Weyl vectors for G and L, so that µ − ρ ∈ X+ and β − ρL ∈ X+(L), then
provided µ, β have no negative entries, µ − ρ is precisely the partition whose k-core is η

and whose k-quotient is β − ρL. The uninitiated reader can refer to [15, Chapter I.1] for a
thorough primer on the combinatorics of k-cores, k-quotients, and abaci.
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We can now essentially skip to a (cursory) definition of general LLT polynomials. The
interested reader is encouraged to refer to [3] for the complete definition. To summarize,
there is a Q(q)−algebra with elements χλ indexed by irreducible characters of G. This
algebra will act on a module with basis elements ∣γ⟩ that are indexed by γ ∈ X++(L) and
whose construction involves η, k, µ as above. For χ = ∑ aλxλ, the action is given by

χ∣γ⟩ =∑ aλ∣γ + kλ⟩

The general LLT polynomials will be generating functions for matrix coefficients of this
action. More specifically, we define the polynomials Qλ

β,γ(u) by

χ∗λ ∣ γ⟩ = ∑
β∈X++(L)

Qλ
β,γ(u) ∣ β⟩

We note that there is an implicit dependence on k, η everywhere, namely changing k and
η will change the basis elements ∣γ⟩ and also how χλ acts on these basis elements; the
polynomials Qλ

β,γ(u) however will be unchanged.

Definition 2.1. Let L be a Levi of G with Weyl group WJ and fix β, γ ∈ X++(L). The
associated general LLT polynomial is

LG
L,β,γ(x; q) = um

∑
λ

Qλ
β,γ(u)χλ(x) (2.1)

for some intricately defined power m.

The polynomials Qλ
β,γ(u) are akin to Kazhdan-Lusztig polynomials, in that they are

matrix coefficients for a change of basis, and their positivity is shown using their inter-
pretation as decomposition multiplicities of certain non-irreducible perverse sheaves on
the flag variety. Just as is the case for the usual Kazhdan-Lusztig polynomials, it’s not a
priori so easy to compute or find a combinatorial formula for these matrix coefficients,
and as such, it remains to see how this definition coincides with the original combinato-
rial definition. For now we recall the combinatorial definition, reformulated as in [5] for
our purposes.

Viewing a Young diagram as a subset of Z×Z, we define a skew shape with contents to
be an equivalence class of a skew Young diagram up to content-preserving translations.
Recall that the content of a cell (i, j) is defined as c((i, j)) = j − i Given a tuple βββ/γγγ =

(β(1)/γ(1), . . . , β(k)/γ(k)) of skew shapes with contents, a semistandard Young tableau T
of shape βββ/γγγ is a semistandard Young tableau on each β(j)/γ(j). An inversion of T =

(T1, . . . , Tk) is a pair of cells x, y with x ∈ β(i)/γ(i), β(j)/γ(j) such that T(x) > T(y) and
either

• c(x) = c(y) and i < j or
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• c(x)+ 1 = c(y) and i > j

Definition 2.2. Let βββ/γγγ be a tuple of skew shapes with contents. The combinatorial LLT
polynomials Gβββ/γγγ(x; q) are given by

Gβββ/γγγ(x; q) = ∑
T∈SSYT(βββ/γγγ)

qinv TxT (2.2)

where inv T is the number of inversions of T.

It was shown in [3, Corollary 6.19] that for G = GLn and the choices of L, k, η above,

Gβββ/γγγ(X; q) = qmLG
L,β+ρL,γ+ρL

(X; q)pol (2.3)

where m is some explicit power and pol denotes truncation to polynomial characters. We
take this truncation because a general LLT polynomial as defined in (2.1) is technically a
formal sum, as there are infinitely many dominant weights λ. We defer an overview of
the proof of (2.3) to section 4.

3 Combinatorics

Our main interest is in the combinatorics at play for G = Sp2n, and so we introduce those
objects here.

Definition 3.1. Let λ, µ be straight shapes. An n-oscillating tableau of shape λ/µ is a
sequence

µ = ν0, ν1, ν2, . . . , λ

of partitions such that for each i,

(i) νi differs from νi−1 by a single box.

(ii) `(νi) ≤ n.

In the literature [20] this is also known as an n-symplectic up-down tableau. When the
length restriction is implicit or not imposed, we will drop the n and simply refer to this
as an oscillating tableau or an up-down tableau.

Definition 3.2. Let λ, µ be straight shapes. An N-horizontal (N-vertical) semistandard oscil-
lating tableau of shape λ/µ is a sequence

µ = α0 = β0 ⊆ α1 ⊇ β1 ⊆ α2 ⊇ β2 ⊆ ⋯ ⊇ λ

of partitions such that for each i,
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(i) αi/βi−1 and αi/βi is a horizontal (vertical) strip.

(ii) αi, βi have all row (column) lengths ≤ N.

For brevity, we will denote N-hSSOT as the set of N-horizontal semistandard oscillat-
ing tableau, and likewise for N-vSSOT. Again, we may often drop the N to avoid clutter
or if the condition is not imposed. The weight of a horizontal or vertical semistandard is
a composition ν, where νi = ∣αi/βi−1∣+ ∣αi/βi∣.

A basis for the irreducible representations of GLn are historically indexed by semis-
tandard tableaux, whose generating functions are Schur polynomials. In Sp2n, symplectic
tableaux were proposed independently by Kashiwara–Nakashima [6] and King [7]. Their
definitions are quite different, the former more compatible with crystal operations, and
the latter more compatible with weight multiplicities and restriction to subgroups. An
intricate bijection between the two tableaux was given by Sheats [18]. We opt to use
King’s tableaux in this paper.

Definition 3.3. A symplectic tableau T of shape λ is a filling of the Ferrers diagram of λ

with the letters 1 < 1 < 2 < ⋯ < n < n such that

1. T is semistandard with respect to the above ordering

2. The entries i must be in row ≤ i.

For convenience, we will denote the entries with their ordering above as the set
[±n]. The utility of these objects is that the irreducible character χλ of Sp2n becomes
a generating function for symplectic tableaux of shape λ, with each i, i contributing a
weight xi, x−1

i , respectively.
Now, it is obvious and yet miraculous that one can view standard Young tableaux

as a special case of semistandard tableaux. Representation theoretically, this is giving
a connection between weight multiplicities of irreducible representations of GLn and
multiplicities of irreducible constituents in tensor powers of the standard representa-
tion. There is an analogous Schur-Weyl duality for Sp2n, with the symmetric group re-
placed by a Brauer algebra, whose irreducible representations are indexed by oscillating
tableaux. However, the above definition of a symplectic tableaux has no such obvious
reformulation to connect to oscillating tableaux (nor does the Kashiwara/Nakashima
definition). A priori, an oscillating tableau seems to be a fundamentally different object
than a symplectic tableau. One result we present, stated below, is that there is in fact an
analogous specialization of symplectic tableaux to oscillating tableaux.

Theorem 3.4. Fix partitions λ, µ and positive integers N, n, k such that N ≥ `(µ), `(λ) and
k ≥ µ1. There is a bijection

Ψk,n,N ∶ {
N-vSSOT of

shape λ/µ and n steps
}

∼
Ð→

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

skew symplectic tableaux of
shape τ/σ and entries in
{±(k + 1), . . . ,±(k + n)}

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

(3.1)
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where τ = (λ′)c is the complement transpose of λ in a ((n + k)N) box and σ = (µ′)c is the
complement transpose of µ in a (kN) box. The inverse map sends a skew symplectic tableau of
shape τ/σ to an N-vSSOT of shape (τ′)c/(σ′)c, the first complement taken in an ((n + k)N) box
and the latter taken in a (kN) box, for any N ≥ τ1.

Skew symplectic tableaux were defined by Koike–Terada [8] and follow similar re-
strictions as for King tableaux. Taking µ = ∅ and k = 0 above gives

Corollary 3.5. There is a bijection

Ψn,N ∶ {
N-vSSOT of

shape λ and n steps
}

∼
Ð→ {

symplectic tableaux of
shape µ and entries in [±n]

} (3.2)

where µ = (λ′)c is the complement transpose of λ in an (nN) box.

Applying the transpose gives a dual bijection for N-hSSOT and restricting to oscillat-
ing tableaux gives the following.

Corollary 3.6. There is a bijection between n-oscillating tableaux from ∅ to λ in d steps and
symplectic tableaux of shape λc and weight ((d − 1)n), the complement taken in a (dn) box.

The complement shape is perhaps not surprising when we compare to the situation
in GLn. Indeed, the identity of Schur polynomials

(x1⋯xk)
nsλ(x−1

1 , . . . , x−1
k ) = sλc(x1, . . . , xk) (3.3)

where the complement is taken in a (nk) box, implies a bijection between semistandard
Young tableaux of shape λc and those of shape λ, with the weight µ mapping to (n −
µk, . . . , n−µ1). This bijection is given in [19, Exercise 7.41] and we adapt it to our current
case with oscillating tableaux and symplectic tableaux. We outline the bijection in the
N-hSSOT case by an example (Figure 1).

We first associate to a horizontal semistandard oscillating tableau a tableau with set-
valued entries1 inside the (Nn) rectangle. More specifically, to each cell in the N × n
rectangle, we will assign a subset of entries in {1, 1̄, . . . , n, n̄}, viz., if in the ith step of the
hSSOT a cell was added or removed, then we add i or ī, respectively, to that cell’s label.

Denote T the resulting tableau with set-valued entries, consisting of the cells in (Nn)

labelled with a (possibly empty) set. Let ν1, . . . , νN be the (possibly zero) columns of T,
left to right. Let ν̃i be the column whose entries are

{1, . . . , n}− {i ∣ i ∈ νi}∪ {ī ∣ ī ∈ νi}

arranged in increasing order. Let T̃ be the tableau with columns ν̃N, . . . , ν̃1, left to right.
The proof finishes by showing that T̃ is a symplectic tableau of the desired shape.

1We don’t refer to this as a set-valued tableau because that already has two different definitions that do
not seem to apply in this context.
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∅ Ð→

2

1 1123

Ð→
3

3

1 3

Figure 1: An example of the bijection from a hSSOT to a symplectic tableau. The left
sequence of partitions is the 2-hSSOT ∅ ⊆ (2) ⊇ (1) ⊆ (2, 1) ⊇ (2, 1) ⊆ (2, 1) ⊇ (1, 1). The
middle diagram is the tableaux T with set-valued entries we associate to the 2-hSSOT
and the rightmost diagram is the resulting symplectic tableaux T̃ with entries in [±3].

Remark 3.7. We note that Ψn,N and its dual are not quite weight preserving bijections.
Given an N-hSSOT o⃗ with n steps, let T be the intermediate tableau with set-valued
entries we associate to o⃗. Recall that the weight of o⃗ is the composition µ = (µ1, . . . , µn)

where
µi = ∣αi/βi−1∣+ ∣αi/βi∣ = #i’s in T+ #ī’s in T

The weight of the resulting symplectic tableau T̃ will be ν = (ν1, . . . , νn) where

νi = #i’s in T̃ − #ī’s in T̃ = (N − #i’s in T)− (#ī’s in T) = N − µi = (µc)n−i

While ν is not always a partition, we can apply the symplectic Bender-Knuth involution
to T̃ to get a symplectic tableau with partition weight.

We can use these bijections to give a more general version of Berele insertion (a
thorough exposition on Berele insertion can be found in [20]). Let’s recall first a variation
of RSK known as the (dual) Burge correspondence [2]. We will say a 2-lined array

(
a1 a2 . . . ar
b1 b2 . . . br

)

is arranged in antilexicographic order if ai ≥ ai+1 and ai = ai+1 Ô⇒ bi < bi+1. In one guise,
the dual Burge correspondence is a bijection between 2-lined arrays in antilexicographic
order and pairs of SSYT (P, Q) with conjugate shapes via row bumping brbr−1 . . . b1 to
form P and placing arar−1 . . . a1 in the newly added cell of the conjugate shape to form
Q. We give an analogue in type C:

Proposition 3.8. Let (
a1 a2 . . . ar
b1 b2 . . . br

) be a 2-lined array arranged in antilexicographic order,

with the top entries ai ∈ [m] and the bottom entries bj ∈ [±n]. The following procedure gives a
bijection to pairs of symplectic tableaux (P̂, Q̂) with conjugate complement shapes:

• Row Berele bump brbr−1 . . . b1 to form P̂.
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• Keep track of the intermediate shapes as a vSSOT of weight (ar, ar−1, . . . , a1), and then
apply Corollary 3.5 to form Q̂.

As a corollary, we get the following Cauchy-like identity

Corollary 3.9.

n
∏
i=1

m
∏
j=1

(xi + x−1
i + yj + y−1

j ) = ∑
λ⊆(mn)

spλ(x±1
1 , . . . , x±1

n )sp(λ′)c(y±1
1 , . . . , y±1

m ) (3.4)

This appears in [17], where it is referred to as a “Morris Identity". To the best of
the author’s knowledge, this does not seem to be related to other identities commonly
known as a Morris identity. A stronger form was shown by Mimachi [16], where he
proved the identity for Koornwinder polynomials. This is a curious identity, as a similar
identity holds for Schur functions, dating back to Littlewood [19, Exercise 7.42]. Taking
the coefficient of yn−1

1 ⋯yn−1
m in (3.4) and applying Corollary 3.5 recovers the combinatorial

manifestation of Sp2n Schur-Weyl duality.

Corollary 3.10 (Berele [1]).

(x1 + x−1
1 + . . . + xn + x−1

n )m = ∑
λ,`(λ)≤n

spλ(x±1
1 , . . . , x±1

n ) f̃ λ
m(n) (3.5)

where f̃ λ
m(n) is the number of n-oscillating tableaux of shape λ and m steps.

In GLn, the representation theoretic statements of GLm −GLn duality and Schur-Weyl
duality are bundled into one cohesive combinatorial algorithm. The previous corollaries
exhibit the same such bundling with Berele insertion for the analogous dualities in Sp2n.
In particular, Corollary 3.9 should be a statement about Sp2n − sp2m duality, although at
present the author has not worked through the details.

4 Connections; Main Result

The question still remains as to why (2.3) holds. The proof involves explicitly computing
the polynomials Qλ

β,γ(u). However, acting by χλ on a basis element ∣γ⟩ outright is com-
plicated and so instead one acts by eλ, wraps up the coefficients as a generating function
with monomial symmetric functions, and then uses a Cauchy identity to relate this back
to a generating function with Schur functions. As ∣β⟩ and ∣γ⟩ are meant to represent
quotients of partitions, we visualize them as abaci. With this, in GLn each generator
xi ∈ Z[u±1]X acts by moving the ith bead on the abacus one unit to the right (or down
depending on how one prefers to draw their abacus).
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Figure 2: A sequence of actions of x±1
i on ∣γ⟩, viewed as a non-intersecting path

The action eλ ⋅ ∣γ⟩ can then be viewed as a sequence of bead moves on each rung,
which in turn can be visualized as a time evolution, in which each sequence of moves
becomes a tuple of non-intersecting paths (see Figure 2).

In type A, it is well known that a tuple of non-intersecting paths is in bijection with
semistandard Young tableaux, as is used in a combinatorial proof of the Jacobi-Trudi
identity using the Lindström-Gessel-Viennot lemma. In general type, the coefficient of
an abacus ∣β⟩ in eλ ⋅ ∣γ⟩ is gotten by applying straightening rules, which can be found in
full in [3, Prop. 6.3]. In our case of Sp2n, the symplectic characters involve terms xi and
x−1

i , and so the non-intersecting paths can move right and left, seemingly complicating
the combinatorics. However, after a folding procedure we can simplify the action at q = 1 so
that the analogous tableaux reformulation replaces semistandard Young tableaux with
semistandard oscillating tableaux, namely we have

Proposition 4.1. There is a sign-reversing involution on the set of non-intersecting paths for
which the fixed points are in bijection with vertical semistandard oscillating tableaux.

This and further combinatorics of non-intersecting paths and oscillating tableaux can
be found in [9]. Combining Proposition 4.1 and Corollary 3.5 gives a combinatorial tool
to count the coefficient ⟨β ∣ eλ∣γ⟩, given schematically by

⟨β ∣ eλ∣γ⟩↔ #{non-intersecting paths}↔ #{vertical SSOT}↔ #{symplectic tableaux}

Choosing everything appropriately, we arrive at

Theorem 4.2. Let G = Sp2n and fix a Levi L and weights β, γ ∈ X+(L). As in Defini-
tion/Theorem 1.1, define G(k)β,γ(z±1

k+1, . . . , z±1
k+n). Then,

G
(k)
β,γ(z±1

k+1, . . . , z±1
k+n)∣zk+i↦xi

= LG
L,β+ρL,γ+ρL

(Xn; 1)∣
pol

where ∣pol denotes truncation to weights that fit in an (nn) box and then swapping all the coeffi-
cients of χλ with χ(λ′)c .
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5 Future Work

The obvious next step would be to extend our proposed tableaux definition of LLT
polynomials in type C to arbitrary q. However, the straightening relations for when an
irreducible character acts on a basis element ∣γ⟩ becomes more complicated when q ≠ 1
and it still remains to overcome this. Another direction is that in GLn, Theorem 4.2 can
be restated without the polynomial truncation by writing general LLT polynomials as
an inverse limit of combinatorial LLT polynomials. This follows from a natural stability
of Schur polynomials to infinitely many variables, which does not hold for symplectic
characters. It would be desirable to have such a restatement for Sp2n so as to remove the
somewhat arbitrary polynomial truncation in this case.

A final natural progression would be to provide a combinatorial definition of general
LLT polynomials for other Lie types. In the odd orthogonal group, one current obstacle
is a lack of a Cauchy identity as in Corollary 3.9 for orthogonal tableaux. Even more, the
bijection in Corollary 3.5 does not seem to carry over to any similar bijection between
orthogonal tableaux and the analogues of oscillating tableaux.
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