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Abstract. Fix t ≥ 2. We first give an asymptotic formula for certain sums of the
number of t-cores. We then use this result to compute the distribution of the size of
the t-core of a uniformly random partition of an integer n. We show that this converges
weakly to a gamma distribution after appropriate rescaling. As a consequence, we find
that the size of the t-core is of the order of

√
n in expectation. We then apply this result

to show that the probability that t divides the hook length of a uniformly random cell
in a uniformly random partition equals 1/t in the limit. Finally, we extend this result
to all modulo classes of t using abacus representations for cores and quotients.
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1 Introduction and statement of results

The irreducible representation of the symmetric group Sn are indexed by partitions of
n. While studying modular representations of Sn, one naturally encounters special par-
titions called t-cores [6], which are defined for any integer t ≥ 2. The t-core of a partition
λ, denoted coret(λ), can be obtained from λ by a sequence of operations. See Section 2.2
for the precise definitions. A partition λ is itself called a t-core if coret(λ) = λ. Let
ct(n) be the number of t-cores of size n. We will be interested in finding the asymptotic
behavior of certain sums involving ct(n). Anderson [1] has obtained detailed asymptotic
results for ct(n) using the circle method, but these will not suffice for our purposes. We
define the number of partitions obtained by taking t-cores of all partitions of n by

Ct(n) := #{coret(λ) | λ a partition of n}. (1.1)

When t is a prime number, Ct(n) can be defined to be the number of t-blocks, that is, the
number of connected components of the Brauer graph, in the t-modular representation
theory of the symmetric group Sn [5].

Our first main result is the following.
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Theorem 1.1. Fix t ≥ 2. Then

Ct(n) =
(2π)(t−1)/2

t(t+2)/2 Γ( t+1
2 )

(
n +

t2 − 1
24

)(t−1)/2

+ O(n(t−2)/2). (1.2)

Corollary 1.2. Fix t ≥ 2. Then ct(n) = O(n(t−2)/2).

Let n be a positive integer and t ≥ 2 be a fixed positive integer as before. Let λ be a
uniformly random partition of n. Let Yn be a random variable on N≥0 given by

Yn ≡ Yn,t = | coret(λ)|, (1.3)

where | · | denotes the size of the partition. We will be interested in the convergence of
Yn. The probability mass function of Yn is given by

µn(k) ≡ µn,t(k) =
#{λ ` n : | coret(λ)| = k}

p(n)
, (1.4)

where p(n) is the number of partitions of n. It can be shown (see Corollary 2.6) that µn
can be written as

µn(k) =
ct(k)dt(n− k)

p(n)
, (1.5)

where dt(m) is the number of partitions of m with empty t-core. Let Xn ≡ Xn,t be
continuous random variables defined on [0, ∞) with the probability density function
fn ≡ fn,t given by

fn(x) =
√

n ct(bx
√

nc) dt(n− bx
√

nc)
p(n)

. (1.6)

Note that the integral of fn being 1 is equivalent to ∑k µn(k) = 1. Recall that the gamma
distribution with shape parameter α > 0 and rate parameter β > 0 is a continuous random
variable on [0, ∞) with density given by

γ(x) =


βα

Γ(α)
xα−1 exp(−βx), x ≥ 0,

0, x < 0,
(1.7)

where Γ is the standard gamma function.

Theorem 1.3. The random variable Xn converges weakly to a gamma-distributed random vari-
able X with shape parameter α = (t− 1)/2 and rate parameter β = π/

√
6.

See Figure 1 for an illustration of Theorem 1.3 for t = 5. Notice that while the
distribution seems to converge pointwise in Figure 1(a), the density in Figure 1(b) does
not. An immediate consequence of Theorem 1.3 is the following result.
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Figure 1: Comparison of the limiting CDFs and densities for small values of n with
t = 5. A red solid line is used for the limiting distribution, dashed blue for n = 20,
dash-dotted green for n = 62 and dotted magenta for n = 103. In (a) the CDFs, and in
(b) the densities, are plotted for X and these Xn’s.

Corollary 1.4. The expectation of the size of the t-core for a uniformly random partition of size
n is asymptotic to (t− 1)

√
6n/2π.

We illustrate Corollary 1.4 with the example of t = 3 in Figure 2. Theorem 1.3 and
Corollary 1.4 will be proved in Section 4.
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Figure 2: The average size of the 3-core for partitions of size 1 to 100 in blue circles,
along with the result from Corollary 1.4,

√
6x/π, as a red line.

Let λ be a partition of n and c denote a cell in the Young’s diagram of λ. Then
we define hc be the hook length associated to the cell c. See Section 2 for the precise
definitions. Our final major result is a statement about the remainder of hook lengths of
cells when divided by t.

Theorem 1.5. For a uniformly random cell c of a uniformly random partition λ of n, the prob-
ability that the hook length of c in λ is congruent to i modulo t is asymptotic to 1/t for any
i ∈ {0, 1, . . . , t− 1}.
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We will devote Section 2 to state some preliminary results. We will sketch the proofs
of Theorems 1.1, 1.3 and 1.5 in Sections 3 to 5 respectively. The complete proofs of these
results can be found in the extended version of this paper [2], which will be published
elsewhere.

2 Preliminaries

Recall that an (integer) partition λ of a nonnegative integer n is a nonincreasing tuple of
nonnegative integers which sum up to n. If λ is a partition of n, we write λ ` n and say
that the size of λ, denoted |λ|, is n. Let p(n) denote the number of partitions of n. We
write P for the set of all partitions.

Let c ≡ (i, j) be a cell in the Young diagram of λ. The hook of c is a subset of the cells
in the Young diagram containing the cells to the right of c in the same row, those below
c in the same column, and c itself. The hook length is the cardinality of the cells in the
hook of c and is denoted by hλ

c .

2.1 Abacus representation

Definition 2.1. An abacus or (1-runner) is a function w : Z→ {0, 1} such that there exist
m, n ∈ Z such that wi = 1 (resp. wi = 0) for all i ≤ m (resp. i ≥ n).

Starting from an abacus w, consider the up-right path formed by replacing 1’s by
vertical steps and 0’s by horizontal steps. This path will form the outer boundary of a
partition. However, note that this is not a bijective correspondence because any shift of
the abacus will lead to the same partition.

An abacus w is called justified at position p if wi = 1 (resp. wi = 0) for i < p (resp.
i ≥ p). Any abacus can be transformed to a justified one by moving the 1’s to the left
past the 0’s start from the leftmost movable 1. An abacus is called balanced if, after this
transformation, it is justified at position 0. Note that balanced abaci are in bijection with
partitions.

We now summarize properties of abaci that will be relevant to us. Readers interested
in the details can look at [6, 9, 8].

Proposition 2.2. Let λ be a partition with corresponding balanced abacus w and c be a cell in
the Young diagram of λ. Then the following properties hold.

1. Cells in the Young diagram of λ are in bijection with pairs (i, j) such that i < j, wi = 0
and wj = 1. The hook length of the cell c corresponding to the pair (i, j) in w is j− i.

2. Suppose c has hook length t. Then c corresponds to a pair (i, i + t) in w. Then, removing
a t-rim hook for the cell c (see the beginning of Section 2.2) from the Young diagram of λ

amounts to exchanging the i’th and (i + t)’th entries in w.
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2.2 Cores and quotients

To describe cores and quotients, we will need some notation. Associated to a partition λ

and a cell c in its Young diagram, the set of cells joining the two corners in the hook of c
along the boundary is known as the rim hook or ribbon of c.

The t-core of a partition λ, denoted coret(λ), is the partition obtained by removing
as many rim hooks of size t from λ as possible. Using Proposition 2.2, we can define
coret(λ) as the partition corresponding to abacus obtained by exchanging as many (0, 1)
pairs at positions (i, i + t) as possible.

A partition λ is called a t-core if coret(λ) = λ, or equivalently, if none of the hook
numbers in the Young diagram of λ is divisible by t. From Proposition 2.2, it follows
that the partition λ is a t-core if and only if there is no i ∈ Z such that wi = 0 and
wi+t = 1. Let C t be set of all t-cores. Let ct(n) be the number of t-cores of size n. Then it
is known [7] that

∞

∑
n=0

ct(n)xn =
∞

∏
k=1

(1− xtk)t

1− xk . (2.1)

Definition 2.3. A partition is said to be t-divisible if it has empty t-core.

Let Dt(n) be the set of t-divisible partitions of n and dt(n) be its cardinality. Given
a partition λ with abacus w, construct t abaci by letting λi = (wnt+i)n∈Z for 0 ≤ i ≤
t− 1. The t-runner abacus of λ is then (λ0, . . . , λt−1) of 1-runner abaci, where the zeroth
position in λ0 is underlined. We define the t-quotient of λ to be a t-tuple of partitions
corresponding to the entries of the t-runner (λ0, . . . , λt−1). We will use the same notation
for the i’th entry of the t-quotient and the t-runner. It turns out that t-cores and t-
divisible partitions have a natural interpretation in terms of t-runner abaci.

Proposition 2.4. Let λ be a partition and (λ0, . . . , λt−1) be its t-runner abacus. Then

1. λ is a t-core if and only if λi is justified for 0 ≤ i ≤ t− 1, and

2. λ is t-divisible if and only if λi is balanced for 0 ≤ i ≤ t− 1.

A fundamental result on cores and quotients is the partition division theorem [8, Theo-
rem 11.22], which is an analogue of the division algorithm for integers. We restate it in
slightly different terminology more suited to our purposes.

Theorem 2.5. Let t ≥ 2 be an integer. Then there is a natural bijection

∆t : P → C t×Dt

defined by ∆t(λ) = (ρ, ν), where ρ is the t-core of λ and ν is a t-divisible partition whose
t-quotient, (ν0, . . . , νt−1), is same as that of λ. Moreover |λ| = |ρ|+ |ν|.

The following corollary is then immediate.

Corollary 2.6. Let i, n be positive integers such that i < n. Then

#{λ ` n | | coret(λ)| = i} = dt(n− i)ct(i).
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3 Asymptotics of the number of t-cores

The asymptotics of the number of t-cores, ct(n), was obtained using the circle method
by Anderson [1, Theorem 2] for t ≥ 6. We demonstrate a new method to obtain these
asymptotics for t ≥ 2.

The following theorem describe the quantity ct(n) as the number of integer solutions
of a particular quadratic equation. This is a reformulation of [4, Bijection 2], and we
give a new proof using the abacus representation which can be found in the [2]. Let Ht
denote the hyperplane in Rt given by Ht = {(x0, . . . , xt−1) | x0 + x1 + . . . xt−1 = 0}.

Theorem 3.1. The number of t-cores of n, ct(n), is equal to the number of integer solutions of
Ft(p) = n on the hyperplane Ht, where Ft is defined by

Ft(p) =
t
2

t−1

∑
i=0

p2
i +

t−1

∑
i=0

ipi. (3.1)

Observe that subtracting (t − 1)
(

∑t−1
i=0 pi

)
/2 from (3.1) yields the equation of a t-

dimensional sphere centered at a point in the hyperplane Ht given by

t−1

∑
i=0

(
pi −

t− 1− 2i
2t

)2

=
2
t

(
n +

t2 − 1
24

)
. (3.2)

Denote the (t− 1)-dimensional ball cut out by the hyperplane Ht and the sphere given
by (3.2) as Bt−1(n). The radius of Bt−1(n) is unchanged since the center 1/(2t)(t −
1, t− 3, . . . ,−(t− 3),−(t− 1)) lies on Ht. Then the volume Vt(n) of Bt−1(n), under the
induced measure on the hyperplane Ht, is

Vt(n) =
1

Γ( t+1
2 )

(
2π

t

(
n +

t2 − 1
24

))(t−1)/2

. (3.3)

Define the lattice Λt = Ht ∩Zt. It is clear that Λt is a full lattice of the codimension
one subspace Ht with Z-basis {e0− e1, e0− e2, . . . , e0− et−1}. We use standard techniques
to note that the volume V(Λt) of the fundamental domain of Λt in Ht is

√
t.

We obtain the next result by working over the module (Z/tZ)t. To avoid confusion,
we will denote points in (Z/tZ)t with a tilde, e.g. P̃, Q̃.

Lemma 3.2. For any n ∈ N, the cardinality of the set
{

Q̃ ∈ H̃t | Ft(Q̃) ≡ n mod t
}

is tt−2,
where Ft is defined in (3.1) and H̃t is the hyperplane of (Z/tZ)t defined by q0 + q1 + · · · +
qt−1 = 0.

We are now in a position to prove the main result of this section.
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Proof of Theorem 1.1. Recall that the number of partitions obtained by taking t-cores of all
partitions of n is denoted by Ct(n) and is defined in(1.1). It is easy to prove the relation

Ct(n) =
b n

t c

∑
i=0

ct(n− i t).

Using Theorem 3.1, we conclude that

Ct(n) = #
{

Q ∈ Λt ∩ Bt−1(n) | Ft(Q) ≡ n mod t
}

. (3.4)

Splitting the set of points in the set on the right hand side according to their remainder
modulo t, we arrive at

Ct(n) = ∑
P̃∈Λt/tΛt

F(P̃)≡n mod t

#
(
(P̃ + tΛt) ∩ Bt−1(n)

)
, (3.5)

where P̃ + tΛt is the lattice tΛt shifted by P̃. Clearly, the fundamental domain has vol-
ume V(P̃+ tΛt) = tt−1V(Λt). We use Lemma 3.2 and standard results on the asymptotic
of the number of lattice points inside a (t− 1) dimensional sphere to obtain the required
approximation in terms of Vt(n) defined in (3.3).

4 Distribution of core sizes

In this section we will sketch the proof of Theorem 1.3. We prove the weak convergence
by calculating moments. As usual, we fix t ≥ 2. Let ε(n) ∈ {0, 1, . . . , t − 1} be the
remainder of n is divided by t. For convenience, define `n(y) = tby

√
nc + ε(n), and

we assume that all the functions defined below are supported on y ≥ 0. We will make
crucial use of the functions

ψn(y) =
ct(`n(y))
n(t−3)/4

, (4.1)

and

gn,k(y) = `n(y)kn(t−1)/4−k/2 dt(n− `n(y))
p(n)

. (4.2)

Recall that the function fn(x) is defined in (1.6). The functions gn,k and ψn are defined
so that ψn(y)gn,0(y) = fn(`n(y)/

√
n) is roughly like fn(ty) for large n. We now define

gk(y) = κyke−βty, (4.3)

where κ = t(t+2+2k)/22−3(t−1)/43−(t−1)/4 and we recall that we have defined β = π/
√

6.
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Lemma 4.1. For any natural number k, the sequence of functions gn,k converges uniformly to gk
as n→ ∞. Moreover,

lim
n→∞

∫ ∞

0
dy ψn(y)gn,k(y) = lim

n→∞

∫ ∞

0
dy ψn(y)gk(y). (4.4)

Lemma 4.1 is lengthy and technical, and so we do not sketch the proof. A complete
proof can be found in [2].

Lemma 4.2. For all positive integer k,

lim
n→∞

E(Xk
n) =

(√
6

π

)k k

∏
i=1

(
t− 1

2
+ k− i

)
. (4.5)

Sketch of proof. We first note that the required limit of expectation equals the expression
in (4.4). Using Lemma 4.1 and integration by parts, we reduce the problem to finding
the integral of ψn(y), with other quantities well understood in terms of gk. We use
Theorem 1.1 to obtain an estimate for the integral of ψn(y), which enables us to obtain
the required expression for the k’th moment.

Proof of Theorem 1.3. From the formula for the moments of the gamma distribution, one
can verify that the moment generating function of the gamma distribution is determined
by its moments (see [3, Theorem 30.1], for example). Using Lemma 4.2, we have shown
that all the moments of Xn exist and converge to those of X, which is gamma distributed.
Again appealing to a standard result on weak convergence [3, Theorem 30.2], we see that
Xn converges weakly to X.

5 Hook lengths of random cells of random partitions

The main result of this section is that for large enough n, the modulo class of the hook
length of a uniformly random cell of a uniformly random partition is approximately the
uniform distribution on the modulo classes {0, 1, . . . , t− 1} .

We obtain the following proposition as an easy application of Corollary 1.4 by noting
that removing a t-rim hook results reduces the number of hooks hc with t|hc by exactly
one. The same is not true for non-zero modulo classes.

Proposition 5.1. For a uniformly random cell c of a uniformly random partition λ of n, the
probability that the hook length of c in λ is divisible by t is 1/t + O(n−1/2).

Using the results in Section 4, we are only able to prove the results in Proposition 5.1.
To obtain the stronger result stated in Theorem 1.5, we will need to appeal to the theory
of t-runner abaci.

We will now estimate the number of cells of the region with small hook lengths. The
following lemma gives us a crucial bound in proving the main theorem of this section.
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Lemma 5.2. For λ ` n and an integer m, the cardinality of the set B = {c ∈ λ | hc < m} is
less than m

√
2n.

Proof. It is enough to construct an injection from the set of unordered pairs of distinct
cells in B to λ× [m]× [m]. We describe such a construction below.

Suppose c1 and c2 are two cells in B, and say that c1 is to the west of c2 and if both
are in the same column let c1 to be south of c2. Let a2 be the arm length of c2 and l1 be
the leg length of c1. Then map the pair {c1, c2} to (c, a2, l1), where c is the unique cell in
the intersection of the column containing c1 and the row containing c2.

This map is clearly injective since the cell c describes the column (or row) in which
the cell c1 (resp. c2) lives and l1 (resp a2) gives the exact location of c1 (resp c2) in the
partition.

5.1 A natural action of St

We define the action of St on Dt, the set of t-divisible partitions, as follows. For any
σ ∈ St and a t-divisible partition ν with t-quotient (ν0, ν1, . . . , νt−1), define σν be the
t-divisible partition corresponding to the t-quotient (νσ0 , νσ1 , . . . , νσt−1). Note that the
above action preserves the size of the t-divisible partition.

Definition 5.3. The b-smoothing of a t-divisible partition ν, denoted Cb
ν, is the union of

cells in the Young diagram of ν whose corresponding (0, 1) pairs are at least (b + 1)
columns apart in the t-runner abacus of ν.

Proposition 5.4. The set of cells Cb
ν is a connected subpartition of ν. Moreover Cb

ν = Cb
σν for all

σ ∈ St and b ≥ 0.

For any cell c ∈ Cb
ν, define hν

c to be the hook length of the cell c in the partition ν. For
the corresponding (0, 1) pair in the t-runner abacus of ν, where 0 ∈ νi and 1 ∈ νj, we see
that hν

c ≡ j− i mod t. Using the action of St defined above, we get the following

Lemma 5.5. Let ν be a uniformly random t-divisible partition of n and b ≥ 0. For a uniformly
random cell c ∈ Cb

ν, the probability that the hook length hν
c is congruent to i modulo t, where

i 6= 0, is independent of i.

Definition 5.6. We define the action of σ ∈ St on P by σλ = ∆−1
t (ρ, σν), where ∆t(λ) =

(ρ, ν) is defined in Theorem 2.5.

Let λ ∈ P with ∆t(λ) = (ρ, ν), and ρ be determined by the t-tuple (p0, . . . , pt−1),
where pi is the position of justification of abacus ρi and let bλ = max1≤i<j≤t−1 |pi − pj|.
We will denote Cbλ

ν by Cλ for brevity and call it the canonical smoothing of the t-quotient
of λ.
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Proposition 5.7. Let λ be a partition with ∆t(λ) = (ρ, ν). Then there exists an injective map
φ that takes the cells in Cλ to the cells in λ such that for any cell c ∈ Cλ, the hook lengths
hλ

φ(c) ≡ hν
c mod t.

Proof. Let c ∈ Cλ ⊂ ν be given by the pair (νa
i , νb

j ) = (0, 1) where j− i > bλ by definition.

Let ρ be determined by the justification positions (p0, . . . , pt−1), where ∑t−1
i=0 pi = 0 as

explained before. Then a required map can be defined as

φ(c) := (νa
i+pa

, νb
j+pb

).

5.2 Proof of the main theorem

The main idea is to show that the image of the canonical smoothing φ(Cλ) comprise of
most of the cells in a uniformly random partition λ of size n. We first obtain a bound
|bλ| ≤ 2

√
|ρ| using elementary counting. Then we apply Lemma 5.2 to get the following

Proposition 5.8. For any partition λ ` n with ∆t(λ) = (ρ, ν),

|ν| − |Cλ| < #{c ∈ ν | hc < t(bλ + 1)} = O(t(bλ + 1)
√

n). (5.1)

We are now in a position to prove the main result of this section.

Proof of Theorem 1.5. Let xi(n) be the probability that a uniformly random cell c of a
uniformly random partition of n has hook length congruent to i modulo t. Using Propo-
sition 5.7 and Lemma 5.5, we obtain by conditioning for any nonzero classes i and j
modulo t, the difference between xi(n) and xj(n) in absolute value is upper bounded by
the probability that c /∈ φ(Cλ). Therefore, by Theorem 2.5, we have that

|xi(n)− xj(n)| ≤ ∑
λ`n

∆t(λ)=(ρ,ν)

|ν| − |Cλ|+ |ρ|
np(n)

.

Now, by Proposition 5.8 and Corollary 1.4,

|xi(n)− xj(n)| < O(n−1/2E(
√
| coret(λ)|)) + O(n−1/2).

Using the standard fact that E
√

Y ≤
√

EY for any nonnegative random variable Y, we
see that the right hand side is O(n−1/4). Since x0(n) + x1(n) + · · · + xt−1(n) = 1 and
x0(n) = 1/t + O(n−1/4), we obtain the required result.
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