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Abstract. In 1980, Edelman defined a poset on objects called the noncrossing 2-
partitions. They are closely related with noncrossing partitions and parking func-
tions. To some extent, his definition is a precursor of the parking space theory, in the
framework of finite reflection groups. We present some enumerative and topological
properties of this poset. In particular, we get a formula counting certain chains, that
encompasses formulas for Whitney numbers (of both kinds). We prove shellability of
the poset, and compute its homology as a representation of the symmetric group.

Résumé. En 1980, Edelman a défini un ordre partiel sur des objets appelés les 2-
partitions non-croisées. Elles sont intimement reliées aux partitions non-croisées et aux
fonctions de stationnement. Dans une certaine mesure, sa définition est un précurseur
de la théorie des espaces de stationnement. Nous présentons quelques propriétés
énumératives et topologiques de cet ordre. En particulier, nous obtenons une formule
comptant certaines chaînes, qui inclut des formules pour les nombres de Whitney (des
deux espèces). Nous prouvons l’épluchabilité du poset, et calculons son homologie en
tant que représentation du groupe symétrique.

Keywords: parking functions, noncrossing partitions, poset topology, representations,
symmetric group

Introduction

Parking functions are fundamental objects in algebraic combinatorics. It is well known
that the set of parking functions of length n has cardinality n + 1n−1, and the natural
action of the symmetric group Sn on this set occurs in the deep work of Haiman [5]
about diagonal coinvariants. Generalizations to other finite reflection groups lead to the
parking space theory of Armstrong, Reiner, Rhoades [1, 8].

The poset mentioned in the title was introduced by Edelman [4] in 1980, as a variant
of the noncrossing partition lattice introduced by Kreweras [7] (hence the name noncrossing
2-partitions in [4]). One striking feature of Edelman’s definition is that it really fits well in
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the noncrossing parking space theory mentionned above, so it seems that this overlooked
poset can give a new perspective on recent results about parking functions.

Our goal is to obtain new enumerative and topological properties of Edelman’s poset.
Through various bijections, we will see that several variants of the same objects are
relevant:

• 2-noncrossing partitions (Section 1.1),

• some pairs of a noncrossing partition together with a permutation (Section 1.2),

• parking functions in the usual way (Section 1.3),

• parking trees (Section 1.3).

The latter, which have the additional structure of a species, will be useful to write func-
tional equations and get our enumerative results in Section 2. What we get is a formula
counting chains of k elements whose top element has rank `. A nice feature of this for-
mula is that it encompasses a nice formula for Whitney numbers of the second kind at
k = 1 (this one being obtained by Edelman), and one for Whitney numbers of the first
kind at k = −1.

Then we go on to topological properties: we will see in Section 3 that the poset
is shellable. Unlike the case of noncrossing partitions which can be treated by EL-
shellability, we need here the notion of recursive atom ordering (equivalent to the notion
of CL-shellability). Still, the EL-shellability of noncrossing partitions is a key tool. There
are well known consequences of shellability such as Cohen-Macauleyness, and hence
that only one homology group of the poset is non trivial. We use this fact in Section 4 to
compute the character of this homology group as a representation of Sn.

1 Parking function posets

1.1 The poset of noncrossing 2-partitions

A set partition π of {1, . . . , n} is noncrossing if there exists no i < j < k < l such
that i, k ∈ B1 and j, l ∈ B2 where B1 and B2 are two distinct blocks of π. Endowed
with the refinement order, noncrossing partitions of {1, . . . , n} form a lattice denoted
NCn, first defined by Kreweras [7]. Note that we take the convention that the minimal
element is {{1, 2, . . . , n}}, the set partition with one block, and the maximal element is
{{1}, {2}, . . . }.

To each noncrossing partition π ∈ NCn, we associate a permutation π̄ defined by the
conditions that for each block B = {b1, b2, . . . , bk} ∈ π we have π̄(bi) = bi+1 if i < k
and π̄(bk) = b1. This permits us to define the Kreweras complement [7]: for π ∈ NCn, it
is K(π) ∈ NCn such that the associated permutation is ω̄π̄−1 where ω is the minimal
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noncrossing partition (so that ω̄ is a full cycle). The map π 7→ K(π) defines an anti-
automorphism of NCn. For example, K({{1, 2}, {3}, {4, 5}}) = {{1, 3, 4}, {2}, {5}} since
in the symetric group we have (12345)(12)(45) = (134).

Definition 1.1 (Edelman [4]). A noncrossing 2-partition of {1, . . . , n} is a triple (π, ρ, λ)
where:

• π is a noncrossing partition of {1, . . . , n}, ρ is a set partition of {1, . . . , n},
• λ is a bijection from (the blocks of) π to (those of) ρ, and ∀B ∈ π, #λ(B) = #B.

This set is denoted 2Πn. A partial order on 2Πn is defined by (π′, ρ′, λ′) ≥ (π, ρ, λ) iff:

• π′ is a refinement of π, ρ′ is a refinement of ρ,

• if
⊎j

i=1 B′i = B where B′i ∈ π′ and B ∈ π, then
⊎j

i=1 λ′(B′i) = λ(B).

For example, such a triple (π, ρ, λ) is as follows: π = {{1, 5, 6, 8}, {2, 3}, {4}, {7}},
ρ and λ are given by λ({1, 5, 6, 8}) = {2, 3, 4, 7}, λ({2, 3}) = {5, 8}, λ({4}) = {1},
λ({7}) = {6}. Another representation will be given in Section 1.2 (in particular, see the
example at the end).

The poset 2Πn is ranked, with rk((π, ρ, λ)) = #π − 1. Let us mention a few other
properties following from the definition. Using the last condition above, we see that if
(π, ρ, λ) ≤ (π′, ρ′, λ′), λ and ρ are uniquely determined by π′, ρ′, λ′, π. It follows that
the order ideal of 2Πn containing all elements below (π, ρ, λ) is isomorphic to an order
ideal in the noncrossing partition lattice, so it is isomorphic to a product of noncrossing
partition lattices NCi1 × NCi2 × · · · (here i1, i2, . . . are the sizes of the blocks of K(π)).
Similarly, one can prove that the order filter of 2Πn containing all elements above (π, ρ, λ)
is isomorphic to a product 2Πi1 × 2Πi2 × · · · (here i1, i2, . . . are the sizes of the blocks of
π). Moreover, 2Πn has one minimal element, and n! maximal elements.

Edelman proved in [4] that the ζ-polynomial of this poset is given by Z 2Πn(k + 1) =
(nk + 1)n−1. In particular, setting k = 1 we see that noncrossing 2-partitions and parking
functions are equienumerous. Another result from [4] is that for 0 ≤ k ≤ n − 1, the
number of elements of rank ` in 2Πn, called the `th Whitney number of the second kind, is

W`( 2Πn) = `!
(

n
`

)
S2(n, `+ 1), (1.1)

where S2(n, k) are the Stirling numbers of the second kind.
There is a natural action of Sn on set partitions of {1, . . . , n} (see [2], for example). It

extends to an action on 2Πn by: σ · (π, ρ, λ) = (π, σ · ρ, σ ◦ λ), where in σ ◦ λ we identify
σ with its action on set partitions. We will see below another way to think of this action,
by defining a species of parking trees. It is straightforward to check that the action
preserves the order relation of 2Πn, so that it extends to an action on chains of the poset,
and then on the homology.
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1.2 The parking space

It turns out that this action can be identified with one defined in the parking space theory,
introduced by Armstrong, Reiner and Rhoades in [1]. In some sense, Edelman’s poset is
a precursor to this theory. To clarify this link, let us mention a few facts.

For π ∈ NCn, we denote by Sn(π) the set of σ ∈ Sn such that σ ·π = π. Then Sn(π)
is a parabolic subgroup (it is conjugated to a Young subgroup). The quotient Sn/Sn(π)
is acted on by Sn, by left multiplication. The character of this action is IndSn

Sn(π)
(1), the

trivial character of Sn(π) induced to Sn. Under the Frobenius map, it is sent to the
homogeneous symmetric function hλ, where λ is the integer partition obtained by sorting
block sizes of π.

Any pair (π, σ) where π ∈ NCn and σ ∈ Sn/Sn(π) can be identified with an element
(π, ρ, λ) ∈ 2Πn by letting ρ = σ · π, and λ is defined as the action of σ on blocks of π.
This identification is compatible with the action of Sn. It follows that the character of
the action of Sn on 2Πn is:

∑
π∈NCn

IndSn
Sn(π)

(1).

Therefore it coincides with the noncrossing parking space from [1].
In particular, the poset 2Πn appears implicitly in [8]. It follows from this reference that

the character of Sn acting on chains φ1 ≤ · · · ≤ φk in 2Πn is given by

σ 7→ (kn + 1)z(σ)−1 (1.2)

where z(σ) is the number of cycles of σ.
Following the above discussion, it is natural to see (π, ρ, λ) ∈ 2Πn as a pair (π, σ)

where σ ∈ Sn is a minimal length coset representative in Sn/Sn(π), i.e. for each block
B = {b1, b2, . . .} ∈ π we have σ(b1) < σ(b2) < · · · . The example given after Defini-
tion 1.1 gives the pair ({{1, 5, 6, 8}, {2, 3}, {4}, {7}}, 25813467). It can be represented as

a noncrossing partition with labels: 2 5 8 1 3 4 6 7 .
The cover relation is easily described in this representation. To obtain (π′, σ′) such

that (π′, σ′)l (π, σ), choose π′ ∈ NCn such that π′lπ, and σ′ is obtained by rearranging
the labels so as to respect the increasing condition on the blocks of π′.

1.3 The link with parking functions

Definition 1.2. A parking function of length n is a word w1 · · ·wn of positive integers,
such that for all k between 1 and n, we have #{ i : wi ≤ k} ≥ k. The symmetric group
acts on parking functions as follows: for σ ∈ Sn, σ · (w1 · · ·wn) = wσ−1(1) · · ·wσ−1(n).
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To each (π, ρ, λ) ∈ 2Πn, we associate a parking function w1 · · ·wn by the following
condition: for each B ∈ π, we have wi = min B if i ∈ λ(B). It can be checked that this
defines a bijection that is compatible with the action of Sn.

It is worth making explicit what are the parking functions corresponding to (π, π, I)
where I is the identity map, because these are orbit representatives. It turns out that
they are the parking functions w1 · · ·wn such that: i) wi ≤ i for all i, and: ii) they are
lexicographically maximal among parking functions in the same orbit and satisfying i).

Definition 1.3. A parking tree on a set L is a rooted plane tree T such that: i) the internal
vertices of T are labelled with nonempty subsets of L, ii) the above mentioned labels
form a set partition of L, iii) if an internal vertex has i descendants then its label has
cardinality i. The species of parking functions (or parking species), denoted P f , is the species
which associates to any finite set V the set of parking trees on V.

Note that a parking tree on L has #L edges.

Example 1.4. We represent below the parking trees on {1}, {1, 2} and {1, 2, 3}:
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Parking trees on {1, . . . , n} are in bijection with
parking functions in such a way that the action of
Sn coincides on both sets. A parking function of
length n can be rewritten as a (weak) set composi-
tion (A1, . . . An) of {1, . . . , n} satisfying ∑k

i=1 |Ai| ≥ k
for any 1 ≤ k ≤ n, by letting Ai be the set of po-
sitions of letter i in the parking function. Then, the
vertices of the parking trees are given by the sets of
the composition, and Ai is the leftmost child of Ai−1
if Ai−1 6= ∅, and plugged in the next available place
to the right otherwise. The inverse bijection is given
by reading nodes in a prefix order. See the picture on
the right.
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The covering relations on parking trees corresponding to those of the 2-partition
poset are then given as follows. From a parking tree T, another one U such that T l U
is obtained from T by a sequence of operations:

• choose a vertex A and partition it into two (non empty) sets A1 and A2,

• deconcatenate the list of its (possibly empty) subtrees into three lists L1, L2 and L3,
such that L1 is non empty and L2 and A2 have the same cardinality,

• remove from the tree the elements of A2 and L2

• add the elements of A2 to the rightmost leaf of A1 in L1

• add L2 as the list of children of A2.

For the leftmost tree in Figure 1, A1 = {1, 5, 6} and A2 = {2}, the possible lists

are (L1, L2, L3) = ((∅), ( 3

4

), (∅, ∅)), ((∅, 3

4

), (∅), (∅)) or ((∅, 3

4

, ∅), (∅), ()), which
gives each of the other trees in Figure 1.

2 Enumeration of chains of parking functions

Proposition 2.1. The species P f of parking trees satisfies:

P f = ∑
k≥1

Ek × (P f )
k, (2.1)

where Ek(V) = δ|V|=kK (where K is our ground field) and the species of non-empty sets is
E− 1 = ∑k≥1 Ek.

This is obtained from the tree structure, and accordingly we can write an equation in
terms of symmetric functions for the Frobenius image of the characters of P f .

The set of weak k-chains of parking functions on I is the set PFI
k of k-tuples (a1, . . . , ak)

where ai are parking functions on I and ai ≤ ai+1. The species which associates to any
set I the set PFI

k is denoted by C l
k,t.

Theorem 2.2. We have:
C l

k,t = ∑
p≥1
C l,p

k−1,t ×
(

tC l
k,t + 1

)p
,

where C l,p
k−1,t(V) = δ|V|=pC l

k−1,t(V) on any set V of size p.
In terms of generating functions, this translates to:

Cl
k,t = Cl

k−1,t ◦
(

x
(

tCl
k,t + 1

))
(2.2)
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Figure 1: A tree and some trees covering it.
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Figure 2: Covering relations in parking trees poset.
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Figure 3: The poset of parking trees on three elements.
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Note that from the functional equation in terms of species, it is theoretically possible
to find a formula for the character of Sn acting on the chains as above. Here we only
consider the enumerative result.

Remark 2.3. In terms of generating series, the computations are the same as if we con-
sidered chains in a poset of forests of rooted non planar trees, however the two species
differ. Defining and studying the poset of forests of rooted trees linked with 2-partition
posets will be done in a future work. Note that the species C l

k,t is definitely different

from the species F l
k,t satisfying F l

k,t = (E− 1) ◦ (X
(

tF l
k,t + 1

)k
), in the same way that

the action of the symmetric group on parking functions and forests of non planar rooted
trees are completely different.

From Theorem 2.2, we show by induction the following formula, for any 1 ≤ i ≤ k,
which leads to Corollary 2.4:

Cl
k,t = Cl

k−i,t ◦
(

x
(

tCl
k,t + 1

)i
)

. (2.3)

Corollary 2.4. The generating function of weak k-chains in the 2-partition posets satisfies:

Cl
k,t = exp

(
x
(

tCl
k,t + 1

)k
)
− 1. (2.4)

From (2.4), Cl
k,t is the compositional inverse of ln(1+ x) (1 + tx)−k. By using Lagrange

inversion, it is possible to extract the coefficients and we get:

Corollary 2.5. The number of chains φ1 ≤ · · · ≤ φk in 2Πn where rk(φk) = ` is:

`!
(

kn
`

)
S2(n, `+ 1). (2.5)

Also, a bijective proof of this corollary will be given in the full version of this work.
Clearly, the formula in (2.5) specializes to (1.1), by letting k = 1. Also, using a general
fact linking the ζ-polynomial of a poset with its Möbius function, at k = −1 the formula
above specializes to the Whitney numbers of the first kind of 2Πn, defined by:

w`( 2Πn) = ∑
φ∈ 2Πn, rk(φ)=`

µ(0̂, φ).

Note that the number µ(0̂, φ) is a product of Catalan numbers. Indeed, this interval is
isomorphic to an interval in NCn, so it follows from the result on the Möbius function
of NCn [7]. By letting k = −1 in (2.5), we get

w`( 2Πn) = (−1)``!
(

n + `− 1
n

)
S2(n, `+ 1).

In general, Whitney numbers of the first kind are the dimensions of the Whitney modules,
which are useful to compute the homology of a poset (see Section 4).
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3 Shellability of the parking functions poset

Let 2̂Πn denote the bounded poset obtained by adding a new maximal element 1̂ on top
of 2Πn. The goal of this section is to prove that 2̂Πn is a shellable poset. Some consequences
of this property will be explained in the next section. Our method is to show that there
exists a recursive atom ordering of the poset. We refer to [9] for this notion, as well as for
the notion of EL-labelling. In this section, we see φ ∈ 2Πn as a pair (π, σ) as explained at
the end of Section 1.2.

Note that if we have a covering relation π l ρ in NCn, π is obtained from ρ by
merging two blocks and it follows that π̄ρ̄−1 is a transposition. Labelling each cover
relation π l ρ by π̄ρ̄−1 defines an EL-labelling of NCn, if we order transpositions by the
lexicographic order on pairs (i, j) such that i < j. It follows that if we define a total order
on the upper covers of π ∈ NCn by saying that ρ precedes τ when π̄ρ̄−1 precedes π̄τ̄−1

in the lexicographic order on pairs, we get a recursive atom ordering of NCn. This will
be a tool in building the recursive atom ordering of 2̂Πn. We also need:

Definition 3.1. The code of a permutation σ = σ1 . . . σn is the word γ(σ) = cn . . . c1, with
ci = #{ j < i | σ−1(j) > σ−1(i) }. Combinatorially, ci corresponds to the number of
integers smaller than i on its right. For instance, γ(15324) = 30100.

Definition 3.2. For each cover relation (π, σ)l (ρ, τ) in 2Πn, we define a label:

Λ
(
(π, σ), (ρ, τ)

)
=
(
γ(τ), π̄ρ̄−1).

For each (π, σ) ∈ 2Πn, we define a total order on its upper covers by saying that (ρ, τ)
precedes (ρ′, τ′) iff Λ

(
(π, σ), (ρ, τ)

)
< Λ

(
(π, σ), (ρ′, τ′)

)
, using the lexicographic order

on pairs, lexicographic order on codes of permutations, lexicographic order on the set of
transpositions as described above.

Note that if (π, σ) is maximal in 2Πn, it has a unique cover in 2̂Πn and we don’t need
to define a total order on its upper covers.

Theorem 3.3. The orders defined above form a recursive atom ordering of 2̂Πn.

It follows that the lexicographic order on maximal chains of 2̂Πn defines a shelling,
and that this poset is shellable, hence Cohen-Macauley.

The full proof of the theorem above is somewhat technical and is omitted here. Let
us just mention a few facts. For example, the lexicographic order on codes is easily seen
to be relevant here. Indeed, if (σ, τ) ≤ (σ′, τ′) in 2Πn, it can be proved that their codes
satisfy γ(τ) ≤ γ(τ′). Another property, used in the proof and of independent interest,
is the fact that 2Πn is a meet semi-lattice. Together with a few other lemmas, proving the
theorem becomes a case by case verification of the axioms.
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4 Homology of the parking function poset

We now study the homology associated to the parking function poset. The reader may
read Wachs’ article [9] as a general reference on this subject (in particular for the Philip
Hall theorem, the Hopf trace formula, Whitney homology).

Let 2Π′n denote the proper part of 2Πn, i.e. 2Πn with its bottom element removed (the
topology associated to 2Πn is trivial so 2Π′n is the poset to consider here). We denote by
Ω( 2Π′n) the order complex of 2Π′n, i.e. the simplicial complex whose simplices are the strict
chains in 2Π′n. We are interested in the simplicial homology of Ω( 2Π′n), but let us be more
explicit.

Definition 4.1. For −1 ≤ m ≤ n− 2, the mth space of chains is the vector space Cm freely
generated by m-dimensional simplices in Ω( 2Π′n) (i.e. strict chains φ1 < · · · < φm+1,
where φi ∈ 2Π′n). For 0 ≤ m ≤ n− 2, we define a linear map ∂m : Cm → Cm−1 as follows:
if ∆ = {φ1, . . . , φm+1} ∈ Ω( 2Π′n) with φ1 < · · · < φm+1, then

∂m(∆) =
m+1

∑
i=1

(−1)i · (∆ \ {φi}).

It is straightforward to check that ∂m ◦ ∂m+1 = 0. For −1 ≤ m ≤ n − 2, the mth re-
duced homology space of 2Π′n is H̃m( 2Π′n) = ker ∂m/ im ∂m+1. (By convention, ker ∂−1 =
im ∂n−1 = {0}.)

Note that the action of Sn on chains in 2Π′n permits us to view Cn as a Sn-module. It
is clear that the maps ∂m are module maps, so that H̃m( 2Π′n) is also a Sn-module.

As a consequence of shellability, Ω( 2Π′n) has the homotopy type of a bouquet of n− 2-
dimensional spheres, so dim H̃m( 2Π′n) = 0 for m 6= n− 2.

Theorem 4.2. The character of H̃n−2( 2Π′n) as a representation of Sn is given by:

σ 7→ (−1)n−z(σ)(n− 1)z(σ)−1. (4.1)

Proof. We can use the result in [3, Proposition 1.7], and it follows that the desired char-
acter is (−1)n−1 times the specialization at k = −1 of (1.2). Let us just mention that this
result in [3] relies on the Hopf trace formula:

n−2

∑
i=−1

(−1)i+1Ci =
n−2

∑
i=−1

(−1)i+1H̃i( 2Π′n),

and on a combinatorial argument to relate strict chains in 2Π′n with large chains in 2Πn.

Corollary 4.3. The Möbius invariant of 2̂Πn is µ( 2̂Πn) = (−1)n(n− 1)n−1.
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Proof. By the Philip Hall’s theorem, µ( 2̂Πn) is the Euler characteristic of Ω( 2Π′n). So it is
also (−1)n dim H̃n−2( 2Π′n). This comes from taking σ = id in (4.1).

Remark 4.4. Another method to compute the character in Theorem 4.2 would be to use
Whitney homology. The Whitney modules can be obtained explicitly as follows:

W`( 2Πn) = ∑
π∈NCn, rk(π)=`

(
∏

b∈K(π)

Cat#b−1

)
IndSn

Sn(π)
(1)

where Catn is the nth Catalan number, and K(π) is the Kreweras complement of π. Then
we have

H̃n−2( 2Π′n) = (−1)n−1
n−1

∑
`=0

(−1)`W`( 2Πn).

Computing this alternating sum can be done by relating the character in (1.2) with the
Fuß-Catalan numbers Cat(m)

n , and using the reciprocity Cat(−1)
n = (−1)n−1Catn−1. We

omit details.

Remark 4.5. In the context of the parking space theory, there is a character closely con-
nected to the one in (4.1). Say that a noncrossing partition πn has full support if 1 and
n are in the same block. Denote by NCFn ⊂ NCn the set of noncrossing partitions with
full support. The primitive noncrossing parking space is defined as:

∑
π∈NCFn

IndSn
Sn(π)

(1).

It is also given by the action of Sn on primitive parking functions (i.e. parking functions
w1 · · ·wn such that #{ i | wi ≤ k} > k for 1 ≤ k < n). According to the theory, this
character is given explicitly by σ 7→ (n− 1)z(σ)−1. So it is related to the character in (4.1)
by tensoring with the sign character of Sn.

5 Perspective

Among the further questions arising from this work, let us first mention that there
should be a generalization to finite well-generated complex reflection groups. Indeed,
these have an associated noncrossing partition lattice, and a noncrossing parking space.
New methods might be needed to prove shellability in this general setting.

Before going to other reflection groups, several points might be clarified about the
case of the symmetric group. For example, the remark at the end of the previous section
shows that the homology of 2Π′n makes a bridge between the parking space and the
primitive parking space. It would be nice to explain this connection in a more direct way.
A closely related question is the following. Besides shellability, a more geometric method
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to characterize the topology of 2Πn might be to use the cluster complex. Indeed, this has
been done by Kenny [6] in the case of the noncrossing partition lattice, using poset fiber
theorems. Similarly it is possible to build a poset (of “cluster parking functions”) that
projects to 2Πn, and we hope it will be useful to understand the topology of 2Π′n.
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