
Séminaire Lotharingien de Combinatoire 84B (2020) Proceedings of the 32nd Conference on Formal Power
Article #7, 12 pp. Series and Algebraic Combinatorics (Online)

Separable elements: linear extensions, graph
associahedra, and splittings of Weyl groups
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Abstract. We introduce separable elements in finite Weyl groups, generalizing the well-
studied class of separable permutations. We prove that the principal upper and lower
order ideals in weak Bruhat order generated by a separable element are rank-symmetric
and rank-unimodal, and that the product of their rank generating functions equals that
of the whole group, answering an open problem of Fan Wei (2012), who proved this
result in type A.

We prove that the multiplication map W/V × V → W for a generalized quotient of
the symmetric group is always surjective when V is an order ideal in right weak order;
interpreting these sets of permutations as linear extensions of 2-dimensional posets
gives the first direct combinatorial proof of an inequality due originally to Sidorenko
in 1991, answering an open problem Morales, Pak, and Panova. We show that this
multiplication map is a bijection if and only if V is an order ideal in right weak or-
der generated by a separable element, thereby classifying those generalized quotients
which induce splittings of the symmetric group, answering a question of Björner and
Wachs (1988). All of these results are conjectured to extend to arbitrary finite Weyl
groups.

Next, we show that separable elements in W are in bijection with the faces of all
dimensions of two copies of the graph associahedron of the Dynkin diagram of W.
This correspondence associates to each separable element w a certain nested set; we
give elegant product formulas for the rank generating functions of the principal upper
and lower order ideals generated by w in terms of these nested sets.

Finally we show that separable elements, although initially defined recursively, have a
non-recursive characterization in terms of root system pattern avoidance in the sense
of Billey and Postnikov.
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1 Background and definitions

This section consists of background and definitions relating to root systems, Weyl groups,
and the weak Bruhat order; all of this material is standard and most may be found, for
example, in [3].

Throughout the paper, Φ will denote a finite, crystallographic root system with
chosen set of simple roots ∆ and corresponding set of positive roots Φ+. We freely
use the well-known Cartan-Killing classification of irreducible root systems into types
An, Bn, Cn, Dn, G2, F4, E6, E7, and E8.

The root poset is the partial order (Φ+,≤) where β ≤ β′ if β′− β is a nonnegative sum
of simple roots.

We write sα for the simple reflection across the hyperplane orthogonal to the simple
root α ∈ ∆, and W(Φ) for the Weyl group, which is generated by the simple reflections.
Given an element w ∈ W(Φ), its length `(w) is defined to be the smallest ` such that
w = sα1 · · · sα` for some sequence of simple reflections. The inversion set of w is:

IΦ(w) = {β ∈ Φ+ | wβ ∈ Φ−}.

It is well-known that `(w) = |IΦ(w)| and that W(Φ) has a unique element w0 of maximal
length; w0 is an involution and has IΦ(w0) = Φ+. Inversions β which are simple roots
are called descents.

Proposition 1.1. Elements w ∈ W(Φ) are uniquely determined by their inversion sets, and
S ⊆ Φ+ is the inversion set of some element if and only if it is biconvex:

• For each pair α, β ∈ S, if α + β ∈ Φ+, then α + β ∈ S, and

• If γ ∈ S and γ = α + β with α, β ∈ Φ+, then at least one of α, β must be in S.

The left weak order (sometimes called the left weak Bruhat order) on W(Φ) is determined
by its cover relations: w lL sαw whenever `(sαw) = `(w) + 1. The right weak order
is defined analogously, except with right multiplication by sα. All Weyl groups are
assumed to be ordered by left weak order unless otherwise specified. It is a nontrivial
fact that the weak orders are lattices. We denote the lattice operations of join and meet
by ∨ and ∧ respectively, with superscripts L or R to indicate either the left or right weak
order.

Proposition 1.2. The left weak order on W(Φ) is given by containment of inversion sets, that
is: u ≤L w if and only if IΦ(u) ⊆ IΦ(w).

The map w 7→ w−1 defines a poset isomorphism between left and right weak orders.
Each has a unique minimal element e, the group identity element, and w0 as its unique
maximal element, called the longest element. Both left and right multiplication by w0
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determine poset anti-automorphisms of both left and right weak order. We note that
IΦ(w0w) = Φ+ \ IΦ(w).

If W = W(Φ) is a Weyl group with simple roots ∆, and J ⊆ ∆, we let WJ denote
the parabolic subgroup of W generated by {sα}α∈J . The parabolic quotient W J is the set of
elements of W with no descents in J. We let ΦJ be the root system of those roots in Φ
which are linear combinations of elements of J.

Proposition 1.3. Let W = W(Φ) and let J ⊆ ∆, then:

• W J forms a system of coset representatives for WJ in W; in particular, each w ∈ W has a
unique expression w = wJwJ with wJ ∈ W J and wJ ∈ WJ . For each J, by taking w = w0

this expression determines important elements wJ
0 and w0,J .

• W J = [e, wJ
0]L and WJ = [e, w0,J ]L = [e, w0,J ]R.

• The elements of W J are the unique elements of minimal length in their WJ-cosets, and the
above expression for w is length-additive: `(w) = `(wJ) + `(wJ).

Let Φ be a root system with positive roots Φ+. A subset Φ′ ⊂ Φ is a subsystem of Φ if
Φ′ = Φ ∩U for some linear subspace U of span(Φ). It is clear that any such Φ′ is itself
a root system. The following generalization of pattern avoidance to finite Weyl groups
was introduced by Billey and Postnikov [2]. For w ∈W(Φ), we say w contains the pattern
(w′, Φ′) if IΦ(w) ∩U = IΦ′(w′); we write w|Φ′ = w′ in this case. If Φ′ is the set of roots
in the span of J ⊆ ∆ then w|Φ′ = wJ , if we identify W(Φ′) with WJ in the natural way;
note, however, that many subsystems are not of this form. We say w avoids (w′, Φ′) if it
does not contain any pattern isomorphic to (w′, Φ′).

A ranked poset P = P0 t P1 t · · · t Pr (such as the left or right weak order on a Weyl
group, which are ranked by length) is rank-symmetric if |Pi| = |Pr−i| for all i, and rank-
unimodal if |P0| ≤ · · · ≤ |Pj| ≥ · · · ≥ |Pr| for some j. Its rank generating function P(q) is
∑r

i=0 |Pi|qi. It is well known that WJ and W J are rank-symmetric and rank-unimodal for
all J ⊆ ∆, and Proposition 1.3 implies that

W J(q)WJ(q) = W(q). (1.1)

Finally, we let ΛL
w = [e, w]L and VL

w = [w, w0]L denote the principal lower and upper
ideals respectively in left weak order, and similarly for right weak order; we sometimes
suppress the decorations L or R if a claim works just as well in either left or right weak
order. We make the convention that the rank function on Vw is the natural one viewing
Vw as a poset in its own right: an element u of Vw has rank `(u)− `(w).
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2 Separable elements of Weyl groups

A permutation w = w1 . . . wn is separable if it avoids the patterns 3142 and 2413, meaning
that there are no indices i1 < i2 < i3 < i4 such that the values wi1wi2wi3wi4 are in the same
relative order as 3142 or 2413. This well-studied class of permutations arose in the study
of pop-stack sorting [1] and has found applications in algorithmic pattern matching and
bootstrap percolation. These permutations have a remarkable recursive combinatorial
structure and are enumerated by the Schröder numbers.

Fan Wei [14] showed that if w is a separable permutation in the symmetric group Sn,
then Λw and Vw are rank-symmetric and rank-unimodal, and the product of their rank
generating functions is [n]q! = Sn(q).

We now introduce a definition of a separable element in any finite Weyl group. This
definition coincides exactly with separable permutations in the case of the symmetric
group, although this is only made clear by the results of Section 5, where separable
elements are characterized by root system pattern avoidance 1. Theorem 4.2 in Section 4
gives another characterization of separable elements.

Definition 2.1. Let w ∈W(Φ). Then w is separable if one of the following holds:

1. Φ is of type A1;

2. Φ =
⊕

Φi is reducible and w|Φi is separable for each i;

3. Φ is irreducible and there exists a pivot αi ∈ ∆ such that w|ΦJ ∈W(ΦJ) is separable
where ΦJ is generated by J = ∆ \ {αi} and such that either

{β ∈ Φ+ : β ≥ αi} ⊂ IΦ(w), or
{β ∈ Φ+ : β ≥ αi} ∩ IΦ(w) = ∅.

This notion is well-defined, since, in cases (2) and (3), we reduce to a subsystem of
strictly smaller rank.

Example 2.2. Let Φ = {±ei ± ej | 1 ≤ i < j ≤ 4} t {±ei | 1 ≤ i ≤ 4} be the root system of
type B4, where the ei are the standard basis elements in R4; let α1 = e1− e2, α2 = e2− e3,
α3 = e3 − e4, and α4 = e4 denote the simple roots. Let w ∈ W(Φ) be the element whose
inversion set IΦ(w) ⊆ Φ+ is indicated in Figure 1. Then we can conclude w is separable
as follows:

• First, by the first case in Definition 2.1 (3), we see that α3 is a pivot since all β ≥ α3
are in the inversion set.

1The material in Sections 2 and 5 appears in [10] and the remainder of the material is contained in [9],
both by the authors.
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• Now we reduce to checking that w|ΦJ is separable, with J = ∆ \ {α3} = {α1, α2, α4}.
Notice ΦJ = Ψ1 ⊕ Ψ2 is reducible, with Ψ+

1 = {α1, α2, α1 + α2} and Ψ+
2 = {α4}, so

by part (2), we need to show that w|Ψ1 and w|Ψ2 are separable. Since Ψ2 is of type
A1, w|Ψ2 is separable by part (1) of the definition.

• Finally, w|Ψ1 has a pivot α1, this is a pivot of the second kind, since neither α1 nor
α1 + α2 is an inversion. We then reduce to the type A1 subsystem spanned by α2,
and we are done by part (1) of the definition.

α1 α2 α3 α4

α1 + α2

Figure 1: The root poset for type B4 is shown, with the filled nodes indicating the
positive roots in the inversion set of the element w from Example 2.2.

We now generalize Fan Wei’s result for the symmetric group to general finite Weyl
groups; Definition 2.1 and Theorem 2.3 together answer an open problem posed in [14].

Theorem 2.3. Let w ∈W be separable, then Λw and Vw are rank-symmetric and rank-unimodal,
and

Λw(q)Vw(q) = W(q). (2.1)

The similarity of ((2.1)) to ((1.1)) suggests that one should look for a length-additive
multiplicative decomposition of W corresponding to each separable element w, analo-
gous to that in Proposition 1.3. Indeed, such a decomposition is constructed in Section 3;
in addition we show for the symmetric group (and conjecture in other types) that sepa-
rable elements induce all such decompositions.

In Section 4 we give explicit product formulas for Λw(q) and Vw(q) when w is sepa-
rable in terms of the nested set indexing the corresponding face of the graph associahe-
dron, making Theorem 2.3 even more explicit.
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3 Generalized quotients and splittings of Weyl groups

Given any subset U of a Weyl group W, Björner and Wachs [4] introduced the generalized
quotient:

W/U = {w ∈W | `(wu) = `(w) + `(u), ∀u ∈ U}.

Proposition 3.1 (Björner and Wachs [4]). Let u0 =
∨R

u∈U u, then W/U = [e, w0u−1
0 ]L.

A pair (X, Y) of arbitrary subsets X, Y ⊆W such that the multiplication map X×Y →
W sending (x, y) 7→ xy is length-additive (meaning `(xy) = `(x) + `(y), ∀x ∈ X, y ∈ Y)
and bijective is called a splitting of W. Generalized quotients generalize the notion of
parabolic quotients, since W J = W/WJ ; Proposition 1.3 implies that we have a splitting
(W J , WJ) in this case.

Björner and Wachs (1988) ask the following question:

Question 3.2 (Björner and Wachs [4]). In the case W = Sn, for which U ⊆ W is the
multiplication map

W/U ×U →W

sending (x, y) 7→ xy a splitting?

Since this map is length-additive by definition of generalized quotient, Question 3.2
amounts to asking when it is a bijection. Theorem 3.3 identifies splittings corresponding
to separable elements in any finite Weyl group. Fan Wei [14] proved an equivalent state-
ment in the case of the symmetric group using explicit manipulations on permutations;
our proof is type-independent.

Theorem 3.3. Let W be any finite Weyl group and U = [e, u]R with u separable, then (W/U, U)
is a splitting of W.

Proof sketch. By Corollary 5.3, the set of separable elements is closed under the involu-
tions of multiplying on either side by w0 and inversion. After some manipulations using
these operations and known properties of the weak order, one can check that it suffices
to prove that the map ΛL

π ×VL
π →W given by (x, y) 7→ yx−1 is bijective for π separable.

In light of Theorem 2.3, it suffices to prove surjectivity, so fix w ∈ W which we will
show is in the image of this map. Assume without loss of generality that W = W(Φ)
is irreducible and π is separable with a pivot αi with {β ∈ Φ+ | β ≥ αi} ∩ IΦ(π) = ∅,
the other case in Definition 2.1 (3) being analogous. Let J = ∆ \ {αi} and let Φ′ be the
parabolic subsystem generated by J.

By induction on rank, we may assume that the claim is true for W(Φ′), so there
exist elements x′ ∈ Λπ′ and y′ ∈ Vπ′ such that y′(x′)−1 = w′, where π′ = π|Φ′ (π′ is
clearly still separable) and w′ = w|Φ′ . Now, viewing w′ ∈W(Φ′) ⊂W(Φ) as an element
of the full group, we have that w ≥L w′, by comparing inversion sets and applying
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Proposition 1.2. This means that we can write w = si1 · · · sik w′ with lengths adding. In
fact, we have that w′ = wJ and si1 · · · sik = wJ ∈W J . In particular, since y′ ∈WJ we know
that si1 · · · sik y′ is reduced; call this element y, so y ≥L y′ ≥L π′ = π, thus y ∈ VL

π . We
have

y(x′)−1 = w(w′)−1y′(x′)−1 = w

as desired.

The proofs of our remaining main theorems—especially Theorems 3.4, 3.5 and 5.1—
are significantly harder than that of Theorem 3.3, and we unfortunately have no space
to sketch them.

In Theorem 3.4 we answer Question 3.2; in fact we show more, by ruling out splittings
not coming from a generalized quotient.

Theorem 3.4. Let (X, Y) be an arbitrary splitting of W = Sn, then X = W/Y and Y = [e, u]R
with u separable.

Theorems 3.3 and 3.4 show that generalized quotients with U = [e, u]R and u separa-
ble are exactly those for which the multiplication map W/U×U →W = Sn is a bijection.
Theorem 3.5 shows that this map is a surjection for every u. Despite its simple statement,
Theorem 3.5 is surprisingly difficult to prove, and involves exploiting new connections
between the left and right weak orders and the well-known strong Bruhat order; much of
the argument involves careful analysis of reduced decompositions for certain elements
using wiring diagrams, and therefore does not easily extend to other types. As an in-
dication of the strength of this Theorem, we discuss in Section 3.2 how it immediately
solves an open problem of Pak, Panova, and Morales about linear extensions of posets.

Theorem 3.5. Let u be any element of W = Sn and U = [e, u]R, then the multiplication map
W/U ×U →W is surjective.

3.1 Splittings and surjectivity in other Weyl groups

Although Theorem 3.3 holds for all finite Weyl groups, Theorems 3.4 and 3.5 are cur-
rently stated only for W = Sn. We conjecture that both extend to arbitrary finite Weyl
groups, with an additional restriction in Theorem 3.4.

Conjecture 3.6. Theorem 3.5 holds for any finite Weyl group W.

Conjecture 3.7. Let [e, u]R = U ⊆ W, then (W/U, U) is a splitting of W if and only if u is
separable.

Remark 3.8. For the exceptional Weyl group W of type F4, there is a splitting (W/U, U)
where U is not an interval in right weak order; this is why the statement of Conjecture 3.7
is weaker than that of Theorem 3.4. It may be that the full strength of Theorem 3.4 holds
for the remaining infinite families of Weyl groups of types Bn = Cn and Dn.



8 Christian Gaetz and Yibo Gao

3.2 Linear extensions and weak order

In this section we sketch how Theorem 3.5 resolves an open problem of Pak, Panova,
and Morales [11].

See [5] for the following background on linear extensions. A linear extension of a
finite poset P = ({p1, . . . , pn},≤P) is an order preserving bijection λ : P → [n], where
[n] denotes the set {1, . . . , n} under the usual ordering. We write e(P) for the number
of linear extensions of P. The order dimension of P is the smallest number t such that
there exist linear extensions λ1, . . . , λt such that for all i, j we have pi ≤P pj if and only if
λk(pi) ≤ λk(pj) for all k = 1, . . . , t. In this situation we write P =

⋂t
k=1 λk.

We say P is naturally labelled if pi 7→ i, ∀i is a linear extension. We may identify
linear extensions λ of P with permutations in Sn by identifying the linear extension
pi 7→ πi, ∀i with the permutation π = π1 . . . πn, in this case we write λπ for λ. For
π ∈ Sn, write Pπ for the poset on {p1, ..., pn} defined by Pπ = λe ∩ λπ, such a poset is
always naturally labelled. Two-dimensional posets P have natural complementary posets
P defined as follows: choose an isomorphism from P to some Pπ (this can always be
done), and let P = Pπw0 . The poset P may not be uniquely determined, as there may
be multiple choices for π, however Theorem 3.9 holds for any complement formed from
this construction.

A poset P is series-parallel if can be formed from combining some number of singleton
posets using the operations of disjoint union (elements of Q are incomparable with
elements of Q′ in Q tQ′) and direct sum (all elements of Q are less than all elements of
Q′ in Q⊕Q′).

Theorem 3.9 (Sidorenko [13]). Let P be a two-dimensional poset, then:

e(P)e(P) ≥ n!

with equality if and only if P is series-parallel.

Sidorenko’s original proof of Theorem 3.9 uses intricate analysis of various recur-
rences and the Max-flow/Min-cut Theorem. It was reproven by Bollobás, Brightwell,
and Sidorenko [6] using a known special case of the still-open Mahler conjecture from
convex geometry and an implication of the difficult Perfect Graph Theorem. This led
Pak, Panova, and Morales [11] to state an open problem asking for a direct combinato-
rial proof; we provide such a proof by applying Theorem 3.5.

Proposition 3.10 (Björner and Wachs [5]). The linear extensions of Pπ are exactly {λu | u ∈
[e, π]R}.

New proof of Theorem 3.9. Pick π such that P is isomorphic to Pπ. By Proposition 3.10, we
need to show that |[e, π]R| · |[e, πw0]|R ≥ n!. We simply observe that inversion gives a
bijection [e, πw0]R → [e, w0π−1]L = W/[e, π]R, and apply Theorem 3.5. Thus we have
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a simply-defined (just group multiplication) surjection from the set W/[e, π]R × [e, π]R
of cardinality e(P)e(P) to the set W = Sn of cardinality n!. To get the equality case,
note that Theorems 3.3, 3.4 and 3.5 together imply that we have equality if and only if
π is separable. It is easy to check that the two cases in Definition 2.1 (3) correspond
to the operations ⊕ and t on posets, so that π is separable if and only if Pπ is series-
parallel.

4 Product formulas and graph associahedra

In this section we show that separable elements in W are in bijection with the faces (of
all dimensions) of two copies of the graph associahedron A(Γ) of the Dynkin diagram Γ
for W. The Dynkin diagram is a graph with vertices indexed by the simple roots ∆
and edges αα′ whenever sα and sα′ do not commute. Much useful information about a
separable element w, such as its Lehmer code, the rank generating functions Λw(q) and
Vw(q), and a factorization of w as a product of elements of the form w0,J can be read off
from the corresponding face.

Given a graph Γ, the graph associahedron A(Γ) is a convex polytope which can be
defined as the Minkowski sum of coordinate simplices corresponding to the connected
subgraphs of Γ. First arising in the work of De Concini and Procesi on wonderful models
of subspace arrangements [7], these polytopes have received intensive study, especially
in the case when Γ is a Dynkin diagram. When Γ is the Dynkin diagram of type An, a
path graph, A(Γ) is the usual Stasheff Associahedron.

Since separable elements in W(Φ1 ⊕ Φ2) = W(Φ1)×W(Φ2) are just pairs (w1, w2)
with each wi separable in W(Φi), throughout this section we assume W = W(Φ) with
Φ irreducible for simplicity; this corresponds to the Dynkin diagram Γ being connected.
We will use a model for the faces of A(Γ) due to Postnikov [12]. A collection N of
subsets of Γ is a nested set if:

• For all J ∈ N , the induced subgraph Γ|J on the vertex set J is connected.

• For any I, J ∈ N we have either I ⊆ J, or J ⊆ I, or I ∩ J = ∅.

• For any collection of k ≥ 2 disjoint subsets J1, ..., Jk ∈ N , the subgraph Γ|J1∪···∪Jk is
not connected.

The relevant notion of connectivity for directed graphs is the connectivity of the associ-
ated simple undirected graph, so the structure of A(Γ) does not depend on an orientation
of Γ. This is why we have omitted reference to the edge multiplicities and orientations
in our definition of Dynkin diagrams.

Proposition 4.1 (Postnikov [12]). The poset of faces of A(Γ) is isomorphic to the poset of nested
sets on Γ which contain Γ, ordered by reverse containment.
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We call a total ordering of the elements of a nested set N monotonic if J appears
before I whenever J ⊆ I. The depth of J ∈ N is the maximum length k of a chain
J ( I1 ( I2 ( · · · ( Ik of elements of N . We let Neven and Nodd denote the elements of
N of even and odd depth respectively.

Theorem 4.2. Let W be an irreducible finite Weyl group with Dynkin diagram Γ, then:

1. The nested sets on Γ are in bijection with the separable elements of W via the map

N 7→ ∏
J∈N

w0,J := w(N ),

where the product is taken in a monotonic order.

2. The weak order rank generating functions of the intervals [e, w(N )] in left and right order
are:

ΛL
w(N )(q) = q`(w(N ))ΛR

w(N )(q
−1) =

∏J∈Neven WJ(q)
∏J∈Nodd

WJ(q)
.

Remark 4.3. The rank generating functions W(q) for any finite Weyl group are well
known to factor as a product of the q-integers of the degrees of W, thus one may expand
the formula in Theorem 4.2 (2) as a quotient of products of q-integers. Note that the WJ
appearing in this formula may be of several different Cartan-Killing types and so this
product will contain degrees from these several families. The q-integers in the denomi-
nator do not always pair up to cancel with those in the numerator, so even the fact that
this quotient is a polynomial is nontrivial.

This product formula generalizes several known formulas for rank generating func-
tions of intervals in the weak order (see, e.g. [14] and [4]). It is known that computing
even the size of weak order intervals is #P-complete [8], so there can be no nice formulas
for Λw(q) in general, making this formula all the more notable.

Example 4.4. Let w be the element in the Weyl group W of type B4 from Example 2.2.
Let Γ be the Dynkin diagram, whose vertices are the simple roots α1, α2, α3 and α4. Then
w corresponds to the nested set

Nw = {{α1, α2, α3, α4}, {α1, α2}, {α2}, {α4}}.

There is a combinatorial rule for the inverse to the bijection in Theorem 4.2 (1) used
to construct Nw, however we do not have space to describe it here. The degrees of W
are 2, 4, 6, and 8, and a Weyl group of type An−1 has degrees 2, 3, . . . , n, thus part (2) of
Theorem 4.2 implies that

ΛL
w(q) = q13ΛR

w(q
−1) =

(
[2]q[4]q[6]q[8]q

) (
[2]q
)(

[2]q[3]q
) (

[2]q
) = [4]q[8]q(1 + q3),

where [k]q denotes the q-integer 1 + q + · · ·+ qk−1.
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5 A pattern avoidance characterization

Recall that separable permutations are defined to be those which avoid the patterns
3142 and 2413. In this section we explain how separable elements of general finite Weyl
groups are characterized by pattern avoidance in the sense of Billey and Postnikov (see
the discussion after Proposition 1.3 in Section 1). This has the benefit of giving a non-
recursive characterization of separable elements (in contrast to Definition 2.1) as well as
implying that separable elements in W = Sn are precisely the separable permutations
which had received much previous study.

Theorem 5.1. An element w ∈ W(Φ) is separable if and only if w avoids the following root
system patterns:

i the patterns corresponding to the permutations 3142 and 2413 in the Weyl group of type
A3,

ii the two patterns of length two in the Weyl group of type B2, and

iii the six patterns of lengths two, three, and four in the Weyl group of type G2.

Corollary 5.2. Under the usual identification of the Weyl group W of type An−1 with the
symmetric group of permutations of {1, . . . , n}, an element w ∈ W is separable if and only if it
corresponds to a separable permutation.

Proof. As the type An−1 root system is simply-laced (meaning all roots have the same
Euclidean length) it does not contain any subsystems of types B2 or G2, which are not
simply-laced. Thus Theorem 5.1 implies the desired result.

Theorem 5.1 also makes it clear that the set of separable elements is closed under the
natural involutions on Weyl groups x 7→ w0x, x 7→ xw0, and x 7→ x−1; the latter two of
these are not clear from Definition 2.1.

Corollary 5.3. Let w ∈W be separable. Then w0w, ww0, and w−1 are also separable.

Proof. The set of forbidden patterns in Theorem 5.1 is closed under these three involu-
tions, and it is easy to check that w avoids u if and only if w−1 avoids u−1 (and similarly
for the other two).
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