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The Petrie symmetric functions
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Abstract. For any positive integer k and nonnegative integer m, we consider the sym-
metric function G (k, m) defined as the sum of all monomials of degree m that contain
no exponents larger than k− 1. We call G (k, m) a Petrie symmetric function in honor of
Flinders Petrie, as the coefficients in its expansion in the Schur basis are determinants
of Petrie matrices (and thus belong to {−1, 0, 1} by a classical result of Gordon and
Wilkinson). More generally, we prove a Pieri-like rule for expanding a product of the
form G (k, m) · sµ in the Schur basis whenever µ is a partition; all coefficients in this
expansion belong to {−1, 0, 1}. We show a further formula for G (k, m) and prove that
G (k, 1) , G (k, 2) , G (k, 3) , . . . form an algebraically independent generating set for the
symmetric functions when 1− k is invertible in the base ring. We prove a conjecture
of Liu and Polo about the expansion of G (k, 2k− 1) in the Schur basis. We then take
our Pieri-like rule as an impetus to pose a different question: What other symmetric
functions f have the property that each product f sµ expands in the Schur basis with
all coefficients belonging to {−1, 0, 1}? We call this property MNability due to its most
classical instance (besides the Pieri rules, which don’t use −1 coefficients) being the
Murnaghan–Nakayama rule. Surprisingly, we find a number of infinite families of
MNable symmetric functions besides the classical ones.

Keywords: symmetric functions, Petrie matrices, Murnaghan–Nakayama rule, Pieri
rules, Schur functions, determinants

1 Introduction

In the course of computing the cohomology of a line bundle in characteristic p, Liu
and Polo [7] have encountered a symmetric function that can be defined as the sum
of all monomials of degree 2p − 1 that contain no exponents larger than p − 1. Using
representation theory, they found a simple expansion of this function in the Schur basis
[7, Corollary 1.4.4], which prompted them to ask whether this expansion also holds for
non-prime p (in which case their argument no longer applies).

Indeed, it does (see Section 7 below). From a combinatorial point of view, it is natu-
ral to study an even more general family of symmetric functions: We fix a commutative
ring k. For any integers k ≥ 1 and m ≥ 0, we let G (k, m) be the sum of all monomials
(in x1, x2, x3, . . .) of degree m that contain no exponents larger than k− 1. This G (k, m)
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is a symmetric function; moreover, if it is expanded in the Schur basis of the ring of
symmetric functions, then the coefficients can be expressed as determinants of Petrie ma-
trices (i.e., matrices with each column having the form (0, 0, . . . , 0, 1, 1, . . . , 1, 0, 0, . . . , 0)T).
Thus, we call G (k, m) a Petrie function in honor of Flinders Petrie, whose invention of
contextual seriation gave birth to the notion of Petrie matrices. By a result of Gordon
and Wilkinson [4], Petrie matrices are unimodular; thus, the coefficients in the Schur
expansion of G (k, m) belong to {−1, 0, 1}.

More generally, if µ is any partition, then we can expand the product G (k, m) · sµ

in the Schur basis; all coefficients in this Pieri-like expansion are determinants of Petrie
matrices as well (and thus belong to {−1, 0, 1}). At least for µ = ∅, the coefficients have
a combinatorial interpretation.

We show a further formula for G (k, m) in terms of Frobenius homomorphisms fn
(also known as plethysm by the power-sum function pn), and we use it to show that
G (k, 1) , G (k, 2) , G (k, 3) , . . . form an algebraically independent generating set for the
symmetric functions when 1− k is invertible in k.

We then revisit our expansion of G (k, m) · sµ to ask a more general question (Sec-
tion 8): What other symmetric functions f have the property that each product f sµ

expands in the Schur basis with all coefficients belonging to {−1, 0, 1} ? We call such f
MNable; examples of MNable symmetric functions are the classical functions hm, em, pm
(by the Pieri and the Murnaghan–Nakayama rule, the latter of which gave MNability
its name) and the Petrie functions G (k, m) (by the above). Surprisingly, we have found
several other MNable symmetric functions, such as the products pi pj with i 6= j, or the
differences hm − em, hm − pm and hm − pm − em for even m.

Most results in this abstract are proved in the draft [5].
Some results below (in particular, Theorems 4.4 and 4.6 in an equivalent form) have

been independently found by H. Fu and Z. Mei [2].

2 Definitions

Our notations follow [6, Chapter 2]. We let N = {0, 1, 2, . . .}.
We fix a commutative ring k. We let Λ denote the ring of symmetric functions (i.e.,

symmetric power series of bounded degree) in infinitely many variables x1, x2, x3, . . .
over k. This is a k-subalgebra of the k-algebra k [[x1, x2, x3, . . .]] of formal power series.

A weak composition means an infinite sequence (α1, α2, α3, . . .) of nonnegative integers
such that only finitely many i satisfy αi 6= 0. If α is a weak composition, then αi is the
i-th entry of α (so that α = (α1, α2, α3, . . .)), and |α| is the sum α1 + α2 + α3 + · · · ∈ N

(and is called the size of α). We let WC denote the set of all weak compositions.
For any weak composition α, we let xα denote the monomial xα1

1 xα2
2 xα3

3 · · · . These
monomials xα are all the monomials in k [[x1, x2, x3, . . .]].
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A weak composition α will be identified with the `-tuple (α1, α2, . . . , α`) whenever
` ∈N satisfies α`+1 = α`+2 = α`+3 = · · · = 0.

A partition means a weak composition α such that α1 ≥ α2 ≥ α3 ≥ · · · . We let Par
denote the set of all partitions. For each n ∈N, we let Parn denote the set of all partitions
α satisfying |α| = n.

The k-module Λ has several bases indexed by the set Par. The simplest one is the
monomial basis (mλ)λ∈Par, whose elements mλ are the sums of the orbits of the monomials
xα under the “permutation of variables” action of the infinite symmetric group. More
precisely, for any partition λ, we can define the monomial symmetric function mλ ∈ Λ by

mλ = ∑ xα,

where the sum ranges over all weak compositions α ∈ WC that can be obtained from λ

by permuting entries. For example,

m(2,2,1) = ∑
i<j<k

x2
i x2

j xk + ∑
i<j<k

x2
i xjx2

k + ∑
i<j<k

xix2
j x2

k .

As λ ranges over all of Par, the symmetric functions mλ form a basis of the k-module Λ.
Other prominent symmetric functions in Λ are:

• the complete homogeneous symmetric functions hn defined for all n ∈ Z by

hn = ∑
i1≤i2≤···≤in

xi1 xi2 · · · xin = ∑
α∈WC;
|α|=n

xα = ∑
λ∈Parn

mλ.

(Thus, h0 = 1 and hn = 0 for all n < 0.)

• the elementary symmetric functions en defined for all n ∈ Z by

en = ∑
i1<i2<···<in

xi1 xi2 · · · xin = ∑
α∈WC∩{0,1}∞;

|α|=n

xα.

(Thus, e0 = 1 and en = 0 for all n < 0. If n > 0, then en = m(1,1,...,1), where
(1, 1, . . . , 1) is an n-tuple.)

• the power-sum symmetric functions pn defined for all positive integers n by

pn = xn
1 + xn

2 + xn
3 + · · · = m(n).

But most remarkable of all are the Schur functions sλ for λ ∈ Par. One way to define
the Schur function sλ corresponding to a partition λ is as follows:

sλ = ∑ xT,
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where the sum ranges over all semistandard tableaux T of shape λ, and where xT denotes
the monomial obtained by multiplying the xi for all entries i of T. The fact that sλ ∈ Λ
is nontrivial (see, e.g., [6, Proposition 2.2.4]); the sλ are rich in interesting and nontrivial
properties ([6, Chapter 2], [8, Chapter 7], etc.). In particular, the family (sλ)λ∈Par is a
basis of the k-module Λ, known as the Schur basis.

3 Definition of the Petrie functions

We are now ready to define the functions we will study:

Definition 3.1. (a) For any positive integer k, we let

G (k) = ∑
α∈WC;

αi<k for all i

xα.

This is a symmetric formal power series in k [[x1, x2, x3, . . .]] (but does not lie in Λ in
general, since it contains monomials of arbitrarily high degrees).
(b) For any positive integer k and any m ∈N, we let

G (k, m) = ∑
α∈WC;
|α|=m;

αi<k for all i

xα ∈ Λ.

For example,

G (3, 4) = ∑
i<j<k<`

xixjxkx` + ∑
i<j<k

x2
i xjxk + ∑

i<j<k
xix2

j xk + ∑
i<j<k

xixjx2
k + ∑

i<j
x2

i x2
j

= m(1,1,1,1) + m(2,1,1) + m(2,2).

We suggest to name G (k) and G (k, m) the Petrie functions, for reasons that Theo-
rem 4.4 and Corollary 4.5 will elucidate. We begin with some easy facts:

Proposition 3.2. Let k be a positive integer. Then,

G (k) = ∑
α∈WC;

αi<k for all i

xα = ∑
λ∈Par;

λi<k for all i

mλ =
∞

∏
i=1

(
x0

i + x1
i + · · ·+ xk−1

i

)
.

Proposition 3.3. Let k be a positive integer. Let m ∈N.

(a) The symmetric function G (k, m) is the m-th degree homogeneous component of G (k).
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(b) We have
G (k, m) = ∑

α∈WC;
|α|=m;

αi<k for all i

xα = ∑
λ∈Par;
|λ|=m;

λi<k for all i

mλ.

(c) If k > m, then G (k, m) = hm.
(d) If k = 2, then G (k, m) = em.

Parts (c) and (d) of Proposition 3.3 show that the Petrie functions G (k, m) can be
seen as interpolating between the hm and the em. Another easily established identity is
G (m, m) = hm − pm for each positive integer m.

It is also not hard to see that the comultiplication ∆ of the Hopf algebra Λ (see [6,
Section 2.1] for its definition) satisfies

∆ (G (k, m)) =
m

∑
i=0

G (k, i)⊗ G (k, m− i)

for each k > 0 and m ∈N.
The Petrie function G (3) has appeared in [8, Exercise 7.3], where it was expanded as

a polynomial in e1, e2, e3, . . . (a result of Gessel). We shall now expand G (k) and G (k, m)
in terms of Schur functions. For this, we need to define some notations.

4 The Schur expansions of G (k) and G (k, m)

If A is any logical statement, then [A] shall denote the truth value of A (that is, 1 if A is
true, and 0 if A is false). We use the notation

(
ai,j
)

1≤i≤`, 1≤j≤` for the `× `-matrix whose
(i, j)-th entry is ai,j for each i, j ∈ {1, 2, . . . , `}.
Definition 4.1. Let λ = (λ1, λ2, . . . , λ`) ∈ Par, and let k be a positive integer. Then, the
k-Petrie number petk (λ) of λ is the integer defined by

petk (λ) = det
(
([0 ≤ λi − i + j < k])1≤i≤`, 1≤j≤`

)
.

Note that this integer does not depend on the choice of ` (in the sense that it does not
change if we enlarge ` by adding trailing zeroes to the representation of λ).

Example 4.2. Let λ be the partition (3, 1, 1) ∈ Par, let ` = 3, and let k be a positive
integer. Then, the definition of petk (λ) yields

petk (λ) = det

 [0 ≤ λ1 < k] [0 ≤ λ1 + 1 < k] [0 ≤ λ1 + 2 < k]
[0 ≤ λ2 − 1 < k] [0 ≤ λ2 < k] [0 ≤ λ2 + 1 < k]
[0 ≤ λ3 − 2 < k] [0 ≤ λ3 − 1 < k] [0 ≤ λ3 < k]


= det

 [0 ≤ 3 < k] [0 ≤ 4 < k] [0 ≤ 5 < k]
[0 ≤ 0 < k] [0 ≤ 1 < k] [0 ≤ 2 < k]
[0 ≤ −1 < k] [0 ≤ 0 < k] [0 ≤ 1 < k]


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(since λ1 = 3 and λ2 = 1 and λ3 = 1). Thus, taking k = 4, we obtain

pet4 (λ) = det

 [0 ≤ 3 < 4] [0 ≤ 4 < 4] [0 ≤ 5 < 4]
[0 ≤ 0 < 4] [0 ≤ 1 < 4] [0 ≤ 2 < 4]
[0 ≤ −1 < 4] [0 ≤ 0 < 4] [0 ≤ 1 < 4]

 = det

 1 0 0
1 1 1
0 1 1

 = 0.

On the other hand, taking k = 5, we obtain

pet5 (λ) = det

 [0 ≤ 3 < 5] [0 ≤ 4 < 5] [0 ≤ 5 < 5]
[0 ≤ 0 < 5] [0 ≤ 1 < 5] [0 ≤ 2 < 5]
[0 ≤ −1 < 5] [0 ≤ 0 < 5] [0 ≤ 1 < 5]

 = det

 1 1 0
1 1 1
0 1 1

 = −1.

Proposition 4.3. Let λ ∈ Par, and let k be a positive integer. Then, petk (λ) ∈ {−1, 0, 1}.

Proof sketch. We will use the concept of Petrie matrices (see [4, Theorem 1]). Each row of
the matrix ([0 ≤ λi − i + j < k])1≤i≤`, 1≤j≤` has the form

(0, 0, . . . , 0︸ ︷︷ ︸
a zeroes

, 1, 1, . . . , 1︸ ︷︷ ︸
b ones

, 0, 0, . . . , 0︸ ︷︷ ︸
c zeroes

) for some a, b, c ∈N (where any of a, b, c can be 0).

Thus, the matrix ([0 ≤ λi − i + j < k])1≤i≤`, 1≤j≤` is the transpose of a Petrie matrix.
Hence, its determinant belongs to {−1, 0, 1} (since [4, Theorem 1] shows that the de-
terminant of any square Petrie matrix belongs to {−1, 0, 1}).

We can now expand the Petrie symmetric functions G (k) in the basis (sλ)λ∈Par of Λ:

Theorem 4.4. Let k be a positive integer. Then,

G (k) = ∑
λ∈Par

petk (λ) sλ.

Corollary 4.5. Let k be a positive integer. Let m ∈N. Then,

G (k, m) = ∑
λ∈Parm

petk (λ) sλ.

These two results are particular cases of more general facts stated below (Theorem 5.3
and Corollary 5.4).

The k-Petrie numbers can be described more explicitly:

Theorem 4.6. Let λ ∈ Par, and let k be a positive integer. Let µ = λt be the conjugate of λ

(that is, the partition µ defined by setting µi =
∣∣{j ≥ 1 | λj ≥ i

}∣∣ for all i).

(a) If µk 6= 0, then petk (λ) = 0. From now on, let us assume µk = 0. For each i ∈ {1, 2,
. . . , k− 1}, let γi be the unique element of {1, 2, . . . , k} that is congruent to µi − i modulo k.
(b) If the k− 1 numbers γ1, γ2, . . . , γk−1 are not distinct, then petk (λ) = 0.
(c) If the k− 1 numbers γ1, γ2, . . . , γk−1 are distinct, then petk (λ) is a certain power of −1 (see
[5] for details).
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5 A “Pieri” rule

It turns out that Theorem 4.4 can be generalized. For that, we need to define a “relative”
version of Petrie numbers:

Definition 5.1. Let λ = (λ1, λ2, . . . , λ`) ∈ Par and µ = (µ1, µ2, . . . , µ`) ∈ Par, and let k be
a positive integer. Then, the k-Petrie number petk (λ, µ) of λ and µ is the integer defined
by

petk (λ, µ) = det
(([

0 ≤ λi − µj − i + j < k
])

1≤i≤`, 1≤j≤`

)
.

Note that this integer does not depend on the choice of ` (in the sense that it does not
change if we enlarge ` by adding trailing zeroes to the representations of λ and µ).

The following proposition generalizes (and is proved similarly to) Proposition 4.3:

Proposition 5.2. Let λ ∈ Par and µ ∈ Par, and let k be a positive integer. Then, petk (λ, µ) ∈
{−1, 0, 1}.

Now, we have the following generalizations of Theorem 4.4 and Corollary 4.5:

Theorem 5.3. Let k be a positive integer. Let µ ∈ Par. Then,

G (k) · sµ = ∑
λ∈Par

petk (λ, µ) sλ.

Corollary 5.4. Let k be a positive integer. Let m ∈N. Let µ ∈ Par. Then,

G (k, m) · sµ = ∑
λ∈Parm+|µ|

petk (λ, µ) sλ.

We have two proofs of Theorem 5.3: one using the skew Cauchy and the Jacobi–Trudi
identities, and another using the approach to Schur polynomials via alternants. (See [5]
for the second proof.) Corollary 5.4 easily follows from Theorem 5.3.

We are not aware of any combinatorial rules for petk (λ, µ) other than the (general,
but recursive and rather indirect) algorithmic description given in [4] for determinants
of arbitrary square Petrie matrices.

6 The Frobenius formula and Petrie generating sets

We shall next state another formula for the Petrie symmetric functions G (k, m). For this
formula, we need the following definition ([6, Exercise 2.9.9]):

Definition 6.1. Let n be a positive integer. We define a map fn : Λ→ Λ by setting

fn (a) = a (xn
1 , xn

2 , xn
3 , . . .) for each a ∈ Λ.

This map fn is called the n-th Frobenius endomorphism of Λ.
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It is known (e.g., [6, Exercise 2.9.9(d)]) that this map fn : Λ → Λ is a k-algebra
endomorphism of Λ (and even a Hopf algebra endomorphism, using the appropriate
Hopf structure). In terms of plethysm ([8, Ch. 7, Definition A.2.6]), it is simply described
by fn (a) = a [pn] for each a ∈ Λ (and also by fn (a) = pn [a] if k = Z).

We now have a new formula for G (k, m):

Theorem 6.2. Let k be a positive integer. Let m ∈N. Then,

G (k, m) = ∑
i∈N

(−1)i hm−ki · fk (ei) .

(The sum on the right hand side of this equality is well-defined, since all sufficiently large i ∈ N

satisfy m− ki < 0 and thus hm−ki = 0.)

This theorem can be proved by an inclusion-exclusion-like computation or using gen-
erating functions (the latter proof is given in [5]).

Theorem 6.2 can be used to derive the following:

Theorem 6.3. Fix a positive integer k. Assume that 1− k is invertible in k. Then, the family
(G (k, m))m≥1 = (G (k, 1) , G (k, 2) , G (k, 3) , . . .) is an algebraically independent generating
set of the commutative k-algebra Λ.

Thus, products of several elements of this family form a basis of Λ (if 1− k is invert-
ible in k). These bases remain to be studied.

7 The Liu–Polo conjecture

We now sketch the answer to the question posed in [7, Remark 1.4.5] by Liu and Polo. By
studying cohomology in positive characteristic, they have proved the following identity
for all prime numbers n:

Theorem 7.1. Let n be an integer such that n > 1. Then,

∑
λ∈Par2n−1;

(n−1,n−1,1).λ

mλ =
n−2

∑
i=0

(−1)i s(n−1,n−1−i,1i+1). (7.1)

Here, the symbol . stands for dominance of partitions (also known as majorization);
i.e., for two partitions λ and µ satisfying |λ| = |µ|, we have

λ . µ if and only if (λ1 + λ2 + · · ·+ λi ≥ µ1 + µ2 + · · ·+ µi for all i) .
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Also, the power-like notation “1i+1” in the partition on the right hand side of (7.1) stands
for a sequence of i + 1 entries all equal to 1. Thus,

(
n− 1, n− 1− i, 1i+1) = (n− 1, n−

1− i, 1, 1, . . . , 1︸ ︷︷ ︸
i+1 times

).

We can prove Theorem 7.1 for all n as follows. The first step is to recognize that
the left hand side of (7.1) is G (n, 2n− 1), because the partitions λ ∈ Par2n−1 satisfying
(n− 1, n− 1, 1) . λ are precisely the partitions λ ∈ Par2n−1 satisfying λi < n for all
i. Theorem 4.4 gives an expansion of G (n, 2n− 1) in the Schur basis, if we content
ourselves with knowing that the coefficients are n-Petrie numbers. However, we want
to know their exact values in order to prove (7.1). Thus, we proceed differently. An
application of Theorem 6.2 (or a simple combinatorial argument) yields

G (n, n + k) = hn+k − hk pn for each k ∈ {0, 1, . . . , n− 1} .

Thus, in particular, G (n, 2n− 1) = h2n−1 − hn−1pn.
Now, we recall the skewing operations f⊥ : Λ → Λ for all f ∈ Λ as defined in [6,

Section 2.8] (and in various other places). All we need to know about them is that for
each i ∈N, the skewing operation e⊥i : Λ→ Λ is the k-linear map that sends each Schur
function sλ to the skew Schur function sλ/(1i).

For any m ∈N, we define a map Bm : Λ→ Λ by setting

Bm ( f ) = ∑
i∈N

(−1)i hm+ie⊥i f for all f ∈ Λ.

It is known ([6, Exercise 2.9.1(a)]) that this map Bm is well-defined and k-linear. More-
over, [6, Exercise 2.9.1(b)] shows that if λ ∈ Par and m ∈ Z satisfy m ≥ λ1, then

Bm (sλ) = s(m,λ1,λ2,λ3,...). (7.2)

(This map Bm is known as the m-th Bernstein operator [10, Section 4.20(a)] or — in honor
of (7.2) — a Schur row-adder [3].) On the other hand, it is not hard to see that

Bm (hn) = hmhn − hm+1hn−1 and Bm (pn) = hm pn − hm+n

for each positive integer n and each m ∈ {0, 1, . . . , n}. Using these two equalities, we
readily see that

Bn−1 (hn − pn) = h2n−1 − hn−1pn = G (n, 2n− 1) . (7.3)

On the other hand, [6, Exercise 5.4.12(g)] (or the Murnaghan–Nakayama rule) yields

pn =
n−1

∑
i=0

(−1)i s(n−i,1i).
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Subtracting this from hn = s(n) = s(n−0,10), we find

hn − pn =
n−2

∑
i=0

(−1)i s(n−1−i,1i+1).

Applying the map Bn−1 to this equality, we obtain

Bn−1 (hn − pn) =
n−2

∑
i=0

(−1)i Bn−1

(
s(n−1−i,1i+1)

)
=

n−2

∑
i=0

(−1)i s(n−1,n−1−i,1i+1)

(by (7.2)). Comparing this with (7.3), we find

G (n, 2n− 1) =
n−2

∑
i=0

(−1)i s(n−1,n−1−i,1i+1).

Since the left hand side of (7.1) is G (n, 2n− 1), we have thus proved Theorem 7.1.

8 MNable symmetric functions

Let us now take Corollary 5.4 as inspiration to identify a property of some symmetric
functions that appears to have been hitherto unstudied.

Let k = Z throughout this section. We recall the Hall inner product (·, ·) : Λ×Λ →
k; it is the unique k-bilinear form on Λ that satisfies

(
sλ, sµ

)
= δλ,µ for all λ, µ ∈ Par.

(In other words, it is the unique k-bilinear form on Λ that makes (sλ)λ∈Par into an
orthonormal basis.) See [6, Definition 2.5.12] or [8, Section 7.9] (where it is denoted by
〈·, ·〉) for its further properties.

Definition 8.1. (a) A symmetric function f ∈ Λ will be called signed multiplicity-free if f
can be expanded as a linear combination of distinct Schur functions with all coefficients
in {−1, 0, 1}. (That is, if the Hall inner product

(
f , sµ

)
is −1, 0 or 1 for each partition µ.)

(b) A symmetric function f ∈ Λ will be called MNable if for each partition µ, the product
f sµ is signed multiplicity-free.

For example, the symmetric function h3p2 is signed multiplicity-free, since h3p2 =
s(5) + s(3,2) − s(3,1,1); but it is not MNable, since the product

h3p2s(2) = −s(3,2,1,1) + s(3,2,2) − s(4,1,1,1) + s(4,3) − s(5,1,1) + 2s(5,2) + s(6,1) + s(7)

is not signed multiplicity-free (due to the coefficient of s(5,2) being 2).
Roughly speaking, an f ∈ Λ is MNable if and only if there is a Murnaghan-Naka-

yama-like rule for multiplying Schur functions by f . Thus, the name “MNable”.
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Question 8.2. Which symmetric functions are MNable?

It is not clear whether a full characterization of MNable symmetric functions is even
possible. However, there are many. Here is a non-exhaustive list:

Theorem 8.3. (a) The functions hi and ei are MNable for each i ∈N.
(b) The function pi is MNable for each positive integer i.
(c) The Petrie function G (k, m) and the difference G (k, m)− hm are MNable for any integers
k ≥ 1 and m ≥ 0.
(d) The differences hi − pi and hi − ei are MNable for each positive integer i. (This includes
h1 − e1 = 0.)
(e) The difference hi − pi − ei is MNable for each even positive integer i.
(f) The product pi pj is MNable whenever i > j > 0.

(g) The function m(kn) as well as the differences hnk − m(kn) and enk − (−1)(k−1)n m(kn) are
MNable for any positive integers n and k (where (kn) denotes the n-tuple (k, k, . . . , k)).
(h) If some f ∈ Λ is MNable, then so are − f and ω ( f ), where ω : Λ→ Λ is the fundamental
involution of Λ (see [6, Section 2.4] or [8, Section 7.6]).
(i) A symmetric function f ∈ Λ is MNable if and only if all its homogeneous components are
MNable.
(j) If f ∈ Λ is MNable and k is a positive integer, then fk ( f ) is MNable. (See Definition 6.1 for
the meaning of fk.)
(k) A symmetric function f ∈ Λ is MNable if and only if

(
f , sλ/µ

)
∈ {−1, 0, 1} for each skew

partition λ/µ.

A few telegraphic remarks on the proofs are in order. Part (a) of Theorem 8.3 follows
from the Pieri and dual Pieri rules, as part (b) does from the Murnaghan–Nakayama
rule. The G (k, m) claim in part (c) follows from Corollary 5.4; the G (k, m)− hm claim
relies on the fact that petk (λ, µ) ∈ {0, 1} if λ/µ is a horizontal strip. Parts (d) and (e) can
be shown by analyzing the rare cases in which a skew partition can be two of “horizontal
strip”, “vertical strip” and “rim hook” at once. Part (f) follows from a study of rim hook
tableaux. Part (h) follows from the facts that ω is an algebra automorphism and sends
sλ to sλt . Part (k) is easy to see using skewing operators (or simply using the fact that
the same Littlewood–Richardson coefficients appear in the formulas sµsν = ∑λ∈Par cλ

µ,νsλ

and sλ/µ = ∑ν∈Par cλ
µ,νsν). Part (i) is easy. Part (j) follows from part (k) and the SXP

algorithm in [1]. The m(kn) claim in part (g) follows from part (j) (since m(kn) = fk (en));
the rest of (g) follows by studying skew partitions again.

Note that Theorem 8.3 (k) shows that the MNability of a symmetric function can be
tested in finite time: For each d ∈ N, there are only finitely many skew Schur functions
sλ/µ of degree d.
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The families in parts (a)–(h) and (j) of Theorem 8.3 cover all MNable homogeneous
symmetric functions of degree < 4. In degree 4, we have two further MNable symmetric
functions that we were unable to “explain” (i.e., embed in any infinite family):

s(1,1,1,1) − s(3,1) + s(4) and s(4) − s(2,2).

While Question 8.2 seems wide open, several particular cases appear manageable:
for example, which products of hi’s (or pi’s) are MNable? Note that the only MNable
Schur functions are hi = s(i) and ei = s(1,1,...,1).
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