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Abstract. We define combinatorially a partial order on the set partitions and show
that it is equivalent to the Bruhat–Chevalley–Renner order on the upper triangular
matrices. By considering subposets consisting of set partitions with a fixed number
of blocks, we introduce and investigate “Stirling posets”. As we show, the Stirling
posets have a hierarchy and they glue together to give the whole set partition poset.
Moreover, we show that they (Stirling posets) are graded and EL-shellable. We offer
various reformulations of their length functions and determine the recurrences for
their length generating series.
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This extended abstract is based on our article [1], where one can find the complete
proofs of our theorems.

Let n be a nonnegative integer. A collection S1, . . . , Sr of non-empty subsets of an
n-element set S is said to be a set partition of S if Si’s (i = 1, . . . , r) are mutually disjoint
and ∪r

i=1Si = S. In this case, Si’s are called the blocks of the partition. If n > 0 and
S = {1, . . . , n}, the collection of all set partitions of S is denoted by Πn. We will often
drop set parentheses and commas and just put vertical bars between blocks. If B1, . . . , Bk
are the blocks of a set partition π from Πn, then the standard form of π is defined as
B1|B2| · · · |Bk, where we assume that min B1 < · · · < min Bk and the elements of each
block are listed in increasing order. For example, π = 136|2459|78 is a set partition from
Π9.

The set Πn is known to be a host to many interesting algebraic and combinatorial
structures. Among these structures is the following well-studied partial ordering: let A
and A′ be two set partitions of S. A is said to refine A′ if each block of A is contained
in some block of A′. This “refinement ordering” makes Πn into a lattice, called the
partition lattice, and by a result of Pudlak and Tuma [9] it is known that every lattice is
isomorphic to a sublattice of Πn for some n.

A property that is shared by all partition lattices is that their order complexes have
the homotopy type of a wedge of spheres. This important combinatorial topological
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property is seen by analyzing the labelings of the covering relations of the refinement
ordering. Indeed, it follows as a consequence of the fact that the refinement ordering is
an “edge lexicographically shellable” (EL-shellable for short) poset as shown by Gessel
(mentioned in [2]) and by Wachs in [13]. We postpone the proper definition of EL-
shellability to our preliminaries section but let us only mention very briefly that the
property of EL-shellability of a graded poset is a way of linearly ordering the maximal
faces of the associated order complex, say F1, · · · , Fm, in such a way that Fk ∩

(
∪k−1

i=1 Fi

)
is a nonempty union of maximal proper faces of Fk (k = 2, . . . , m). Having this property
immediately implies a plethora of results on the topology of the underlying poset, such
as Cohen–Macaulayness. It is also helpful for better understanding the Möbius function
of the poset.

Our purpose in this paper is to present another natural partial ordering on Πn and
to show that our poset is EL-shellable as well. To define our ordering, we start with
defining its most basic ingredient, namely the “arc-diagram.” It is customary to call
a linearly ordered poset a chain. We identify chains by their Hasse diagrams, and we
draw them in an unorthodox way, horizontally, by placing the smallest entry on the left
and connecting the vertices by arcs. For example, in Figure 1, we depict the chain on 9
vertices, where each arc represents a covering relation.

1 2 3 4 5 6 7 8 9

Figure 1: A chain on 9 vertices.

Definition 0.1. By a labeled chain we mean a chain whose vertices are labeled by distinct
numbers. An arc-diagram on n vertices is a disjoint union of labeled chains where the
labels are from {1, . . . , n} and each label i ∈ {1, . . . , n} is used exactly once. We depict
an example in Figure 2.

1 2 3 4 5 6 7 8 9

Figure 2: An arc-diagram on 9 vertices

It is easy to see that the arc-diagrams on n vertices are in bijection with the elements
of Πn. Indeed, the map that is defined by grouping the labels of a chain into a set
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extends to define a bijection from arc-diagrams to the set partitions. For example, under
this bijection, the arc-diagram in Figure 2 corresponds to the set partition 18|2569|37|4
in Π9. In the light of this bijection, from now on, we will work with the arc-diagrams
instead of set partitions. Let us use the notation An to denote the set of all arc-diagrams
on n vertices. The goal of our article is to endow An with a partial order and to use
it to investigate certain subposets of An. In particular, we will focus on the subposets
An,k ⊂ An, where the elements of An,k have exactly k chains. We will call these subposets
as the title of our paper [1], namely, the Stirling posets.

Next we proceed to define the partial order that we will use throughout the paper.
Let A be an arc-diagram. We will identify the vertices of A with their labels. An arc
in A is a covering relation in any of the labeled chains in A. If the arc denoted by α

is a covering relation between the vertices i and j, then we write α = {i, j}. In practice
(while drawing the diagrams) we will always think of an arc as the graph of a connected
concave down path in R2. From this point of view, one of our most crucial conventions
is that the arcs of A do not intersect each other if they do not have to. We illustrate
what we mean here in Figure 3. If there is no possibility of continuously deforming two
arcs α1 and α2 so that they do not intersect in R2, then they are said to cross each other.
Otherwise, we call them non-crossing arcs.

1 2 3 4 5
This is an arc-diagram.

1 2 3 4 5
This is not an arc-diagram.

Figure 3: Conventions.

Before we proceed to explain our ordering on the arc-diagrams we will introduce
a very useful function which will eventually lead us to a grading on our poset. This
function is defined on all of the set of vertices, arcs, and chains of the arc-diagram. We
will occasionally call a pair of non-crossing arcs nested if both of the starting and the
ending vertices of one of the arcs stay below the other arc.

Definition 0.2. Let A be an arc-diagram and let α be a vertex, or an arc, or a chain from
A. The depth of α, denoted by depth(α) is the total number of arcs “above” α.

Let us be more specific about what we mean by the word “above” in Definition 0.2:
If α is a chain where i is its leftmost vertex and j is its rightmost vertex, then an arc {r, s}
is said to be above α if r < i and s > j. For an example, see Figure 4, where every arc is
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1 2 3 4 5 6 7

Figure 4: depth({2, 6}) = 0.

of depth 0 and the vertex 4 has depth 3. Obviously, for every arc-diagram the depths of
the first and the last vertices are zero, that is, depth(1) = depth(n) = 0. Another simple
observation that will be useful in what follows is that if an arc-diagram A on n vertices
has k arcs, then A has exactly n − k chains. In this regard, let us point out that the
number of set partitions in Πn with k blocks, hence the number of arc-diagrams in An
with k chains, is given by the Stirling numbers of the second kind; it is easy to calculate
these numbers by using the simple recurrence, S(n, k) = S(n− 1, k− 1) + kS(n− 1, k).

Let A and B be two arc-diagrams on n vertices. B is said to cover A, and denoted by
A ≺ B, if it is obtained from A by one of the following three operations:

Rule 1. The shortening of an arc of A. With this operation, we move exactly one
endpoint of an arc to another vertex so that the resulting arc is shortened as minimally
as possible but the number of crossings does not change. For example, see Figure 5,
where we depict two examples. On the left, the left endpoint of the arc {1, 4} is moved
to the nearest available position, which is the vertex 3. Indeed, there is already an arc
which emanates to the right from the vertex 2.

1 2 3 4 5
�

1 2 3 4 5 1 2 3 4
�

1 2 3 4

Figure 5: Two examples for shortening.

Rule 2. Deleting a crossing. With this operation, we interchange the rightmost
endpoints of two crossing arcs so that they become a pair of non-crossing and nested
arcs; we require in this operation that only one crossing is deleted as a result of this
operation. For example, in Figure 6, the endpoints of {1, 5} and {2, 6} are interchanged.

As a non-example, we consider A = {1, 4}{2, 5}{3, 6}, which has three crossings. The
removal of the crossing between {1, 4} and {3, 6} according to the rule that we described
in the previous paragraph gives A′ = {1, 6}{2, 5}{3, 4}, which has no crossings.

Rule 3. Adding a new arc. With this operation, a new arc is introduced between
two vertices in such a way that the new arc is not under any other (older) arcs and the
endpoints of the new arc are as far from each other as possible. In Figure 7 we depict
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1 2 3 4 5 6 7
�

1 2 3 4 5 6 7

Figure 6: Interchanging two endpoints.

two examples. In the former one the new arc is {1, 6} and in the latter the new arc is
{3, 6}.

1 2 3 4 5 6
�

1 2 3 4 5 6 1 2 3 4 5 6
�

1 2 3 4 5 6

Figure 7: Two examples of adding a new arc.

From now on we will call the set An together with the transitive closure of the cover-
ing relations we just defined the arc-diagram poset and denote it by (An,�).

Next, we define our first combinatorial statistic.

Definition 0.3. Let A be an arc-diagram on n vertices v1, . . . , vn and with k arcs α1,
α2,...,αk. We define the depth-index of A, denoted by t(A) by the formula

t(A) =
k

∑
i=1

(n− i)−
n

∑
j=1

depth(vj) +
k

∑
m=1

depth(αm).

One of the main results of our paper is the following statement.

Theorem 0.4. For every positive integer n, the arc-diagrams poset (An,�) is a bounded, graded,
and an EL-shellable poset. The depth-index function is the grading of An.

The proof of our theorem is at least as interesting as its statement. To explain it, we
venture outside of combinatorics. Here we assume some familiarity with elementary
algebraic geometry. Let Matn denote the linear algebraic monoid of n× n matrices de-
fined over C. The group of invertible elements, also called the unit group, of Matn is the
general linear group of invertible n× n matrices. The (standard) Borel subgroup of GLn,
denoted by Bn, is the subgroup Bn ⊂ GLn consisting of upper triangular matrices only.
Then the doubled Borel group Bn × Bn acts on matrices via

(b1, b2) · x = b1xb−1
2 (b1, b2 ∈ Bn, x ∈ Matn) (0.1)
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Clearly, GLn is stable under this action. By the special case of an important result of
Renner [11], it is known that the action (0.1) has finitely many orbits and moreover the
orbits of the action are parametrized by a finite inverse semigroup: Matn =

⊔
σ∈Rn BnσBn,

where Rn is the finite monoid consisting of n× n 0/1 matrices with at most one 1 in each
row and each column. The monoid Rn is called the rook monoid; its elements are called
rooks. (The nomenclature comes from the fact that the elements of Rn are in bijection
with the non-attacking rook placements on an n× n chessboard.) The Bruhat–Chevalley–
Renner ordering on Rn is the partial ordering that is defined by

σ ≤ τ ⇐⇒ BnσBn ⊆ BnτBn (0.2)

for σ, τ ∈ Rn. This poset structure on Rn is well studied, [7]. It is known that (Rn,≤) is
a graded, bounded, EL-shellable poset, see [3].

Towards a proof of Theorem 0.4, we make use of an important algebraic submonoid
of Matn; it is the closure in Zariski topology of the Borel subgroup Bn in Matn. We will
call Bn the (standard) Borel submonoid. The first systematic study of the theory of Borel
submonoids as a part of more general but interrelated theory of parabolic monoids is
undertaken by Putcha in [10]. Here we are focusing on one extreme case only.

The Borel submonoid Bn consists of all upper triangular n× n matrices with complex
entries. To see this, we use the standard (semidirect product) decomposition Bn = TnUn,
where Tn is the maximal torus consisting of invertible diagonal matrices and Un is the
unipotent subgroup consisting of upper triangular unipotent matrices. It is easy to
check that Un is already closed in Matn, therefore, the Borel submonoid is determined
(generated) by its submonoids Tn and Un. Here, Tn is the diagonal submonoid consisting
of all diagonal matrices. Note that Tn is an affine toric variety and there is a one-to-one
correspondence between the cones of its defining “fan” and its set of idempotents. (An
idempotent in a monoid is an element e such that e2 = id.)

Let M be a monoid and let 1M denote its neutral element. For us, a submonoid N in a
monoid M is a subsemigroup N ⊂ M such that 1M ∈ N. In particular, 1M is the identity
element in N. Now, Bn is a submonoid of Matn. Moreover, since it is closed under the
two sided action of Bn, it has the induced Bruhat–Chevalley–Renner decomposition

Bn =
⊔

σ∈Bn

BnσBn. (0.3)

Here, Bn is the set of all n× n rooks which are upper triangular in shape. Note that Bn is
a submonoid of Rn according to our definition. We call it the upper triangular rook monoid
(on n letters). In Figure 8, we depict the induced Bruhat–Chevalley–Renner ordering on
B3.

Another subsemigroup that is very useful for our purposes is the semigroup of all
nilpotent rooks from Bn, which we call the standard nilpotent rook semigroup, denoted by
Bnil

n . In fact, for n > 0, it is not difficult to see that (Bnil
n ,≤) is isomorphic, as a poset,
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Figure 8: Bruhat–Chevalley–Renner order on A4.
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to the upper triangular rook monoid (Bn−1,≤). By going through the same vein, we
observe that the semigroup of nilpotent elements in Bn is isomorphic, as an algebraic
variety, to Bn−1.

The sets of idempotents of the monoids Bn and Tn are the same; they consist of n× n
diagonal matrices with 0/1 entries. Let us denote this common set of idempotents by
En. It is not difficult to see that En is a Boolean lattice with respect to the ordering

e ≤ f ⇐⇒ e f = f e = e (e, f ∈ En).

In particular, En has 2n elements. We denote by En,k the set of idempotents from En
whose matrix rank is k and we define the following subvariety the Borel monoid:

Bn,k :=
⋃

e∈En,k

BneBn. (0.4)

Notice that, except for k ∈ {0, n}, the variety Bn,k is not irreducible. Obviously, Bn,n is
equal to Bn and Bn,0 = Bn · 0 · Bn = {0}.

Next, we list some important properties of our varieties Bn,k and the corresponding
posets Bn,k.

1. For k = 0, . . . , n, the number of irreducible components of Bn,k is (n
k) and they are

all equal dimensional.

2. Bn,k’s form a flag {0} = Bn,0 ⊂ Bn,1 ⊂ · · · ⊂ Bn,n−1 ⊂ Bn,n = Bn.

3. Each Bn,k (k = 0, . . . , n) has the structure of an algebraic semigroup.

4. Each Bn,k (k = 0, . . . , n) has a Renner decomposition

Bn,k =
⊔

σ∈Bn,k

BnσBn, (0.5)

where Bn,k is a finite subsemigroup of Bn and it consists of rooks whose matrix
rank is at most k. Moreover, with respect to induced Bruhat–Chevalley–Renner
ordering the poset (Bn,k,≤) is a union of lower intervals of equal lengths in Bn.

5. The subsemigroups Bn,k ⊂ Bn form a flag {0} ⊂ Bn,1 ⊂ · · · ⊂ Bn,n = Bn and
moreover the number of elements of Bn,k \ Bn,k−1 is given by the Stirling number
S(n + 1, n + 1− k).

6. The Bruhat–Chevalley–Renner ordering restricted to the subsets of the form Bn,k \
Bn,k−1 (for k = 1, . . . , n) is graded with a minimum and there are (n

k) maximal
elements. Each maximal interval in this poset is an interval in Bn, therefore, it is an
EL-shellable poset.
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As an application of our study of the Bruhat–Chevalley–Renner ordering on Bn,k’s we
will prove the following theorem, which, in turn, will give us the proof of Theorem 0.4.
Indeed, the poset (Bnil

n ,≤) is a lower interval in the rook monoid, and Rn is known to be
an EL-shellable poset.

Theorem 0.5. The arc-diagram poset (An,�) is isomorphic to (Bnil
n ,≤), hence, it is a bounded,

graded, and EL-shellable poset.

Next, we show that the arc-diagram poset is a disjoint union of EL-shellable sub-
posets, which are not necessarily intervals. The cardinalities of these subposets will be
given by the Stirling numbers of the second kind.

Theorem 0.6. If An,k denotes the set of arc-diagrams with n − k chains, then (An,k,�) is a
graded EL-shellable poset with a unique minimum and (n−1

k ) maximum elements.

Definition 0.7. The (n, k)-th Stirling poset is the poset (An,k,�). By abusing notation,
we will denote it by An,k.

To contrast An,k with the corresponding subposet in the refinement ordering on set
partitions, let us mention that any two unequal set partitions of {1, . . . , n} with the same
number of blocks are not comparable. In other words, the collection of arc-diagrams with
the same number of chains do not form an interesting poset with respect to refinement
ordering. On the other hand, similarly to the refinement ordering, in (An,�), the Stirling
subposets have a hierarchy in the sense that An,k lies above An,k−1. Indeed, if x and y
are two maximal elements from An,k and An,k−1, respectively, then t(x)− t(y) = n− k.
From a similar vein, if x0 and y0 denotes, respectively, the minimum elements of An,k
and An,k−1, then t(x0)− t(y0) = k. It is not difficult to verify that when k = 1, An,1 is
the “fish net” as in Figure 9, hence every interval in An,1 is a lattice. As k increases, An,k
becomes more complicated. Nevertheless, it is a pleasantly surprising fact that An,2 is
a lattice as well. The smallest integer n for which An,k has a non-lattice subinterval is
n = 5 (and k = 3).

Theorem 0.8. Let B(n − 1) denote the Boolean lattice of all subsets of {1, . . . , n − 1}. Then,
for every integer n ≥ 2, the (n, 2)-th Stirling poset An,2 is isomorphic to the “topless” poset
B(n− 1) \ {{1, . . . , n− 1}}.

Next, we will discuss the length generating function of the (n, k)-th Stirling poset. Let
us denote by tk the length function on An,k. Clearly, tk is equal to an appropriate shift of
t. More precisely, let A be an element from An,k. If we view A as an element of An, then
it is clear that t(A) = tk(A)+ (k

2) since the unique minimum of An,k has depth-index (k
2).

To be able to treat all length generating functions tk (k = 0, . . . , n) together, we define
s

n
k

{
:= ∑

A∈An,k

qt(A). (0.6)

Obviously, (0.6) is a q-analog of the Stirling numbes of the second kind.
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• • • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • •

• • • • • • • • • •

• • • • •

Figure 9: The Stirling poset A5,1.

Theorem 0.9. For positive integers n and k such that 0 ≤ k ≤ n + 1 the following recurrence
holds true:

s
n + 1

k

{
= qk

s
n
k

{
+ [n + 1− k]qqk

s
n

k− 1

{
,

where [k]q is the polynomial 1 + q + · · · + qk−1. The initial conditions are
qm

0

y
= 1 for all

m ∈N. In addition, we assume that
qm

k
y
= 0 if k < 0 or k > m.

It turns out that our depth-index function is closely related to another well-studied
statistic called the intertwining number of a set partition, see [4]. Also, there are various
(p, q)-analogs of Stirling numbers of the second kind, see [12]. It would be interest-
ing to study these (p, q)-analogs as well as other poset theoretic properties of the set-
partitions poset under the refinement ordering in relation with our Stirling posets and
Borel monoids.

In this paper, we considered the Borel submonoid of Matn, which is a GLn × GLn-
equivariant embedding of the symmetric space (GLn×GLn)/diag(GLn). By using other
embeddings of other symmetric spaces, one can build varieties that are similar to Borel
monoids having analogous combinatorial properties. For example, let Symn denote the
space of n× n symmetric matrices. We view Symn as a GLn-equivariant embedding of
GLn/On in Matn. Then we have the Borel monoid-like subvariety Cn := {bbT : b ∈ Bn}
in Symn; it is equal to the Zariski closure of the orbit of the identity element 1 ∈ Symn
under the congruence action of Bn on Symn. It is known that the inclusion posets of
Bn-orbit closures in symmetric matrices, as well as in skew-symmetric matrices are EL-
shellable, see [5, 6, 8].
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