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Coxeter groups, graphs and Ricci curvature
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Abstract. We consider a notion of curvature for graphs introduced in 1998 by
Schmuckenschläger which is an analogue of Ricci curvature. First of all we see some
general results on the discrete Ricci curvature of any locally finite graph. We then
focus on graphs associated with Coxeter groups: Bruhat graphs, weak order graphs
and Hasse diagrams of the Bruhat order. In particular we see that the discrete Ricci
curvature for the Bruhat order is always 2 and that the discrete Ricci curvature of the
weak order graph of a strictly linear Coxeter system (W, S) is −2cos(π/|S|).
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1 Introduction

In the last decades there have been various attempts of defining an analogue of Ricci
curvature for graphs, see for example [10] and [3]. The one we will consider here was
given in 1998 by Schmuckenschläger [11] and was inspired by a previous definition given
in [2] of curvature for probability spaces. Both these notions of curvature are based on
the following fact in Riemannian geometry. Given a Riemannian manifold (M, g) and L
the Laplacian operator we define the following two functions on C∞(M)× C∞(M):

• Γ( f , g) = 1
2 [L( f g)− L( f )g− L(g) f ]; (1)

• Γ2( f , g) = 1
2 [L(Γ( f , g))− Γ(L( f ), g)− Γ(L(g) f )]. (2)

Then we define

R(L) := sup{r|Γ2( f , f )(x) ≥ rΓ( f , f )(x), ∀ f ∈ C∞(M), x ∈ M}.

This value turns out to be the maximum lower bound for the Ricci curvature of M.
In 1985 Backry and Emery defined a Ricci curvature for probability spaces using this

fact. They considered a probability space (Ω, µ) and L an operator on L2(Ω) such that
L( f g) is defined for any f , g ∈ L2(Ω). Through L they defined the two operators Γ and
Γ2 on L2(Ω)× L2(Ω)→ R using formulas (1) and (2). The Ricci curvature of L at x ∈ Ω
is defined as:

R(L)(x) := sup{r|Γ2( f , f )(x) ≥ rΓ( f , f )(x), ∀ f }.
∗siconolf@mat.uniroma2.it.

mailto:siconolf@mat.uniroma2.it


2 Viola Siconolfi

The same idea of Bakry and Emery is used by Schmuckenschläger for the definition of
the discrete Ricci curvature which is presented in Section 3.

In 2015 Klartag et al. [8] studied some inequalities that hold for this discrete Ricci
curvature and computed it for various graphs such as the hypercube, the complete graph
Kn and some finite Cayley graphs. The computations here were carried in a direct fashion
working on the explicit formulas for Γ and Γ2 (see (2.4)).

In this extended abstract we present some general results about Ricci curvature of
locally finite graphs. We then focus on the curvature of graphs associated to Coxeter
groups. The main motivation for this is the lack of examples of these kind of computa-
tion, the hope is in the long term to develop an intuition on what kind of graphs have
small or big values for such a curvature.

The main results we obtain are the value of the Ricci curvature of any finite Bruhat
graph with a general proof, and the Ricci curvature of weak orders with a case-by-case
proof. Furthermore, to study the curvature of Hasse diagrams of the Bruhat order of
case Bn we see an analogue of a result from [1].

This work is divided in five sections. in Section 2 we introduce Coxeter groups and
discrete Ricci curvature. First we recall some basic facts in Coxeter theory, in particular
given a Coxeter group W we describe its Bruhat graph (B(W)), its weak order graph
(V(W)) and its Hasse diagram associated to the Bruhat order (H(W)). We end with the
definition of discrete Ricci curvature

In Section 3 we state some results about the computation of discrete Ricci curvature,
the main one is Theorem 3.2). We end with some corollaries of Theorem 3.2 and together
with some application.

In Section 4 we compute the Ricci curvature of Bruhat graphs of finite Coxeter groups
and see that it is always 2.

In Section 5 we study the curvature of weak order graphs of finite and affine Coxeter
groups.

In Section 6 we study the Ricci curvature of some Hasse diagrams associated to the
Bruhat order.

2 Preliminaries

2.1 Orders on Coxeter groups

We recall Coxeter systems as pairs (W, S) where W is a group generated by the elements
in S and S = {s}i∈I is a finite set with the following relations:

(sisj)
mij = e.

with mii = 1 for all i ∈ I and mij ≥ 2 (including mij = ∞) for all (i, j) ∈ I × I. The
values mij are usually seen as the entries of a symmetric matrix called Coxeter matrix.
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The group W so defined is called a Coxeter group, S is a minimal set of generators
whose elements are called Coxeter generators. We define strictly linear Coxeter groups
following [9]:

Definition 2.1. Given a Coxeter system (W, {s1, . . . , sn}), this is called strictly linear if:

• mij ≥ 3 if |i− j| = 1;

• mij = 2 if 1 < |i− j| ≤ n− 1.

Notice that these groups are the ones whose Coxeter graph is a path. We go on
with some classical definitions in Coxeter theory. Given an element w in W, this can be
written as a product of elements in S

w = s1 . . . sk.

If k is the minimal length of all the possible expressions for w, we say that k is the length
of w and we write l(w) = k. We define in W the set of reflections as the union of all the
conjugates of S,

T := ∪w∈WwSw−1.

The definitions of length and reflections allow us to define two partial orders on the set
W:

Definition 2.2. Given w ∈ W and t ∈ T, if w′ = tw and l(w′) ≥ l(w) we write w′ ← w.
Given two elements v, w ∈ W we say that v ≥ w according to the Bruhat order if there
are w0 . . . wk ∈W such that

v = w0 ← w1 . . . wk−1 ← wk = w.

This defines a partial order on W called the Bruhat order. Through this order two
different graphs can be associated to a given Coxeter group. The first one is called the
Bruhat graph (denoted B(W)): its set of vertices is W, two vertices v, w are connected by
an edge if w← v holds. The second graph is the Hasse diagram associated to the Bruhat
order on W, we denote it as H(W). Again the set of vertices of H(W) is W; two vertices
are connected if one covers the other according to the Bruhat order. Saying that ’x covers
y’ we mean that x > y and there are no elements z such that x > z > y.

The second order we define is the weak order on W:

Definition 2.3. Given u, v ∈ W, we say that: u ≤R w if w = us1 . . . sk, for some si ∈ S
such that l(us1 . . . si) = l(u) + i for any 0 ≤ i ≤ k. This is the right weak order on W,
analogously one defines the left weak order, multiplying the s1, . . . , sk on the left. These
two orders are isomorphic.
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1Figure 1: B(I2(3)), H(I2(n)), V(I2(n)).

Given a Coxeter group (W, S) we denote by V(W) the Hasse diagram associated to
the weak right order. This has set of vertices W, two elements in the graph are connected
by an (undirected) edge if one covers the other according to the weak order.

Example 2.4. Dihedral groups are among the easiest examples of Coxeter groups. The
dihedral groups I2(n) is the one generated by two elements S = {s1, s2} with the follow-
ing relations:

(s1)
2 = (s2)

2 = e (s1s2)
n = e.

Figure 1 shows a picture of the Bruhat graph of I2(3), the Hasse diagram associated to
the Bruhat order of I2(n) and the weak order graph of I2(n).

We end this section recalling two results about Coxeter groups that will be useful in
Sections 4 and 6. The first one is Theorem 3.1 from [1] which describes the maximal
degree in H(An):

Theorem 2.5. For n ≥ 2, the maximal degree of a vertex in the Hasse diagram of the strong
Bruhat order on An−1 is

bn2

4
c+ n− 2.

The second one is a result from [5] about dihedral subgroups of Coxeter groups:

Lemma 2.6. Suppose t1, t2, t3, t4 are reflections in W and t1t2 = t3t4 6= 1. Then W ′ =<
t1, t2, t3, t4 > is a dihedral reflection subgroup of (W, R).
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2.2 Discrete Ricci curvature

Let G be a graph, we denote by V(G) the set of vertices of G and by δ(x, y) the function
δ : V(G)× V(G) → N that gives the distance between two vertices. For x ∈ V(G) and
i ∈N we define the set:

B(i, x) := {u ∈ V(G)|δ(x, u) = i};

we denote by d(x) the cardinality of B(1, x) and call it the degree of x. We will only deal
with locally finite graphs meaning that d(x) < ∞ for all x ∈ V(G).

Given f , g real functions on V(G) and x ∈ V(G) define the operator L( f )(x) =

∑v∈B(1,x)( f (v)− f (x)). Following formulas (1) and (2), Γ and Γ2 one defines:

• Γ( f , g)(x) := 1
2 ∑v∈B(1,x)( f (x)− f (v))(g(x)− g(v));

• Γ2( f , f )(x) := 1
2 [L(Γ( f , f ))(x)− Γ( f , L( f ))(x)].

Instead of Γ( f , f )(x) (resp.Γ2( f , f )(x)) we write Γ( f )(x) (resp. Γ2( f )(x)). Notice that all
the sums are finite because we assume G to be locally finite.

We define the Ricci curvature of a graph following [11]:

Definition 2.7. The discrete Ricci curvature of a graph G, denoted Ric(G), is the max-
imum value K ∈ R ∪ {−∞} such that for any function f on V(G) and any vertex x,
Γ2( f )(x) ≥ KΓ( f )(x) holds.

Notice that L( f ), Γ( f ) and Γ2( f ) are unchanged by the addition of a constant to f , for
this reason we always assume f (x) = 0 when computing L( f )(x), Γ( f )(x) and Γ2( f )(x).
Furthermore, whenever G has more than one vertex an easy computation shows that we
can assume Γ( f )(x) 6= 0. This brings us to the following expressions for Ric(G), Γ( f )(x)
and Γ2( f )(x) see also [8, Section 1.1]:

Ric(G) = inf
x, f

Γ2( f )(x)
Γ( f )(x)

; (2.1)

Γ( f )(x) =
1
2 ∑

v∈B(1,x)
f (v)2 (2.2)

2Γ2( f )(x) =
1
2 ∑

u∈B(2,x)
∑

v∈B(1,u)∩B(1,x)
( f (u)− 2 f (v))2 +

 ∑
v∈B(1,x)

f (v)

2

+ (2.3)

+ ∑
t(x,v,v′)

(
2( f (v)− f (v′))2 +

1
2
( f (v)2 + f (v′)2)

)
+ ∑

v∈B(1,x)

4− d(x) + d(v)
2

f (v)2.

(2.4)

Where t(x, v, v′) denotes the triplets in V(G) that are vertices of a triangle in G. If a
graph is triangle-free we have this corollary of [8, Theorem 1.2]:
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Corollary 2.8. If G is a triangle-free graph then Ric(G) ≤ 2.

Sometimes we need to consider the curvature on a single vertex x ∈ V(G) this is

Ric(G)x = inf
f

Γ2( f )(x)
Γ( f )(x)

; (∗)

and is called local Ricci curvature at x.

Remark 2.9. Looking at the expressions for Γ and Γ2 we notice that the local Ricci curva-
ture only depends on the distance-two neighbourhoods of x. By distance-two neighbour-
hood we mean the induced subgraph of G whose vertices are the ones with d(x, y) ≤ 2.
This implies that if two vertices have isomorphic distance-two neighbourhoods then they
have the same local Ricci curvature.

3 Ricci curvature of locally finite graphs

In this section we see some general result about the Ricci curvature of any locally finite
graph. First we notice that graph automorphisms respect the Ricci curvature:

Lemma 3.1. If G is any locally finite graph and χ is a graph automorphism then the following
holds:

Ric(G)x = Ric(G)χ(x).

Now we introduce our main result about the computation of discrete Ricci curvature:

Theorem 3.2. Given G a locally finite graph, it is possible to associate to any of its vertices x a
matrix Mx such that:

Ric(G)x = min{eigenvalues of Mx};
Therefore

Ric(G) = inf{λ|λ is eigenvalue of some Mx, x ∈ V(G)}.
Idea of the proof. First we describe the entries of the matrix associated to x. We denote the
d elements of B(1, x) as v1, . . . , vd.

Mij(x) =

∑u∈Uvi

2(nu−1)
nu

+ 1 + 4−d(x)−d(vi)
2 + 3

2 tvi if i = j

∑Uvi∩Uvj
− 2

nu
+ 1 + 2T(vi, vj) if i 6= j

.

Where Uvi := B2,x ∩ B1,vi ; tvi is the number of triangles containing vertices vi and x .
For any u ∈ B(2, x) we denote by nu the cardinality of B(1, u) ∩ B(1, x). The function
T : B(1, x)× B(1, x)⇒ {0, 1} is defined as follows:

T(vi, vj) =

{
1 if there is a triangle with vertices x, vi, v′j
0 otherwise

.

The proof is based on the following main points:
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• Formula (*) for Ric(G)x can be rewritten obtaining a formulation that depends only
on the elements in B(1, x) (and not on the elements in B(2, x));

• such a formula expresses a quadratic form on a sphere in the real space of dimen-
sion d(x) = |B(1, x)|. The minimum of a quadric form on a sphere is equal to the
minimum eigenvalue of a matrix.

We end this subsection with some corollaries and consequences of Theorem 3.2, this
allows us to compute the discrete curvature of some Hasse diagrams (see Section 6).

First we consider the following Theorem which holds for triangle free graphs and
gives an inequality for the discrete curvature:

Theorem 3.3. Let G be a triangle free graph then the following inequality holds:

Ric(G) ≥ 4− 3d(x) + d(y)
2

. (3.1)

where (x, y) is a pair of connected vertices that maximizes 3d(x) + d(y) . If furthermore G has
no length four cycles the following upper bound holds:

Ric(G) ≤ min(2,
2 + d(x′)− d(y′)

2
).

with d(x′) d(y′) are connected vertices that minimize d(x′)− d(y′).

Idea of the proof. Theorem 3.2 associates to any vertex of G a matrix. To give a bound
on the curvature of G it is sufficient to bound the eigenvalues of the generic matrix
associated to one of its vertices. We use some classical results of numerical analysis
to obtain the statement. The restriction to graphs with no triangles nor quadrilaterals
simplifies the description of the matrices.

This result can be used to bound the Ricci curvature of any tree.
A corollary follows, this one gives the exact Ricci curvature on a subfamily of graphs

with no triangles nor quadrilaterals.

Corollary 3.4. Let G be a graph with no triangles and quadrilaterals and with the property that
all the distance-two neighbourhoods are isomorphic. Then

Ric(G) = 2− d

where d is the degree of any vertex in G.

Though the hypothesis is quite strong, this corollary shows that any integer number
smaller than 2 is the curvature of a graph. In particular, any negative integer z is the
curvature of the Cayley graph of the free group generated by 2− z elements.
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4 Discrete curvature of Bruhat graphs

In this section we study the Ricci curvature of the Bruhat graphs associated to Coxeter
groups. Discrete Ricci curvature is defined only for locally finite graphs, therefore we
will consider only finite Coxeter groups.

Theorem 4.1. Given a finite Coxeter system, the discrete Ricci curvature of its Bruhat graph is
2.

Idea of the proof. The proof relies on four main facts:

• By Lemma 3.1 it is sufficient to study the local Ricci curvature at one vertex, say
the one associated to the trivial element.

• By Remark 2.9 we have to study the structure of the distance-two neighbourhood
of e in B(W).

• One can prove that such a distance-two neighbourhood can be written as union
of Bruhat graphs of dihedral groups. This was achieved defining an equivalence
relation on B(2, e) and using Lemma 2.6.

• One can see that Ricci curvature of B(I2(m)) is 2 for any m ≥ 3.

The Ricci curvature for the Bruhat graph in type An have already been studied in [8,
Section 2.6].

5 Discrete curvature of Weak orders

In this section we compute the Ricci curvature of weak orders associated to Coxeter
groups. Unlike the case of Bruhat graphs the values of the curvatures are different,
giving quite a different statement:

Theorem 5.1. Given (W, S) an irreducible finite Coxeter system and V(W) the weak order
graph associated to it, the following holds:

• Ric(V(W)) = −2cos( π
|S|) if W is a strictly linear Coxeter group;

• −4 ≤ Ric(V(W)) ≤ −1 if W = Dn;

• Ric(V(E6)) ' −2.30, Ric(V(E7)) ' −2.33 and Ric(V(E8)) ' −2.34.

Idea of proof. The proof relies on the following facts:
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• We can apply Lemma 3.1 so we can consider again the local Ricci curvature of a
single vertex in V(W);

• We apply Theorem 3.2 to compute the local Ricci curvature at a given point. For all
the exceptional groups we conclude by computing the smallest eigenvalue of the
matrices so obtained;

• For An and Bn we have to study the eigenvalues of two families of matrices, namely
{MAn}n≥2 and {MBn}n≥3. Both the families of matrices are tridiagonal with of
dimension n. In [12] the eigenvalues of these matrices are described as functions
of the dimension of the matrices. .

• For case Dn we obtained a family of matrices {MDn}n≥3 but we did not find a
formula in n for the eigenvalues. We obtained therefore an inequality using Ger-
shgorin’s Theorem (see [6]) which is a classical result to bound eigenvalues in
numerical linear algebra .

For any finite Coxeter group the Ricci curvature for the weak order graph can be
computed through this result:

Theorem 5.2. Let (W, S) be any finite Coxeter group with W = W1 × . . . ×Wk and S =
S1 ∪ . . . ∪ Sk where (Wi, Si) is an irreducible Coxeter group for all i = 1, . . . , k. Let V(W) be
the weak order graph associated to (W, S), then:

Ric(V(W)) = min1≤i≤k Ric(V(Wi)).

In the last part of this subsection we apply the same procedure used to compute the
Ricci curvature of weak orders to affine Weyl groups. As already noticed the generators
of an affine Weyl group are finite, therefore the Hasse diagram associated to the weak
order is a locally finite graph.

Theorem 5.3. Let (W, S) be an affine Weyl group, V(W) the Hasse graph of the weak order.
Then we have

• Ric(V(Ãn)) = 2 cos(2π
n d

n
2 e);

• Ric( V(C̃n)) = 2cos(π
n ) if W = C̃n;

• −4 ≤ Ric(V(W)) ≤ −1 if W = B̃n, D̃n;

• Ric(V(Ẽ6)) ∼ −2.414 , Ric(V(Ẽ7)) ∼ −2.36, Ric(V(Ẽ8)) ∼ −2.34;

• Ric(V(F̃4)) = −2cos(π
5 );

• Ric(V(G̃2)) = −
√

3;

• Ric(V(Ã1)) = −
√

2.
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Figure 2: Possible distance-two neighbourhoods in the Hasse diagram of a dihedral
group.

6 Discrete curvature of Hasse diagrams of the Bruhat or-
der

We end this article with some results about the Hasse diagram of the Bruhat order of
some Coxeter groups. We begin with dihedral groups.

Proposition 6.1. The following values hold for the Ricci curvature of the Hasse diagram of the
dihedral groups:

• Ric(H(I2(3))) = 21−
√

33
12 ,

• Ric(H(I2(4))) = 1
2 ,

• Ric(H(I2(5))) = 5−
√

17
2 ,

• Ric(H(I2(n))) = 0 for any n > 5.

Idea of the proof. This proposition is an application of Theorem 3.2. It is sufficient to
notice that in H(I2(m)) only six distance-two neighbourhoods appear up to isomorphism
(see Figure 2).

For the Hasse diagrams of An and Bn we have the following inequalities:

Proposition 6.2. If G = H(An−1) then the following holds:

Ric(G) ≥ −bn2

2
c − 2n + 8.
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Proof. This is a consequence of the following corollary of Theorem 3.3:

Ric(G) ≥ 4− 2dmax

where dmax is the maximal degree of the vertices in G. We applied this Theorem 2.5.

Proposition 6.3. If G = H(Bn) then the following holds:

Ric(G) ≥ 4(−2n + 1) forx ≤ 5;

Ric(G) ≥ −2bn2

2
c − 2n + 2.

To obtain this we followed the reasoning of Proposition 6.2. This used the following
analogue of Theorem 2.5 that we proved for case Bn.

Theorem 6.4. Let G = H(Bn), then dmax = 4(n− 1) for n ≤ 5 and dmax = bn2

2 c+ n− 1 for
n > 5. Where dmax is the maximal degree of the vertices in G.
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