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The homology representation of subword order
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Abstract. We investigate the homology representation of the symmetric group on rank-
selected subposets of subword order. We show that the homology module for words of
bounded length, over an alphabet of size n, decomposes into a sum of tensor powers
of the Sn-irreducible S(n−1,1) indexed by the partition (n− 1, 1), recovering, as a special
case, a theorem of Björner and Stanley for words of length at most k. For arbitrary ranks
we show that the homology is an integer combination of positive tensor powers of the
reflection representation S(n−1,1), and conjecture that this combination is nonnegative.
We uncover a curious duality in homology in the case when one rank is deleted.

We prove that the action on the rank-selected chains of subword order is a nonnegative
integer combination of tensor powers of S(n−1,1), and show that its Frobenius charac-
teristic is h-positive and supported on the set T1(n) = {hλ : λ = (n− r, 1r), r ≥ 1}.
Our most definitive result describes the Frobenius characteristic of the homology for
an arbitrary set of ranks, plus or minus one copy of S(n−1,1), as an integer combination
of the set T2(n) = {hλ : λ = (n− r, 1r), r ≥ 2}. We conjecture that this combination is
nonnegative, establishing this fact for particular cases.

Keywords: Subword order, reflection representation, h-positivity, Whitney homology,
Kronecker product, internal product, Stirling numbers.

1 Introduction

Let A∗ denote the free monoid of words of finite length in an alphabet A. Subword order
is defined on A∗ by setting u ≤ v if u is a subword of v, that is, the word u is obtained
by deleting letters of the word v. This makes (A∗,≤) into a graded poset with rank
function given by the length |w| of a word w, the number of letters in w. The topology
of this poset was first studied by Farmer (1979) and then by Björner, who showed in
[4, Theorem 3] that any interval of this poset admits a dual CL-shelling. The intervals
are thus homotopy Cohen–Macaulay, as well as all rank-selected subposets obtained by
considering only words whose rank belongs to a finite set S [2, 5]. Suppose now that the
alphabet A is finite, of cardinality n. The symmetric group Sn acts on A, and thus on A∗.
To avoid trivialities we will assume n ≥ 2.
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In this paper we examine the homology representation of rank-selected subposets
of A∗, using the Whitney homology technique and other methods developed in [11].
We refer the reader to [9] for general facts about rank-selection. Theorem 3.4 shows
that for intervals [r, k] of consecutive ranks in A∗, the unique nonvanishing homology
decomposes as a direct sum of copies of r consecutive tensor powers of the reflection
representation of Sn, that is, the irreducible representation S(n−1,1) indexed by the par-
tition (n − 1, 1). This generalises a result in [4], conjectured by Björner and proved by
Stanley. We establish similar results for the Whitney and dual Whitney homology mod-
ules. Both turn out to be permutation modules in each degree, with pleasing orbit
stabilisers. Theorem 4.1 establishes the nonnegative decomposition into tensor powers
of S(n−1,1) for the case when one rank is deleted from the interval [1, k], and leads to a
curious homology isomorphism (Proposition 4.2), suggesting an equivariant homotopy
equivalence between the simplicial complexes associated to the rank sets [1, k]\{r} and
[1, k]\{k− r}, for fixed r, 1 ≤ r ≤ k− 1.

More generally, we show in Theorem 5.1 that for any nonempty subset T of ranks
[1, k], the homology representation of Sn may be written as an integer combination of
positive tensor powers of the reflection representation. Based on our determination of
this and other cases of rank-selection, we propose the following conjecture:

Conjecture 1.1. Let A be an alphabet of size n ≥ 2. Then the Sn-action on the homology of
any finite nonempty rank-selected subposet of subword order on A∗ is a nonnegative integer
combination of positive tensor powers of the irreducible indexed by the partition (n− 1, 1).

These considerations lead us to examine the tensor powers of the reflection represen-
tation, and the question of how many tensor powers are linearly independent characters.
In answering these questions, we are led to a decomposition (Theorem 7.2) showing that
the kth tensor power of S(n−1,1) plus or minus one copy of S(n−1,1), has Frobenius charac-
teristic equal to a nonnegative integer combination of the homogeneous symmetric func-
tions {h(n−r,1r) : r ≥ 2}. It is “almost" an h-positive permutation module. Inspired by this
phenomenon, we prove, in Theorem 7.5, that in fact for each rank subset T and associated
rank-selected subposet An,k(T), the homology module H̃(An,k(T)) has the property that
H̃(An,k(T))+ (−1)|T|S(n−1,1) has Frobenius characteristic equal to an integer combination
of the homogeneous symmetric functions {h(n−r,1r) : r ≥ 2}. Theorem 1.4 establishes the
truth of the following conjecture for all the rank-selected homology computed in this
paper.

Conjecture 1.2. Let A be an alphabet of size n ≥ 2. Then the homology of any finite nonempty
rank-selected subposet of subword order on A∗, plus or minus one copy of the reflection repre-
sentation of Sn, is a permutation module. In fact its Frobenius characteristic is h-positive and
supported on the set T2(n) = {hλ : λ = (n− r, 1r), r ≥ 2}.

We give a simple criterion for when Conjecture 1.1 will imply Conjecture 1.2 in
Lemma 7.3.
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The main results of this paper are summarised below. Let A be an alphabet of size
n ≥ 2, and T ⊆ [1, k] a subset of ranks. Let An,k(T) denote the corresponding rank-
selected subposet.

Theorem 1.3. The action of Sn on the maximal chains of the rank-selected subposet An,k(T)
of A∗ of words with lengths in T, is a nonnegative integer combination of tensor powers of the
reflection representation S(n−1,1). If |T| ≥ 1, this action has h-positive Frobenius characteristic
supported on the set T1(n) = {hλ : λ = (n− r, 1r), r ≥ 1}.

Theorem 1.4. The homology module H̃(An,k(T)) of words with lengths in T is an integer
combination of positive tensor powers of the reflection representation S(n−1,1), with the property
that H̃(An,k(T)) + (−1)|T|S(n−1,1) has Frobenius characteristic equal to an integer combination
of the homogeneous symmetric functions {h(n−r,1r) : r ≥ 2}.

Both integer combinations are nonnegative when T is one of the following rank sets:
(1) [r, k], k ≥ r ≥ 1; (2) [1, k]\{r}, k ≥ r ≥ 1; (3) {1 ≤ s1 < s2 ≤ k}.

2 Subword order

The subword order poset A∗ has a unique least element at rank 0, namely the empty
word ∅ of length zero. In this section we collect the main facts on subword order from
[4] that we will need. For general facts about posets, Möbius functions, etc. we refer the
reader to [10].

Farmer computed the Möbius number of an arbitrary interval (0̂, α) and also showed:

Theorem 2.1 ([6, Theorem 5 and preceding Remark]). Let |A| = n and let A∗n,k denote the
subposet of A∗ consisting of the first k nonzero ranks and the empty word, i.e. of words of length at
most k, with an artificially appended top element 1̂. Then µ(A∗n,k) = µ(0̂, 1̂) = (−1)k−1(n− 1)k

and A∗n,k has the homology of a wedge of (n− 1)k spheres of dimension (k− 1).

Björner generalised Farmer’s computation of the Möbius function µ(0̂, α) to give a
formula for the Möbius function of an arbitrary interval (β, α), and established the fol-
lowing generating functions. Recall that the zeta function [10] of a poset is defined by
ζ(β, α) = 1 if β ≤ α, and equals zero otherwise.

Theorem 2.2 ([4]). Let A be an alphabet of size n, and β a word in A∗ of length k. The following
generating functions hold:

1. [4, Theorem 2 (i)] For the Möbius function of subword order:

∑
α∈A∗

µ(β, α)t|α| =
tk(1− t)

(1 + (n− 1)t)k+1 .
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2. [4, 3. Remark (i)] For the zeta function of subword order:

∑
α∈A∗

ζ(β, α)t|α| =
tk

(1− nt)(1− (n− 1)t)k .

Farmer’s result on the homology of A∗n,k was strengthened by Björner, who showed
the following (see [2, 5]):

Theorem 2.3 (Björner [4, Theorem 3, Corollary 2]). Every interval (β, α) in the subword
order poset A∗ is dual CL-shellable, and hence homotopy Cohen–Macaulay. In particular, for a
finite alphabet A, the poset A∗n,k of nonempty words of length at most k, which may be viewed
as the result of rank-selection from an appropriate interval of A∗, is also dual CL-shellable and
hence also homotopy Cohen–Macaulay.

It follows from the general theory of shellability [2, 5] that all rank-selected subposets
of A∗ are homotopy Cohen–Macaulay.

3 Rank-selection in A∗

In this section we will assume the alphabet A is finite of size n.
We follow the standard convention as in [9], [10]: By the homology of a poset P

with greatest element 1̂ and least element 0̂, we mean the reduced homology H̃(P) of
the simplicial complex whose faces are the chains of P\{0̂, 1̂}. In order to determine
the homology representation of Sn on rank-selected subposets of A∗n,k, we will use the
techniques developed in [11].

The Whitney homology of a poset was originally defined by Baclawski [1]. Björner
showed [3] that the ith Whitney homology of a graded Cohen–Macaulay poset P with
least element 0̂ is given by the isomorphism

WHi(P) '
⊕

x:rank(x)=i

H̃i−2(0̂, x). (3.1)

Note that if P has a top element 1̂, then the top Whitney homology coincides with
the top homology of P. The present author observed that the isomorphism (3.1) is in
fact group-equivariant, leading to a powerful technique, the equivariant acyclicity of
Whitney homology, to determine group actions on the homology of posets [11].

It is also computationally useful to consider the dual Whitney homology of the
Cohen–Macaulay poset P when P has a top element 1̂, that is, the Whitney homology of
the dual poset P∗, which we denote by WH∗(P). Note that we now have an equivariant
isomorphism

WH∗i (P) '
⊕

x:rank(x)=r−i

H̃i−2(x, 1̂), 0 ≤ i ≤ r. (3.2)
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Here r is the length of the longest chain from 0̂ to 1̂.

Theorem 3.1 ([11, Lemma 1.1, Theorem 1.2, Proposition 1.9]). Let P be a graded Cohen–
Macaulay poset of rank r carrying an action of a group G. Then the unique nonvanishing top
homology of P coincides with the top Whitney homology module WHr(P), and as a G-module,
can be computed as an alternating sum of Whitney homology modules:

H̃r−2(P) '
r−1⊕
i=0

(−1)iWHr−1−i(P). (3.3)

In particular, if P(k) denotes the subposet consisting of the first k nonzero ranks, with a bottom
and top element attached, then one has the G-module decomposition

H̃k−2(P(k− 1))⊕ H̃k−1(P(k)) 'WHk(P), r ≥ k ≥ 1. (3.4)

Note that WH0(P) is the trivial G-module, while WHr(P) gives the reduced top homology of the
poset P.

Denote by Sλ the irreducible representation of the symmetric group Sn indexed by
the partition λ of n, and write S⊗i

λ for the ith tensor power of the module Sλ.
The theorem below computes all but the top Whitney homology Sn-modules for

subword order. The proof requires a key formula, which we derive from the generating
function for the Möbius function of A∗ given in Theorem 2.2.

Theorem 3.2. Consider the subword order poset A∗n,k, with |A| = n. As Sn-modules, the Whit-
ney homology WH(A∗n,k) and the dual Whitney homology WH∗(A∗n,k), for 1 ≤ i ≤ k, are as
follows. Note that WH0(A∗n,k) = S(n) = WH∗k+1(A∗n,k) (the trivial Sn-module).

WHi(A∗n,k) = S⊗i
(n−1,1) ⊕ S⊗(i−1)

(n−1,1); (3.5)

WH∗k+1−i(A∗n,k) =

(
k
i

)
S⊗(k−i)
(n−1,1) ⊗ (S(n−1,1) ⊕ S(n))

⊗i =
i⊕

j=0

(
k
i

)(
i
j

)
S⊗j+(k−i)
(n−1,1) . (3.6)

Since the sum from (3.5) telescopes, acyclicity of Whitney homology, Theorem 3.1,
immediately allows us to deduce the top homology:

Corollary 3.3 (Björner–Stanley [4, Theorem 4]). The top homology of A∗n,k as an Sn-module
is given by S⊗k

(n−1,1).
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We can now state the main result of this section, which generalises the preceding
corollary to the rank-set [r, k] consisting of the interval of consecutive ranks r, r + 1, . . . , k.
To do this, we must rewrite the partial alternating sums of terms appearing in the dual
Whitney homology (3.6) as a nonnegative linear combination rather than a signed sum.
The poset of words in an alphabet of size n, with lengths bounded above by k and below
by r, has homology as follows.

Theorem 3.4. Fix k ≥ 1 and let T be the interval of consecutive ranks [r, k] for 1 ≤ r ≤ k. Then
the rank-selected subposet A∗n,k(T) has unique nonvanishing homology in degree k− r, and the
Sn-homology representation on H̃k−r(A∗n,k(T)) is given by the decomposition

k⊕
i=1+k−r

bi S⊗i
(n−1,1), where bi =

(
k
i

)(
i− 1
k− r

)
, i = 1 + k− r, . . . , k. (3.7)

The technically difficult proof of the preceding result, which we have omitted, also
establishes the following combinatorial identity, which is instrumental in the proof of
Theorem 1.4.

Corollary 3.5. The alternating sum ∑k+1−r
i=0 (−1)idim WH∗k+1−(r+i)(A∗n,k) equals

k−r

∑
i=0

(−1)i
(

k
r + i

)
nr+i(n− 1)k−(r+i) + (−1)k+1−r =

k

∑
i=1+k−r

(
k
i

)(
i− 1
k− r

)
(n− 1)i.

4 A curious isomorphism of homology

In this section we will determine the homology representation of the rank-selected sub-
poset A∗n,k(S) of A∗n,k when S is obtained by deleting one rank from the interval [1, k]. In
this special case the computation will reveal a curious duality in homology.

We use a method developed in [11, Theorem 1.10] which is particularly useful for
computation of the Lefschetz homology, i.e. the alternating sum of homology modules,
when the deleted set is an antichain. Applying this technique to the poset A∗n,k and the
rank-set T = [1, k]\{r}, removing all words of length r, for a fixed r in [1, k], we obtain:

Theorem 4.1. As an Sn-module, we have

H̃k−2(A∗n,k(T)) '
[(

k
r

)
− 1
]

S⊗k
(n−1,1) ⊕

(
k
r

)
S⊗k−1
(n−1,1).

In particular, Conjecture 1.1 is true for this case of rank-selection.
An immediate and intriguing corollary is the following.

Proposition 4.2. Let |A| = n. Fix a rank r ∈ [1, k − 1]. Then the homology modules of the
subposets A∗n,k([1, k]\{r}) and A∗n,k([1, k]\{k− r}) are Sn-isomorphic.
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It would be interesting to explain this isomorphism topologically. More precisely:

Question 4.3. Is there an Sn-homotopy equivalence between the simplicial complexes
associated to the subposets A∗n,k([1, k]\{r}) and A∗n,k([1, k]\{k− r})?

5 Chains and arbitrary rank-selected homology

Assume |A| = n. For a subset S ⊆ [1, k], denote by αn(S) the permutation module of Sn
afforded by the maximal chains of the rank-selected subposet A∗n,k(S). In this section we
derive a recurrence for the action, and hence an explicit formula. The proof uses Part (2)
of Theorem 2.2.

Theorem 5.1. For any subset T ⊆ [1, k], the action of Sn on the maximal chains of the rank-
selected subposet A∗n,k(T) is a nonnegative integer combination of tensor powers of the irre-
ducible indexed by (n− 1, 1). Hence the Sn-action on the homology of the rank-selected subposet
A∗n,k(T), T 6= ∅, is an integer combination of positive tensor powers of the irreducible indexed by
(n− 1, 1). The highest tensor power that can occur is the mth, where m = max(T).

Thus Theorem 5.1 supports Conjecture 1.1.
It is worth pointing out the special case for the full poset A∗n,k.

Theorem 5.2. The action of Sn on the maximal chains of A∗n,k decomposes into the sum

S(n) ⊕
k⊕

j=1

c(k + 1, j)S⊗k+1−j
(n−1,1) ,

where c(k + 1, j) is the number of permutations in Sk+1 with exactly j cycles in its disjoint cycle
decomposition.

6 The Whitney homology and the tensor powers S⊗k
(n−1,1)

In this section we explore the tensor powers S⊗k
(n−1,1). We use symmetric functions to

describe some of the results that follow. See [7] and [8, Chapter 7]. The homogeneous
symmetric function hn is the Frobenius characteristic, denoted ch, of the trivial represen-
tation of Sn. Also let ∗ denote the internal product on the ring of symmetric functions,
so that the Frobenius characteristic of the inner tensor product, or Kronecker product, of
two Sn-modules is the internal product of the two characteristics.

The following lemma is an easy exercise in permutation actions.
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Lemma 6.1. Let Vj,n denote the permutation module obtained from the Sn-action on the cosets

of the Young subgroup Sj
1 × Sn−j. Then the kth tensor power of the natural representation V1,n

of Sn decomposes into a sum of S(k, j) copies of Vj,n, where S(k, j) is the Stirling number of the
second kind:

V⊗k
1,n =

min(n,k)

∑
j=1

S(k, j)Vj,n, and thus (h1hn−1)
∗k =

min(n,k)

∑
j=1

S(k, j) hj
1hn−j. (6.1)

Using the observation that the Frobenius characteristic of (S(n−1,1))
⊗k is the k-fold

internal product of (h1hn−1 − hn), and standard manipulations in the ring of symmetric
functions, we obtain the following description of the top homology.

Theorem 6.2. The top homology of A∗n,k has Frobenius characteristic

min(n,k)

∑
i=0

hi
1hn−i

(
k−i

∑
r=0

(−1)r
(

k
r

)
S(k− r, i)

)
.

Theorem 7.2 gives a different description of this module, from which it will be evident
that the coefficients of hi

1hn−i are positive for i ≥ 2.
This gives the multiplicity of the trivial representation in the top homology of A∗n,k:

Corollary 6.3. Let n ≥ 2. The multiplicity of the trivial representation in S⊗k
(n−1,1) equals

k

∑
r=0

(−1)r
(

k
r

)min(n,k)

∑
i=0

S(k− r, i).

When n ≥ k, this is the number of set partitions of {1, . . . , k} with no singleton blocks.

7 Proofs of main results

In this section we indicate the main ideas leading to the proofs of Theorems 1.3 and 1.4
announced in the Introduction.

Theorem 1.3 is proved by an inductive argument using Theorem 5.1 and Lemma 6.1.
The proof of Theorem 1.4 relies on the precise homology computations of the pre-

ceding sections, as well as Theorem 7.2 and Lemma 7.3 below, which are crucial. We
first derive a different expression for the Whitney homology modules of A∗n,k, thereby
obtaining a new expression for the top homology module as well.

Recall that in Theorem 3.2, the jth Whitney homology of A∗n,k j ≥ 2, was determined
as a sum of two consecutive tensor powers of S(n−1,1). We now have the following sur-
prising result.



Homology of subword order 9

Proposition 7.1. Each Whitney homology module of subword order, and hence the sum of two
consecutive tensor powers of the reflection representation, has h-positive Frobenius characteristic,
and in particular it is a permutation module. We have ch WH0 = hn, ch WH1 = h1hn−1, and
for k ≥ j ≥ 2, the jth Whitney homology of A∗n,k has Frobenius characteristic

(h1hn−1) ∗ s∗(j−1)
(n−1,1) =

j

∑
d=2

S(j− 1, d− 1) hd
1hn−d =

j

∑
d=2

S∗j,d hd
1hn−d = h1(h1hn−2)

∗j−1, (7.1)

a permutation module with orbits whose stabilisers are Young subgroups indexed by partitions of
the form (n− d, 1d), d ≥ 0.

Theorem 7.2. Fix k ≥ 1. The kth tensor power of the reflection representation S⊗k
(n−1,1), i.e.

the homology module H̃k−1(A∗n,k), has the following property: S⊗k
(n−1,1) ⊕ (−1)kS(n−1,1) is a

permutation module Un,k whose Frobenius characteristic is h-positive, and is supported on the
set {hλ : λ = (n− r, 1r), r ≥ 2}. If k = 1, then Un,1 = 0. More precisely, the k-fold internal
product s∗k(n−1,1) has the following expansion in the basis of symmetric functions hλ :

n

∑
d=0

gn(k, d)hd
1hn−d, where (7.2)

gn(k, 0) = (−1)k = −gn(k, 1), and gn(k, d) =
k

∑
i=d

(−1)k−iS(i− 1, d− 1) for 2 ≤ d ≤ n.

Hence s∗k(n−1,1) = (−1)k−1s(n−1,1) + ch (Un,k), where ch (Un,k) = ∑n
d=2 gn(k, d)hd

1hn−d.
The integers gn(k, d) are independent of n for k ≤ n, nonnegative for 2 ≤ d ≤ k, and

gn(k, d) = 0 if d > k.

There follows a key lemma connecting Conjectures 1 and 2, namely:

Lemma 7.3. Suppose V is an Sn-module which can be written as an integer combination V =
⊕m

k=1ckS⊗k
(n−1,1) of positive tensor powers of S(n−1,1). If ∑m

k=1(−1)k−1ck = 0, then the Frobenius
characteristic of V is supported on the set {hλ : λ = (n− r, 1r), r ≥ 2}. If in addition ck ≥ 0 for
all k ≥ 2, the Frobenius characteristic is h-positive and hence V is a permutation module.

As an example of its application, we can deduce from this lemma and Theorem 3.2
that

Corollary 7.4. The dual Whitney homology modules WH∗k+1−i(A∗n,k), 1 < i ≤ k, are permu-
tation modules whose Frobenius characteristic is a nonnegative integer combination of the set
T2 = {hλ : λ = (n− r, 1r), r ≥ 2}.

Applying Stanley’s theory of rank-selection [9] in conjunction with Theorem 1.3 now
establishes the result below.
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Theorem 7.5. Let T ⊆ [1, k] be any nonempty subset of ranks in A∗n,k. The following statements
hold for the Frobenius characteristic Fn(T) of the homology representation H̃(A∗n,k(T)) :

1. its expansion in the basis of homogeneous symmetric functions is an integer combination
supported on the set T1(n) = {hλ : λ = (n− r, 1r), r ≥ 1}.

2. Fn(T) + (−1)|T|s(n−1,1) is supported on the set T2(n) = {hλ : λ = (n− r, 1r), r ≥ 2}.

Theorem 1.4 describes the cases for which we are able to establish that the symmetric
function Fn(T) + (−1)|T|s(n−1,1) is in fact a nonnegative integer combination of T2(n) =
{hλ : λ = (n− r, 1r), r ≥ 2}.

8 Enumerative Consequences

We conclude by pointing out a representation-theoretic consequence, and some enumer-
ative implications, of the expansion (7.2). Fix n ≥ 3 and consider the n by n− 1 matrix
Dn whose kth column consists of the coefficients gn(n− k, n− d), d = 1, . . . , n− 1. Thus
the kth column contains the coefficients in the expansion of S⊗n−k

(n−1,1) in the h-basis: we

have ch S⊗k
(n−1,1) = ∑n

d=1 gn(k, n− d)hn−d
1 hd, 1 ≤ k ≤ n− 1. From Theorem 7.2 it is easy to

see that the matrix Dn has rank (n− 1); the last two rows, consisting of alternating ±1s,
differ by a factor of (−1), and the matrix is lower triangular with 1’s on the diagonal,
hence it has rank (n− 1). Similarly the (n + 1) by (n− 1) matrix obtained by appending
to Dn a first column consisting of the h-expansion of the nth tensor power of S⊗n

(n−1,1) also
has rank (n− 1).

Theorem 8.1. In the representation ring of the symmetric group Sn, the first (n − 1) tensor
powers of S(n−1,1) are an integral basis for the vector space spanned by the positive tensor powers.
The nth tensor power of S(n−1,1) is an integer linear combination of the first (n − 1) tensor
powers:

S⊗n
(n−1,1) =

n−1⊕
k=1

ak(n)S⊗k
(n−1,1), with an−1(n) = (n−1

2 ).

Let c(n, j) be the number of permutations in Sn with exactly j disjoint cycles. The coefficients
ak(n) are determined by the polynomial P(t) = tn −∑n−1

k=1 ak(n)tk, defined by

P(t) = t+1
t−(n−2)

n

∑
j=1

c(n, j)tj(−1)n−j. (8.1)
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The preceding result gives a recurrence for the coefficients ak(n); we have

an−1(n) = (n−1
2 );

(n− 2)aj(n)− aj−1(n) = (−1)n−j[c(n, j)− c(n, j− 1)], 2 ≤ j ≤ n− 1;

(n− 2)a1(n) = c(n, 1)(−1)n−1

=⇒ a1(n) =
(n−1)!

n−2 (−1)n−1 = (−1)n−1[(n− 2)! + (n− 3)!]

Theorem 7.2 has the following interesting corollary.

Corollary 8.2. Let k ≥ 2.

1. For min(n, k) ≥ d ≥ 2, the coefficient of hd
1hn−d in s∗k(n−1,1) = ch S⊗k

(n−1,1) is the nonnega-
tive integer gn(k, d) given by the two equal expressions:

k

∑
j=d

(−1)k−jS(j− 1, d− 1) =
k−d

∑
r=0

(−1)r
(

k
k− r

)
S(k− r, d). (8.2)

In particular, when n ≥ k, this multiplicity is independent of n.

2. The positive integer βn(k) = ∑
min(n,k)
d=2 gn(k, d) is the multiplicity of the trivial representa-

tion in S⊗k
(n−1,1). When n ≥ k, it equals the number of set partitions B≥2

k of the set {1, . . . , k}
with no singleton blocks. We have βn(n+ 1) = B≥2

n+1− 1 and βn(n+ 2) = B≥2
n+2− (n+1

2 ).

Question 8.3. The identity (8.2) holds for all d = 2, . . . , k. Is there a combinatorial
explanation?

Question 8.4. For fixed k and n, what do the positive integers gn(k, d) count? Is there a
combinatorial interpretation for βn(k) = ∑

min(n,k)
j=d gn(k, d), the multiplicity of the trivial

representation in the top homology of A∗n,k, in the nonstable case k > n? Recall that for
k ≤ n this is the number B≥2

k of set partitions of [k] with no singleton blocks, and is
sequence OEIS A000296.

Question 8.5. Recall that an−1(n) = (n−1
2 ). Is there a combinatorial interpretation for the

signed integers ai(n)? There are many interpretations for (−1)n−1a1(n) = (n − 2)! +
(n− 3)!, see OEIS A001048. For n ≥ 4 it is the size of the largest conjugacy class in Sn−1.
We were unable to find the other sequences {ai(n)}n≥3 in OEIS.
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