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A new order on integer partitions

Étienne Tétreault ∗1

1Département de mathématiques, Université du Québec à Montréal

Abstract. Considering Schur positivity of differences of plethysms of homogeneous
symmetric functions, we introduce a new relation on integer partitions. This relation
is conjectured to be a partial order, with its restriction to one part partitions equivalent
to the classical Foulkes conjecture. We establish some of the properties of this relation
via the construction of explicit inclusion of modules whose characters correspond to
the plethysms considered. We also prove some stability properties for the number of
irreducible occurring in these modules as m grows.
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It’s been more than eighty years since Littlewood [9] introduced the plethysm oper-
ation on symmetric functions (although the name was only introduced in 1950). This
binary operation, denoted by f [g], plays a fundamental role in representation theory,
and its calculation raises many interesting questions. Indeed, calculating the “structure”
coefficients of plethysms of the Schur functions is considered by Stanley [14] as a key
problem in algebraic combinatorics, and it also appears at the forefront of current re-
search in Geometric Complexity Theory. A longstanding conjecture, stated by Foulkes
[7] in 1953, simply concerns inequalities between some of these coefficients in simple
cases. With the aim of setting up our own context, we cast the statement of his conjec-
ture in terms of coefficients aλ

ν,µ of the Schur expansion of the plethysm

hν[hµ] = ∑
λ

aλ
ν,µ sλ,

of complete homogeneous symmetric functions, which are well known to be positive
integers. Foulkes’ conjecture states that for all n ≤ m, and all partition λ of mn, we have
aλ
(n),(m)

≤ aλ
(m),(n). This has been proven to hold for n ≤ 5 [16] [5] [11] [4], and when m

and n are far enough apart [3]. But it still remains open in full generality.
The question may naturally be extended to pairs of integer partitions µ and ν as

follows. Consider the binary relation ν E µ on integer partitions, which holds if and
only if hµ[hν]− hν[hµ] is Schur positive, or equivalently aλ

ν,µ ≤ aλ
µ,ν for all λ. Clearly “E”

is reflexive and antisymmetric (if we exclude the partition (1)). The conjecture1 here
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is that it is also transitive; hence it gives us a partial order on integer partitions (see
Figure 1). Foulkes conjecture corresponds to the statement that

(n) E (m), iff n ≤ m,

for one part partitions (m) and (n) associated to positive integers m and n.
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Figure 1: Poset structure on partitions

Our aim is to establish some basic results for the relation “E” using an approach
to plethysm via the representation theory of the symmetric group. Indeed, coefficients
of Schur expansion of plethysm of the form hµ[hν] occur as multiplicities of irreducible
representations in some Snm-modules, denoted here by Mν

µ. We construct them using
similar techniques as [12], although their construction produce modules associated to
plethysm of Schur functions.
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1 Main results

This extended abstract is a summary of our result in [15]. We skip here some of the
proofs, but they can be found in this preprint, along with many examples of our defini-
tions and constructions. For symmetric functions, notations used here are mostly those
of [10]. Other classical combinatorial and representation theory notions are recalled in
many texts, for example in [1].

We describe in section 2 the Snm-modules Mν
µ, whose Frobenius transform of its

character is the plethysm hν[hµ], using techniques of [12]. The fact that ν E µ is then
the existence of an injective morphism Mν

µ ↪→ Mµ
ν . In section 3, we show the following

result:

Proposition 1.1. If there is injective morphisms F1 : Mν1
µ ↪→ Mµ

ν1 and F2 : Mν2
µ ↪→ Mµ

ν2 , we
can construct an injective morphism F1 �F2 : Mν1]ν2

µ ↪→ Mµ
ν1]ν2

.

We also construct in this section the generalized Foulkes-Howe map Fµ,ν : Mν
µ → Mµ

ν .
Using this map and proposition 1.1, we prove the following results in section 4:

Theorem 1.2. (a) For any positive integer n and partition µ, there is an injection

M1n
µ ↪→ Mµ

1n .

(b) For any positive integer k and partition µ, there is an injection Mµ]1k

µ ↪→ Mµ

µ]1k .

(c) For any positive integer k and partition µ, there is an injection Mµk

µ ↪→ Mµ

µk .

(d) If the Foulkes’ conjecture is true up to n− 1, then for all partition µ such that µ1 ≤ n,
there is an injection Mµ

(n) ↪→ M(n)
µ .

In section 5, we describe semistandard homomorphisms as in [8], and we show how
to use them in our setting. Using these morphisms, we prove the following stability
properties in section 6:

Theorem 1.3. For any partition µ̃ of an integer m̃, if dim HomSnm(S
λ, Mν

µ) = r, then we have
dim HomSn(m+m̃)

(Sλ+(nm̃), Mν
µ+µ̃) ≥ r.

Theorem 1.4. If the number of parts of µ is m̃ and dim HomSnm(S
λ, Mν

µ) = r, then we have
dim HomS(m+2m̃)n

(Sλ+(2m̃n), Mν
µ+(2m̃)

) ≥ r.
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2 Description of the modules

2.1 Representation theory of the symmetric group

As a means of deriving properties of plethysms, we consider representations of the sym-
metric group Sn. The necessary link between the two subjects of study is established via
the classical Frobenius transform of characters. This is a linear transform which encodes
a character as a symmetric function, with the property that irreducible characters are
sent to the basis of Schur symmetric function. All the fundamental questions of rep-
resentation theory of Sn may be efficiently translated into calculation in the ring Λ of
symmetric functions. We use a polynomial construction of these modules, as in [1].

A diagram is simply a finite subset d of N×N, whose elements are called cells. A
cell (i, j) is often geometrically represented in N×N by the box having vertices (i, j),
(i + 1, j), (i, j + 1) and (i + 1, j + 1). The kth row (resp. column) of a diagram d is the
subset of cells such that j = k− 1 (resp. i = k− 1). The row-reading order of the cells of d
is the order such that (i, j) < (i′, j′) if j < j′ or if j = j′ and i < i′.

A diagram is said to be a Ferrers diagram (using French convention) if for every (i, j) ∈
d, the diagram also contains every (i′, j′) ∈ N×N such that i′ ≤ i and j′ ≤ j. If λk is
the number of cells in the kth row of a Ferrers diagram, and |d| = n, then λ = (λ1, λ2, ..)
is a decreasing sequence of positive integers who sums to n, i.e. a partition of n, denoted
λ ` n. This sequence completely determines the diagram, and we write λ for both the
partition and its associated Ferrers diagram.

Let Ω be a set. A tableau τ of shape λ with entries in Ω is a map τ : λ → Ω. It is
often displayed as a filing of the boxes of λ. The C-vector space formally spanned by
these tableaux is a (SΩ ×Sλ)-bimodule, where SΩ acts on variables, i.e. (ρ · τ)(i, j) =
ρ(τ(i, j)) for ρ ∈ SΩ; and Sλ acts on places (or cells), i.e. (τ · π)(i, j) = τ(π(i, j)) for
π ∈ Sλ. We then consider Rλ (resp. Cλ), the subgroup of permutations in Sλ which
only permutes cells lying in a same row (resp. column) in a tableau of shape λ. If, for
x ∈ Ω, we denote γx = |τ−1(x)|, the sequence γ = (γx)x∈Ω is called the content of τ.

If |Ω| = |λ| = n, we may consider the set of bijective tableaux t : λ→ Ω, usually de-
noted by lowercase Latin letters. Since, in that case, SΩ

∼= Sλ, for our purpose it suffices
to consider the action of Sn on the C-span of these bijective tableaux. Unless specified,
we choose Ω to be the set x = {x1, ..., xn}, but we can make isomorphic constructions for
any set of size n.

For each bijective tableau t of shape λ, we associate the tableau monomial, which is xt =

∏
(i,j)∈[λ]

t(i, j)j. The C-span of those monomials is called the permutation module associated

to λ and denoted Mλ. In this module, we define the polynomials ∆t = ∑
π∈Ct

ε(π)π · xt.

The C-span of those polynomials, called the Specht module associated to λ, is denoted Sλ.
We recall some well-known facts about these modules (see Sagan, [13]):
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Proposition 2.1. • The set {Sλ | λ ` n} is a complete list of non-isomorphic irreducible
representations of Sn;

• The Frobenius transform of the character of Mλ is hλ;

• The Frobenius transform of the character of Sλ is sλ.

2.2 Wreath product

For n, m ∈ N, let G (resp. H) be a subgroup of Sm (resp. Sn). Also, let f : H →
Aut(Gn) be the morphism such that for every h ∈ H, f (h) sends (g1, ..., gn) ∈ Gn to
(gh−1(1), ..., gh−1(n)). We define the wreath product of G with H, denoted G o H, to be the
semidirect product Gn o f H.

Let V be a G-module and W be a H-module. The tensor product V⊗n is naturally a
Gn-module, and it is also a H-module, where H acts by permuting the components of a
tensor. The interaction of the two actions correspond to the wreath product, so it is in
fact a G o H-module. Also, there is a canonical surjection G o H � H, so we can construct
the inflated G o H-module InfGoH

H W. We then define V �W to be the G o H-module given
by V⊗n ⊗ InfGoH

H W. When G = Sm and H = Sn, the operation � mimics the plethysm
of symmetric functions, in the following sense:

Proposition 2.2. Let V be a Sm-module such that the Frobenius transform of its character is
f , and let W be a Sn-module such that the Frobenius transform of its character is g. Then, the
Frobenius transform of the character of (V �W)

xSnm
SmoSn

is the plethysm g[ f ].

So, if we want to study the plethysms hν[hµ], we can do it by studying the modules

(Mµ �Mν)
xSnm
SmoSn

.

2.3 The modules Mν
µ

We now describe a combinatorial description of the modules (Mµ�Mν)
xSnm
SmoSn

for µ ` m
and ν ` n. Let x = {x1, ..., xnm} andMµ be the set of injective tableaux t : µ → x. Also,
denote Nµ,ν the set of injective tableaux T : ν → Mµ such that the union of the entries
of each entry t of T is x. Thus, an element of Nµ,ν is a tableau of shape ν whose entries
are tableaux of shape µ and such that each element of x appears exactly one time. By
permuting all the entries at once, the C-span of the elements of Nµ,ν is a Snm-module,
isomorphic to C[Snm]. For example, if µ = (2, 1) and ν = (2, 2), then an element of Nµ,ν
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is

T =

x4

x1 x5

x9

x6 x2

x12

x10 x3

x7

x9 x11

.

We would like to have a monomial that is invariant under the row permutations of both
T and each of its entries. First, if we consider the tableau monomial of an entry t of T
as defined earlier, it is invariant under row permutations of t, but it does not keep track
of the entries of t in the first row. This is a problem, because we have to know which
variables are in the first row of each entry of T . We can multiply the tableau monomial
by each variable xi that appears in t, so that the Sm-module structure is preserved. We
obtain what we call the higher tableau monomial, which is

ξt =

 ∏
(i,j)∈µ

t(i, j)

 xt = ∏
(i,j)∈µ

t(i, j)j+1.

In order to use each ξt to construct a monomial that is invariant under the row permu-
tations of T , consider the ring C [X | X is a monomial of C[x] ] (i.e. we consider each
monomial of C[x] as a variable of this polynomial ring), and denote ∗ its multiplication.
In this ring, we can define the tableau monomial of T , named plethystic tableau monomial,
to be

ξ∗T = ∗
(i,j)∈ν

(ξT(i,j))∗(j+1).

For example, the plethystic tableau monomial of T as above is

ξ∗T = (x10x3x2
12) ∗ (x9x11x2

7) ∗ (x1x5x2
4)
∗2 ∗ (x6x2x2

9)
∗2.

Let Mν
µ be the Snm-module generated by the ξ∗T for T ∈ Nµ,ν.

We have the following result, which is implicit in [12]:

Proposition 2.3. The representation Mν
µ is isomorphic to the representation (Mµ�Mν)

xSnm
SmoSn

.

So, we can think of an element of Mν
µ as a monomial with exponents corresponding

to ν whose variables are monomials with exponents corresponding to µ and such that
this “monomial of monomials” contains each variable in x = {x1, ..., xnm} exactly once.
Note that Mµ

(1)
∼= Mµ, the usual permutation module.
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3 The morphisms

3.1 Decomposition via the tensor product

For two partitions ν1, ν2, we define their union ν1 ] ν2 to be the partition that has the
parts of µ1 followed by the parts of µ2, and then reordered to obtain a partition. For
example, (2, 2) ] (3, 1) = (3, 2, 2, 1). Also, if t1 is a tableau of shape ν1 and t2 is a tableau
of shape ν2, we define their union t1 ] t2 to be the tableau obtained by stacking t1 and
t2, and then reordering the rows so that it is a tableau of shape ν1 ] ν2. We show in [15]
the following results:

Proposition 3.1. Let µ be a partition of m and ν be a partition of n. Suppose that there is
ν1, ν2 such that ν = ν1 ] ν2, with ν1 ` n1 and ν2 ` n2. Then, we have an isomorphism
Mν

µ
∼=
(

Mν1
µ ⊗Mν2

µ

) xSmn
Smn1×Smn2

.

For example, if µ = (3, 2) and ν = (2, 2), then ν = (2) ] (2), and if we consider

T =

x1 x2

x3 x17x18

x15x16

x6 x12x10

x8 x14

x4 x19x11

x7 x20

x13 x5 x9

; T1 =

x8 x14

x4 x19x11

x7 x20

x13 x5 x9
; T2 =

x1 x2

x3 x17x18

x15x16

x6 x12x10.

then the elements ξ∗T and ξ∗T1 ⊗ ξ∗T2 carry the same information.
When we decompose µ in the same way, we have a weaker result:

Proposition 3.2. Let µ be a partition of m and ν be a partition of n. Suppose that there is
µ1, µ2 such that µ = µ1 ] µ2, with µ1 ` m1 and µ2 ` m2. Then, we have an injection(

Mν
µ1
⊗Mν

µ2

) xSnm
Snm1×Snm2

↪→ Mν
µ.

For example, if µ = (3, 2) and ν = (2, 2) as before, then µ = (3) ] (2), and if we have

T =

x1 x2

x3 x17x18

x15x16

x6 x12x10

x8 x14

x4 x19x11

x7 x20

x13 x5 x9

; T1 =

x3 x17x18 x6 x12x10

x4 x19x11x13 x5 x9

; T2 =

x1 x2 x15x16

x8 x14 x7 x20

,

then ξ∗T1 ⊗ ξ∗T2 is sent to
1
4 ∑

σ∈RT1×RT2

σ · ξ∗T .

By combining these two results, we obtain a proof of 1.1 in [15].
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3.2 Decomposition using permutation modules

For a partition µ, let µn be µ ] ...] µ︸ ︷︷ ︸
n times

, and consider the permutation module Mµn
. By

proposition 3.1 (for ν = (1)), this module is isomorphic to the module (Mµ)⊗n
xSnm
(Sn)m .

So, we can write an element of Mµn
as ξt1 ⊗ ...⊗ ξtn , where each ti is a tableau of shape

µ and each variable of x = {x1, .., xnm} is used exactly once. Let T ∈ Nµ,ν be such that if
(i, j) is its `th cell in row-reading order, then, T(i, j) = t`. We then define the projection

φ : Mµn −� Mν
µ

ξt1 ⊗ ...⊗ ξtn 7−→ ξ∗T
.

Reciprocally, for ξ∗T ∈ Mν
µ, if we denote T(i, j) = t` when (i, j) is the `th cell of T in

row-reading order, there is an injective homomorphism

φ̃ : Mν
µ ↪−→ Mµn

ξ∗T 7−→ 1
ν! ∑

σ∈Rν

ξtσ(1) ⊗ ...⊗ ξtσ(n) . ,

We can easily see that φ ◦ φ̃ = Id. For example, let µ = (3, 1) and ν = (2, 1). An element
of Nµ,ν is

T =

x11

x8 x10 x3

x7

x5 x6 x2

x12

x4 x9 x1

.

The corresponding element of Mν
µ is ξ∗T = (x5x6x2x2

7) ∗ (x4x9x1x2
12) ∗ (x8x10x3x2

11)
∗2. We

then have:

φ̃(ξ∗T) =
1
2

(
x5x6x2x2

7 ⊗ x4x9x1x2
12 ⊗ x8x10x3x2

11 + x4x9x1x2
12 ⊗ x5x6x2x2

7 ⊗ x8x10x3x2
11

)
φ(φ̃(ξT)) =

1
2

(
(x5x6x2x2

7) ∗ (x4x9x1x2
12) ∗ (x8x10x3x2

11)
∗2

+(x4x9x1x2
12) ∗ (x5x6x2x2

7) ∗ (x8x10x3x2
11)
∗2
)

,

which is exacty ξT . These morphisms are essential in our setting, as we use them in
sections 3.3 and 5.
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3.3 Generalized Foulkes-Howe map

We have already seen that the fact that ν E µ is equivalent to the existence of an injective
homomorphism Mν

µ ↪→ Mµ
ν . We describe in the previous section a morphism from Mν

µ

to Mµn
, and another from Mνm

to Mµ
ν . The only missing part is a morphism from Mµn

to Mνm
.

Let ξt1 ⊗ ...⊗ ξtn be an element of (Mµ)⊗n
xSnm
(Sn)m , which is isomorphic to Mµn

. Denote

xi,j the jth entry (in row-reading order) of ti. By construction, the set of all xi,j is equal to
x, so it is only a relabelling of the variables. Then, for 1 ≤ j ≤ m, consider the tableau
sj : ν→ {x1,j, ..., xm,j} in row-reading order. We define the following morphism:

Ψ : Mµn −→ Mνm

ξt1 ⊗ ...⊗ ξtn 7−→ 1
µ! ∑

σ∈Rt1×...×Rtn

σ · ξs1 ⊗ ...⊗ ξsm .

For example, if µ = (2, 2) and ν = (2, 1), take the monomial x1x2x2
5x2

6x3
9x3

10x4
3x4

4x5
7x5

8x6
11x6

12
of Mµn

, which corresponds to the tensor product x1x2x2
3x2

4 ⊗ x5x6x2
7x2

8 ⊗ x9x10x2
11x2

12. It
can be written as ξt1 ⊗ ξt2 ⊗ ξt3 , with

t1 =
x3 x4

x1 x2
, t2 =

x7 x8

x5 x6
, t3 =

x11x12

x9 x10
.

We then construct the following tableaux:

s1 =
x9

x1 x5
, s2 =

x10

x2 x6
, s3 =

x11

x3 x7
, s4 =

x12

x4 x8
,

We can conclude that the image of the monomial by Ψ is

1
4 ∑

σ∈Rt1×Rt2×Rt3

σ · x1x5x2
2x2

6x3
3x3

7x4
4x4

8x5
9x6

10x7
11x8

12.

Now consider the composition of homomorphisms φ ◦Ψ ◦ φ̃ : Mν
µ → Mµ

ν . When µ = (m),
ν = (n), this map is the Foulkes-Howe map states in the language of symmetric groups.
This map was developed as a tool to prove the Foulkes’ conjecture. For this reason, we
will call this homomorphism the generalized Foulkes-Howe map, and we denote it Fµ,ν. We
use this map in the next section.

4 First results

We can use the tools we just developed to prove theorem 1.2. Full proofs are given in
[15]. Part (a) is the following proposition:
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Proposition 4.1. For any positive integer n and partition µ, there is an injection M1n
µ ↪→ Mµ

1n .

For example, if µ = (2, 1) and n = 2, we have that (using the generalized Foulkes-
Howe map)

Fµ,1n

(
(x2x3x2

4) ∗ (x5x6x2
1)
∗2
)
=

1
4 ∑

σ∈S{2,3}×S{5,6}

σ · (x2x2
5) ∗ (x3x2

6) ∗ (x4x2
1)
∗2,

and we can see that the image completely determine the element we chose from M1n
µ .

As a corollary, we obtain part (b) of theorem 1.2:

Corollary 4.2. For any positive integer k and partition µ, there is an injection Mµ]1k

µ ↪→ Mµ

µ]1k .

Using the proposition 1.1, we also prove in [15] the two last parts of theorem 1.2:

Proposition 4.3. For any positive integer k and partition µ, there is an injection Mµk

µ ↪→ Mµ

µk .

Proposition 4.4. If the Foulkes’ conjecture is true up to n− 1, then for all partition µ such that
µ1 ≤ n, there is an injection Mµ

(n) ↪→ M(n)
µ .

5 Decomposition via semistandard homomorphisms

5.1 Semistandard homomorphisms

We use here the description of [8] for a basis of the homomorphisms from Sλ to a
permutation module Mγ, and mostly use its notations.

Let λ ` n and τ : λ → N∗ be a tableau of content γ. We denote T(λ, γ) the set of
such tableaux. Remark that up to a relabelling of the entries, we can always choose γ to
be in decreasing order, so that it corresponds to a partition. Also, using the identification
Sλ
∼= Sn, the Sn-module C[T(λ, γ)] is isomorphic to Mγ, where we now consider this

module to be generated by the monomials ξt (instead of the xt, as in the usual definition).
In effect, for any bijective tableau t : γ → x, the map ft : C[T(λ, γ)] → Mγ such that
ft(τ) = ∏

(i,j)∈λ

t(i, j)τ(i,j) is an isomorphism.

Denote by rτ the number of σ ∈ Rτ such that τ · σ = τ. For every τ ∈ T(λ, γ), we
define a homomorphism Θ̂τ by setting

Θ̂τ : Mλ −→ Mγ

ξt 7→ 1
rτ

∑
σ∈Rλ

ft(τ · σ)
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If i is the inclusion i : Sλ ↪→ Mλ, we define Θτ : Sλ → Mγ to be the morphism Θ̂τ ◦ i.
Note that Θτ = 0 if and only if τ has a column containing two equal entries.

We say that a tableau τ with entries in N is semistandard if it is weakly increasing
in the rows (from left to right) and strictly increasing in the columns (from bottom to
top). When τ ∈ T(λ, γ) is semistandard, we say that Θτ is a semistandard homomorphism.
These homomorphisms have the nice following property:

Proposition 5.1. The set {Θτ | τ ∈ T(λ, γ) semistandard} is a basis for HomSr(S
λ, Mγ).

5.2 Application for the modules Mν
µ

We want to use the semistandard homomorphisms to study the modules Mν
µ. First,

combining the semistandard homomorphisms and the morphisms of section 3.2, we
obtain the following setting:

Sλ Mν
µ Mµn

Mν
µ

Θτ

φ̃

φ◦φ̃=Id

φ

So for λ a partition of nm and τ a semistandard tableau of shape λ and content
µn, if we define Θτ = φ ◦ Θτ, we have that Θτ is a generating set of HomSnm(S

λ, Mν
µ).

Hence, we can have a combinatorial description of the decomposition of the modules
Mν

µ. However, as φ is a projection, this set is far from being linearly independent, and
this tool is generally not efficient to calculate this decomposition, although it can be a
good tool to make proofs about these modules.

6 Stability properties

We use semistandard homomorphisms to prove that some sequences of plethysm coeffi-
cients are increasing. To do so, we generalize the arguments of de Boeck in [2]. We only
put here the lemmas needed to show theorems 1.3 and 1.4. The proofs of these lemmas
and theorems are in [15].

For two tableaux τ1, τ2, we define the join of the two tableaux, denote τ1 ∨ τ2, to be
the tableau such that the row i, when read from left to right, consists of the row i of τ1
followed by the row i of τ2. If τ1 is of shape µ1 and τ2 is of shape µ2, then τ1 ∨ τ2 is of
shape µ1 + µ2, where we use the componentwise addition of integer vectors.

We use in this first lemma the tableau τ(nm′),µ′n for µ′ ` m′, which is the only semis-
tandard tableau of shape (nm′) and content µ′n. For any µ ` m and ν ` n, we have the
following lemma:
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Lemma 6.1. Let τ ∈ T(λ, µn) such that Θτ : Sλ → Mν
µ is non-zero. Then, for any partition

µ̃ of an integer m̃, the tableau τ̃ = τ ∨ τ(nm̃),µ̃n is such that Θτ̃ : Sλ+(nm̃) → Mν
µ+µ̃ is also

non-zero.

This lemma is the main ingredient to prove theorem 1.3.
We also generalize another stability property, originally due to Dent [6]. For a tableau

τ′ of shape (2k) and another tableau τ, we have that τ′ ∨ τ corresponds to adding two
columns of length k at the left of τ. Moreover, we write τ(2k),(2k) for the only semistandard
tableau of shape and content (2k). Using this, we prove the following lemma:

Lemma 6.2. Let τ ∈ T(λ, µn) such that Θτ : Sλ → Mν
µ is non-zero. Then, if the number of

parts of µ is m̃, the tableau τ̃ = τ(2m̃n),(2m̃n) ∨ τ is such that Θτ̃ : Sλ+(2m̃n) → Mν
µ+(2m̃)

is also
non-zero.

This lemma is also the main ingredient to prove theorem 1.4, by a similar proof than
the one of 1.3.
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