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1 Introduction

Two of the best known and most widely studied partially ordered sets in mathematics
are the Tamari lattice and the weak Bruhat order on the symmetric group. These posets
both possess higher-dimensional versions, namely the first higher Stasheff–Tamari or-
ders S(n, δ) [5, 10] and the higher Bruhat orders B(n, δ + 1) [12]. These also have the
structure of higher categories, as described by Kapranov and Voevodsky in [10].

The relation between the Tamari lattice and the weak Bruhat order has been of sig-
nificant interest. There is a classical surjection from the latter to the former, which can
be realised as a map from permutations to binary trees. Kapranov and Voevodsky ex-
tended this map to a map f : B(n, δ)→ S(n + 2, δ + 1) [10], which they conjectured was
a surjection. This remains an open problem despite some detailed study [15, 18].

In the paper [20], we consider a different map from the higher Bruhat orders to
the first higher Stasheff–Tamari orders. The elements of the higher Bruhat orders are
cubillages of cyclic zonotopes and the elements of the higher Stasheff–Tamari orders are
triangulations of cyclic polytopes. We study the map

g : B(n, δ + 1)→ S(n, δ),

given by taking the vertex figure of a cubillage at the bottom vertex. Other cross-sections
of zonotopal subdivisions were considered in [6, 14]. The dual of this map was first
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considered in [18], and the map itself was considered in [2, Appendix B]. We provide
a new proof that this map is a surjection, which was shown in [16], and go further by
showing that the map g is full. We call order-preserving maps which are both surjective
and full quotient maps of posets. Indeed, in this paper we develop further the theory of
quotients of posets, as studied in [9, 17].

Theorem A (Corollary 6.3). The map g : B(n, δ + 1)→ S(n, δ) is a quotient map of posets.

Part of the motivation for considering the map g stems from the paper [3], where
Dimakis and Müller-Hoissen define a quotient of the higher Bruhat orders called the
“higher Tamari orders”. These orders describe how a class of solutions to the KP equa-
tion evolve. Dimakis and Müller-Hoissen conjecture the higher Tamari orders to coincide
with the first higher Stasheff–Tamari orders. We prove this conjecture using Theorem A
by showing that the higher Tamari orders are given by the image of the map g, as first
noted in [2, Appendix B]. This unites two far-reaching sets of combinatorics: the first
higher Stasheff–Tamari orders, with their connections to representation theory of alge-
bras [19], and the higher Tamari orders, which describe classes of KP solitons [3] and
from which arise the polygon equations [4].

Theorem B (Corollary 6.4). The higher Tamari orders and the first higher Stasheff–Tamari
orders coincide.

Our approach is to use the description of cubillages of cyclic zonotopes in terms of
separated collections established in [7] and studied extensively in [2]. This description
allows us to construct pre-images under the map g, which is instrumental in the proof
of Theorem A.

The present paper is an extended abstract of [20]. In Section 2 we provide background
on the higher Bruhat orders and first higher Stasheff–Tamari orders. In Section 3 we give
three different interpretations of the map g. We outline our framework of quotient posets
in Section 4. Finally, in Sections 5 and 6, we respectively prove that g is surjective and
full. Due to space constraints, we omit some proofs from [20], and only provide sketches
for the others.
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2 Background

2.1 Higher Bruhat orders

2.1.1 Cubillages

We first give the geometric description of the higher Bruhat orders due to [10, 18]. Con-
sider the Veronese curve

ξ : R→ Rδ+1

t 7→ ξt = (1, t, . . . , tδ),

and let {t1, . . . , tn} ⊂ R with t1 < · · · < tn and n > δ + 1. The cyclic zonotope Z(n, δ + 1)
is defined to be the Minkowski sum of the line segments 0ξt1 , . . . , 0ξtn . The properties
of Z(n, δ + 1) do not depend on the exact choice of {t1, . . . , tn} ⊂ R. Hence, for ease we
choose ti = i. For k > l we have a canonical projection map

πk,l : Rk → Rl

(x1, . . . , xk) 7→ (x1, . . . , xl)

which maps Z(n, k)→ Z(n, l).
A cubillageQ of Z(n, δ+ 1) is a subcomplex of Z(n, n) such that πn,δ+1 : Q → Z(n, δ+

1) is a bijection. Note that Q therefore contains faces of Z(n, n) of dimension at most
δ + 1. The elements of the higher Bruhat poset B(n, δ + 1) consist of cubillages of Z(n, δ +
1). Cubillages are often called fine zonotopal tilings, see [7, 8].

The lower facets of a polytope in Rk are the facets which can be seen from a very
large negative k-th coordinate; the upper facets of a polytope in Rk are those which can
be seen from a very large positive k-th coordinate. The covering relations of B(n, δ + 1)
are given by pairs of cubillages QlQ′ where there is a (δ + 2)-face Γ of Z(n, n) such
that πn,δ+2(Q) and πn,δ+2(Q′) differ only in that πn,δ+2(Q) contains the lower facets of
πn,δ+2(Γ) and πn,δ+2(Q′) contains the upper facets of πn,δ+2(Γ). Here we say that Q′ is
an increasing flip of Q. In terms of the interpretation of B(n, δ + 1) as a higher category
in [10], increasing flips constitute the 1-morphisms, with higher-dimensional morphisms
given by higher-dimensional faces of Z(n, n).

2.1.2 Separated collections

Now we explain how one may characterise cubillages as separated collections of subsets,
as shown in [7] and studied in [2, 1]. The subsets E ⊆ [n] := {1, . . . , n} are naturally
identified with the corresponding points ξE := ∑e∈E ξe in Z(n, n), where ξ∅ = 0. This
represents each vertex of a cubillage Q as a subset of [n]. For a cubillage Q of Z(n, δ+ 1),
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the collection of subsets corresponding to its vertices is called the spectrum of Q and is
denoted by Sp(Q).

Let n be a positive integer and let δ ∈ [n− 1]. Given two sets A, B ⊆ [n], we say that
A δ-interweaves B if there exist iδ+1, iδ−1, . . . ∈ B \ A and iδ, iδ−2, . . . ∈ A \ B such that

i0 < i1 < · · · < iδ+1.

If either A δ-interweaves B or B δ-interweaves A, then we say that A and B are δ-
interweaving. If A and B are not δ-interweaving then we say that A and B are δ-separated.
We call a collection A ⊂ 2[n] δ-separated if it is pairwise δ-separated.

It follows from [7, Theorem 2.7] that the correspondence Q 7→ Sp(Q) gives a bijection
between the set of cubillages on Z(n, δ + 1) and the set of δ-separated collections of
maximal size in 2[n]. The maximal size of a δ-separated collection in 2[n] is Σδ+1

i=0 (
n
i ), so

#Sp(Q) = Σδ+1
i=0 (

n
i ) for any cubillage Q of Z(n, δ + 1). Hence, one may define the higher

Bruhat orders B(n, δ + 1) to consist of δ-separated collections in 2[n] of maximal size. As
we show in [20], the covering relations are then given by pairs of maximal-size separated
collections C l C ′ such that C ′ = (C \ {A}) ∪ {B}, where A δ-interweaves B.

For A ⊆ [n], if πn,δ+1(ξA) is a boundary vertex of the zonotope Z(n, δ + 1), then ξA is
a vertex of every cubillage of Z(n, δ+ 1), and hence in every δ-separated collection in 2[n]

of maximal size. Hence the subsets of interest are those whose corresponding points lie
in the interior of the zonotope Z(n, δ + 1). We call these internal vertices of the cubillage
and define the internal spectrum ISp(Q) of Q to consist of the subsets corresponding to
internal vertices of Q. We have that #ISp(Q) = (n−1

δ+1) for a cubillage Q of Z(n, δ + 1), as
we explain in [20].

2.1.3 Admissible orders

The original definition of the higher Bruhat orders from [12] is as follows. Given A ∈
( [n]

δ+2), the set

P(A) =

{
B
∣∣∣ B ∈

(
[n]

δ + 1

)
, B ⊂ A

}
is called the packet of A. The set P(A) is naturally ordered by the lexicographic order,
where P(A) \ ai < P(A) \ aj if and only if j < i. An ordering α of ( [n]

δ+1) is admissible if
the elements of any packet appear in lexicographic or reverse-lexicographic order under
α. Two orderings α and α′ are equivalent if they differ by a sequence of interchanges of
pairs of adjacent elements that do not lie in a common packet. We use [α] to denote the
equivalence class of α. The inversion set inv(α) of an admissible ordering α is the set of
all (δ + 2)-subsets of [n] whose packets appear in reverse-lexicographic order in α. The
higher Bruhat poset B(n, δ + 1) is the partial order on equivalence classes of admissible
orders of ( [n]

δ+1), with covering relations given by [α]l [α′] for inv(α′) = inv(α) ∪ {A}
where A ∈ ( [n]

δ+2) \ inv(α).
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2.2 Higher Stasheff–Tamari orders

In this section we give the definition of the first higher Stasheff–Tamari orders. These
were originally defined by Kapranov and Voevodsky under the name the higher Stasheff
orders [10]. Edelman and Reiner then introduced the first and second higher Stasheff–Tamari
orders in [5]. Thomas later proved that the first higher Stasheff–Tamari orders were the
same as the higher Stasheff orders [18, Proposition 3.3].

The moment curve is defined by pt = (t, t2, . . . , tδ) ⊂ Rδ for t ∈ R. Choose t1, . . . , tn ∈
R such that t1 < t2 < · · · < tn, where n > δ + 1. The cyclic polytope C(n, δ) is defined to
be the convex hull conv(pt1 , . . . , ptn). The properties of the cyclic polytope do not depend
on the exact choice of {t1, . . . , tn} ⊂ R. Hence, for ease we choose ti = i. For a subset
A = {a0, . . . , ak} ⊆ [n], we use |A| to denote its geometric realisation conv(pa0 , . . . , pak).

A triangulation of the cyclic polytope C(n, δ) is a subcomplex T of C(n, n− 1) such
that πn−1,δ : T → C(n, δ) is a bijection. After [10, 18], we define the first higher Stasheff–
Tamari poset S(n, δ) as follows. The elements of S(n, δ) are triangulations of C(n, δ). The
covering relations of S(n, δ) are given by pairs of triangulations T l T ′ where there is
a (δ + 1)-face Σ of C(n, n − 1) such that πn−1,δ+1(T ) and πn−1,δ+1(T ′) differ only in
that πn−1,δ+1(T ) contains the lower facets of πn−1,δ+1(Σ) and πn−1,δ+1(T ′) contains the
upper facets of πn−1,δ+1(Σ). Here we say that T ′ is an increasing flip of T . The interpreta-
tion of S(n, δ) as a higher category in [10] is similar to B(n, δ + 1): the 1-morphisms are
increasing flips, with the higher-dimensional morphisms given by higher-dimensional
faces of C(n, n− 1).

3 Interpretations of the map

We study the map
g : B(n, δ + 1)→ S(n, δ)

which has the following three interpretations.
(1) Cubillages. Every cubillage Q of Z(n, δ + 1) induces a triangulation of C(n, δ),

given by taking the vertex figure of Z(n, n) at ξ∅. This can be seen from the fact that the
vertex figure at ξ∅ is given by the intersection of Z(n, n) with the affine hyperplane

Hn := {(x1, . . . , xn) ∈ Rn | x1 = 1},

which gives the cyclic polytope C(n, n− 1). Such cross-sections of cubillages were also
considered in [6, 8, 14]. The fact that πn,δ+1 : Q → Z(n, δ + 1) is a bijection gives that
πn,δ+1 : Q ∩ Hn → Z(n, δ + 1) ∩ Hδ+1

∼= C(n, δ) is a bijection, so that Q ∩ Hn is indeed
a triangulation of C(n, δ). Our principal definition of the map g is thus that g(Q) =
Q∩ Hn.

One can show that the map g is order-preserving, as was noted in [2, Appendix B].
Suppose an increasing flip of a cubillageQ is induced by a (δ+ 2)-face Γ of Z(n, n). Then
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Figure 1: Applying the map g to a cubillage of Z(4, 2) to obtain a triangulation of
C(4, 1).

if ξ∅ is not a vertex of Γ, the increasing flip will not affect g(Q). If ξ∅ is a vertex of Γ, then
Γ ∩ Hn is a simplex, and the increasing flip replaces the lower facets of πn,δ+2(Γ ∩ Hn)
with its upper facets, giving an increasing flip of g(Q).

Examples of the map g being applied to cubillages of Z(4, 2) and Z(4, 3) are shown
in Figures 1 and 2. Note that we illustrate cubillages of Z(n, δ + 1) by their projections
to δ + 1 dimensions and triangulations of C(n, δ) by their projections to δ dimensions.

(2) Separated collections. A triangulation of C(n, δ) is determined by its internal bδ/2c-
simplices. One may define g(Q) to be the triangulation T of C(n, δ) with its internal
bδ/2c-simplices given by ISp(Q) ∩ ( [n]

bδ/2c+1). This can be verified in Figures 1 and 2. In
Figure 1, the internal spectrum of the cubillage is {3, 13, 23}, so applying g gives the
triangulation of C(4, 1) with |3| as its only internal 0-simplex. In Figure 2, the internal
spectrum of the cubillage is {13}, so applying g gives the triangulation of C(4, 2) with
|13| as its only internal 1-simplex. We use this definition to prove that g is surjective and
full.

(3) Admissible orders. The following notions were used to define the higher Tamari
orders in [3]. Let α be an admissible order of ( n

δ+1) and I ∈ ( n
δ+1). Given k ∈ [n] \ I, we

say that I is invisible in P(I ∪ {k}) if either

• I ∪ {k} /∈ inv(α) and #{i ∈ I | i > k} is odd, or

• I ∪ {k} ∈ inv(α) and #{i ∈ I | i > k} is even.

We say that I is invisible in α if there is a k ∈ [n] \ I such that I is invisible in P(I ∪{k}).
Otherwise, we say that I is visible in α. Given an admissible order α of ( [n]

δ+1), we use V(α)

to denote the elements of ( [n]
δ+1) which are visible in α.
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Figure 2: Applying the map g to a cubillage of Z(4, 3) to obtain a triangulation of
C(4, 2).

Given an admissible order α of ( [n]
δ+1), we write Qα for the corresponding cubillage of

Z(n, δ + 1). As was noted in [2, Appendix B], one may define g(Qα) to be the triangula-
tion with

{|A| | A ∈ V(α)}

as its set of δ-simplices. This follows from the description from [18] of the cubillage
given by an admissible order, provided one swaps a sign convention for δ odd.

4 Quotient posets

We wish to show that g realises S(n, δ) as a quotient of B(n, δ + 1), but first we need to
make this statement precise. Given a poset (X,6) subject to an equivalence relation ∼,
the quotient (X/∼, R) is defined to be the set of ∼-equivalence classes [x] of X, with the
binary relation R defined by [x]R[y] if and only if there exist x′ ∈ [x] and y′ ∈ [y] such
that x′ 6 y′.

The quotient of a poset is in general only a reflexive binary relation, not a partial
order. The relation R is not necessarily anti-symmetric or transitive. In the literature,
various different sufficient conditions have been imposed on the equivalence relation
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∼ to ensure that X/∼ is a poset [9, 17]. Here we consider instead the necessary and
sufficient conditions on ∼ for (X/∼, R) to be a poset, which are as follows.

Proposition 4.1. The quotient X/∼ is a poset if and only if

1. if there exist x1 ∼ x and y1 ∼ y such that x1 6 y1, and x2 ∼ x and y2 ∼ y such that
x2 > y2, then x ∼ y, and

2. given x, y, z ∈ X such that there exist x1 ∼ x and y1 ∼ y such that x1 6 y1, and y2 ∼ y
and z2 ∼ z such that y2 6 z2, then there exist x3 ∼ x and z3 ∼ z such that x3 6 z3.

If both condition (1) and condition (2) hold, then we write 6 instead of R, to acknowl-
edge that the relation gives us a partial order. In this case, we say that ∼ is a weak order
congruence on the poset X, and we have a canonical order-preserving map

X → X/∼
x 7→ [x].

Indeed, for any order-preserving map of posets f : X → Y, one can consider the equiv-
alence relation on X defined by x ∼ x′ if and only if f (x) = f (x′). We then define the
image of f to be the quotient f (X) = X/∼. We identify the ∼-equivalence class [x] of
X with the element f (x) ∈ Y, so that f (X) ⊆ Y, and the quotient relation on f (X) is a
subrelation of the partial order on Y. If the equivalence relation ∼ on X is a weak order
congruence, so that the image f (X) is a well-defined poset, then we say that the map f
is photogenic. We say that f : X → Y is full if whenever f (x1) 6 f (x2) in Y, there exist
x′1, x′2 ∈ X such that x′1 6 x′2, with f (x′1) = f (x1) and f (x′2) = f (x2).

Proposition 4.2. Let X and Y be posets, with f : X → Y an order-preserving map. Then the
relation on f (X) is anti-symmetric. If f is full, then the relation on f (X) is transitive, and so f
is photogenic. Moreover, f (X) = Y as posets if and only if X is full and surjective.

Hence, if an order-preserving map f is full and surjective, then we say that f is a
quotient map of posets. With this framework in mind, the higher Tamari order T(n, δ + 1) [3]
is defined to be the image of the map g : B(n, δ+ 1)→ S(n, δ). Note that it is not evident
that T(n, δ + 1) is a well-defined poset, since it is not clear that the map g is photogenic.
However, in Section 6 we shall sketch how to prove that g is full, which implies that
g is photogenic by Proposition 4.2, since we already know that g is order-preserving.
In Section 5, we shall sketch how to prove that g is surjective, which entails that g is a
quotient map of posets, and so that T(n, δ + 1) ∼= S(n, δ).

The relation between the higher Tamari orders and KP solitons established in [3]
amounts to the fact that certain soliton solutions to the KP equation, including their
higher evolution structure, may be described as the Poincaré duals of regular triangula-
tions of cyclic polytopes. See also [8, 11].
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5 Surjectivity of the map

We now outline our proof that the map g is a surjection in [20]. This was first shown in
[16] using the different language of lifting subdivisions. Our strategy is to explicitly show
that g is a surjection when δ is even, and then to use this to deduce the case where δ is
odd. Given a triangulation T of C(n, 2d), we will construct a cubillageQT of Z(n, 2d+ 1)
such that g(QT ) = T . We will define QT by specifying its internal spectrum.

For I ⊆ [n], we write I = J t J′ if I = J ∪ J′ and there are no j ∈ J, j′ ∈ J′ such that
j, j′ are cyclically consecutive. Given a union of cyclic intervals I = [i0, i′0] t · · · t [il, i′l],
we use the notation Î = {i0, . . . , il}. We claim that the collection of subsets

U(T ) =
{

I ⊂ [n] | | Î| is a d′-simplex of T for d′ > d
}

defines the internal spectrum of a cubillage on Z(n, 2d + 1). This is similar to the con-
struction in [13, Theorem 3.8]. We begin by showing that U(T ) is 2d-separated, for
which we need the following lemma. This generalises one direction of [13, Lemma 3.7],
though the proof in op. cit. requires only minor changes.

Lemma 5.1. Let I, J be two subsets of [n]. Then I δ-interweaves J only if there exist subsets
X ⊆ Î and Y ⊆ Ĵ such that #X = bδ/2c and #Y = dδ/2e, and X δ-interweaves Y.

Lemma 5.2. The collection U(T ) is 2d-separated.

Proof (sketch). This follows by combining Lemma 5.1 with the fact that for I, J ∈ U(T ),
we have that | Î| and | Ĵ| are simplices in the same triangulation. Hence πn−1,2d(| Î|) and
πn−1,2d(| Ĵ|) cannot intersect each other in the interior of C(n, 2d). This means that there
do not exist subsets X ⊆ Î and Y ⊆ Ĵ as described in Lemma 5.1. Hence I and J cannot
be 2d-interweaving.

We must now show that #U(T ) = ( n−1
2d+1). We use induction for this, showing that the

size of U(T ) is preserved by increasing flips of T , which requires the following lemma.

Lemma 5.3. Let |S| = |a0, b0, a1, . . . , ad, bd| be a (2d+ 1)-simplex inducing an increasing flip of
a triangulation T of C(n, 2d), and let A = {a0, . . . , ad}, B = {b0, . . . , bd}. Then the following
two sets have the same cardinality:

Il(S, n) =
{

I ∈ 2[n] | A ⊆ Î ( S
}

,

Iu(S, n) =
{

I ∈ 2[n] | B ⊆ Î ( S
}

.

This allows us to prove that our 2d-separated collection U(T ) is the right size to be
the internal spectrum of a cubillage.

Lemma 5.4. Given a triangulation T of C(n, 2d), we have that #U(T ) = ( n−1
2d+1).
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Proof (sketch). This follows from induction on increasing flips. One can verify the claim
explicitly for the minimal triangulation in S(n, δ). Suppose that T ′ is an increasing
flip of T , with |S| is the simplex inducing the increasing flip. Then, by Gale’s Evenness
Criterion, we have that U(T ′) = (U(T ) \ Il(S, n))∪Iu(S, n). Lemma 5.3 then establishes
that #U(T ′) = #U(T ), as required.

Theorem 5.5. The map g : B(n, δ + 1)→ S(n, δ) is a surjection for even δ.

Proof (sketch). Given a triangulation T ∈ S(n, δ), it follows from Lemma 5.2 and Lemma 5.3
that U(T ) is the internal spectrum of a cubillage QT . We have that |A| an internal d-
simplex of T if and only if A ∈ U(T ) and #A = d + 1. The interpretation of the map g
in terms of separated collections then implies that g(QT ) = T .

Theorem 5.6. The map g : B(n, δ + 1)→ S(n, δ) is a surjection for odd δ.

Proof (sketch). Given a triangulation T of C(n, 2d+ 1), one may consider the triangulation
T̂ of C(n + 1, 2d + 2) defined in [15]. Theorem 5.5 provides us with a cubillage QT̂ of
Z(n + 1, 2d + 3) such that g(QT̂ ) = T̂ . Applying [1, Lemma 5.2], we obtain a cubillage
QT of Z(n, 2d + 2) such that g(QT ) = T .

6 Fullness of the map

We now outine how we show in [20] that the map g is full, and hence is a quotient map
of posets. We follow the approach of Section 5, whereby we work explicitly for even-
dimensional triangulations, and then use this to show the result for odd dimensions.
Indeed, we show that for triangulations T , T ′ of C(n, 2d) with T 6 T ′, we have that
QT 6 QT ′ , where these are the cubillages constructed in Section 5. For this, it suffices
to show that if T l T ′, then QT < QT ′ .
Theorem 6.1. Given triangulations T , T ′ of C(n, 2d) such that T l T ′, we have that QT <
QT ′ .
Proof (sketch). As in the proof of Lemma 5.3, we are required to replace Il(S, n) with
Iu(S, n), where |S| induces the increasing flip from T to T ′. We prove this by showing
that one may gradually exchange the elements of Il(S, n) for Iu(S, n) while preserving
2d-separatedness of the collections. This uses the description of the higher Bruhat orders
from Section 2.1.2.

Theorem 6.2. Given triangulations T , T ′ of C(n, 2d + 1) such that T l T ′, we have that
QT < QT ′ .
Proof (sketch). We use a similar approach to Theorem 5.6, and consider the triangulations
T̂ and T̂ ′ of C(n+ 1, 2d+ 2). By [15], we have T̂ ′ < T̂ , and soQT̂ ′ < QT̂ by Theorem 6.1.
We can then use the techniques of the proof of [1, Lemma 5.2] to show that this implies
that QT < QT ′ .
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Putting together the fact that g is a surjection in even (Theorem 5.5) and odd (The-
orem 5.6) dimensions, and the fact that g is full in even (Theorem 6.1) and odd (Theo-
rem 6.2) dimensions, we obtain the following.

Corollary 6.3. The map g : B(n, δ + 1)→ S(n, δ) is a quotient map of posets.

Hence, we obtain that the higher Tamari orders are indeed the same posets as the first
higher Stasheff–Tamari orders, noting Proposition 4.2 and the definition of the higher
Tamari orders as the image of the map g.

Corollary 6.4. The higher Tamari order T(n, δ + 1) is isomorphic to the first higher Stasheff–
Tamari order S(n, δ).
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