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3-Stack-Sortable Permutations and Beyond
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Abstract. We state a Decomposition Lemma that allows us to count preimages of per-
mutations under West’s stack-sorting map. This result and its generalizations have
several applications to the study of stack-sorting and beyond; we will explicate two of
these applications and state the remaining ones without details. First, we give a new
proof of Zeilberger’s formula for the number W2(n) of 2-stack-sortable permutations
in Sn. We then obtain a polynomial-time algorithm for counting 3-stack-sortable per-
mutations, settling a 30-year-old open problem. This algorithm allows us to prove the
first nontrivial lower bound for lim

n→∞
W3(n)1/n and to disprove a conjecture of Bóna.

We also use new data obtained from the algorithm to comment on two of Bóna’s other
conjectures. Finally, we prove that lim

n→∞
Wt(n)1/n ≥ (

√
t + 1)2 for all t ≥ 1, allowing us

to improve a result of Smith concerning a variant of the stack-sorting procedure.
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1 Introduction

In this article, a permutation is an ordering of a set of positive integers written in one-line
notation. Let Sn denote the set of permutations of the set [n]. If π is a permutation of
size n, then the standardization of π is the permutation in Sn obtained by replacing the
ith-smallest entry in π with i for all i ∈ [n]. For example, the standardization of 3614
is 2413. Given permutations π and τ, we say π contains τ if there is a (not necessarily
consecutive) subsequence of π whose standardization is the same as the standardization
of τ; otherwise, we say π avoids τ. A descent of a permutation π = π1 · · ·πn is an index
i ∈ [n − 1] such that πi > πi+1. A peak of π is an index i ∈ {2, . . . , n − 1} such that
πi−1 < πi > πi+1. Let des(π) and peak(π) denote the number of descents of π and the
number of peaks of π, respectively.

The study of permutation patterns began with Knuth’s analysis of a certain stack-
sorting machine [8]. In his dissertation, West [12] defined a deterministic variant of
Knuth’s machine, which is a function that we denote by s and define as follows. First, s
sends the empty permutation to itself. Given a nonempty permutation π with largest en-
try m, we can write π = LmR for some permutations L and R. Then s(π) = s(L)s(R)m.
For example, s(3521764) = s(3521) s(64)7 = s(3) s(21)5 s(4)67 = 3 s(1)25467 = 3125467.
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Definition 1.1. We say a permutation π is t-stack-sortable if st(π) is an increasing permu-
tation, where st denotes the t-fold iterate of s. Let Wt(n) be the set of t-stack-sortable
permutations in Sn, and let Wt(n) = |Wt(n)|.

The next theorem follows from Knuth’s analysis of his stack-sorting machine.

Theorem 1.2 ([8]). A permutation is 1-stack-sortable if and only if it avoids the pattern 231.
Furthermore, W1(n) = Cn := 1

n+1(
2n
n ) is the nth Catalan number.

West [12] conjectured, and Zeilberger [13] later proved, that W2(n) = 2
(n+1)(2n+1)(

3n
n );

there have now been several articles devoted to finding new proofs and extensions of
this formula (see the references in [4]).

Until recently, there was very little known about 3-stack-sortable permutations. Úl-
farsson [11] characterized 3-stack-sortable permutations in terms of new “decorated pat-
terns,” but the characterization is too unwieldy to yield any additional information. In
[2], the current author initiated the theory of combinatorial objects called “valid hook
configurations” and used these objects to prove the estimates lim

n→∞
W3(n)1/n < 12.53296

and lim
n→∞

W4(n)1/n < 21.97225. Ever since West wrote his dissertation in 1990, one of
the largest unsolved problems in the theory of the stack-sorting map has been to find a
polynomial-time algorithm for computing the numbers W3(n). This extended abstract is
primarily based on the article [4], which finds a recurrence that settles this problem.

The key result that we will need is the Decomposition Lemma, which gives a re-
cursive method for computing |s−1(π)| for any permutation π. There are far-reaching
applications and generalizations of the Decomposition Lemma that even extend beyond
the realm of stack-sorting. We will briefly mention some of these applications, but due
to space limitations, the only applications for which we provide details are a new proof
of Zeilberger’s formula for W2(n) and the proof of the recurrence for W3(n).

2 The Decomposition Lemma

The plot of a permutation π = π1 · · ·πn is the diagram showing the points (i, πi) ∈ R2

for all 1 ≤ i ≤ n. A hook of π is a rotated L shape connecting two points (i, πi) and
(j, πj) with i < j and πi < πj, as in Figure 1. The point (i, πi) is the southwest endpoint
of the hook, and (j, πj) is the northeast endpoint of the hook. Let SWi(π) be the set of
hooks of π with southwest endpoint (i, πi). For example, Figure 1 shows the plot of the
permutation π = 426315789. The hook shown in this figure is in SW3(π) because its
southwest endpoint is (3, 6); its northeast endpoint is (8, 8).

Suppose π = π1 · · ·πn is not a monotone increasing permutation, and let d∗ be its
largest descent. We say a descent d of π is right-bound if πj < πd for all j ∈ {d+ 1, . . . , d∗}
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Figure 1: The plot of 426315789 along with a single hook.

(in particular, d∗ is right-bound). The descents of 426315789 are 1, 3, and 4, but the only
right-bound descents are 3 and 4.

Let H be a hook of π with southwest endpoint (i, πi) and northeast endpoint (j, πj).
The H-unsheltered subpermutation of π is the permutation πH

U = π1 · · ·πiπj+1 · · ·πn. The
H-sheltered subpermutation of π is πH

S = πi+1 · · ·πj−1. For instance, if π = 426315789 and
H is the hook shown in Figure 1, then πH

U = 4269 and πH
S = 3157. The terms “sheltered”

and “unsheltered” come from the fact that, in applications, the plot of πH
S will lie entirely

below the hook H. In particular, this will be the case if i is a right-bound descent of π.
Notice that if π does not have any right-bound descents, then π is an increasing

permutation and |s−1(π)| is simply a Catalan number by Theorem 1.2.

Theorem 2.1 (Decomposition Lemma [4]). If d is a right-bound descent of a permutation π,
then

|s−1(π)| = ∑
H∈SWd(π)

|s−1(πH
U )| · |s−1(πH

S )|.

The Decomposition Lemma is proven in [4].1

Example 2.2. Let π = 256341789. Using the Decomposition Lemma with the right-bound
descent d = 3 (see Figure 2), we find that

|s−1(π)| = ∑
H∈SW3(π)

|s−1(πH
U )| · |s−1(πH

S )|

= |s−1(25689)| · |s−1(341)|+ |s−1(2569)| · |s−1(3417)|+ |s−1(256)| · |s−1(34178)|
= 42 · 0 + 14 · 2 + 5 · 9 = 73.

Indeed, it follows from Theorem 1.2 that |s−1(σ)| = Cm = 1
m+1(

2m
m ) whenever σ is an

increasing permutation of size m. One can use further applications of the Decomposition
Lemma to see that |s−1(341)| = 0, |s−1(3417)| = 2 and |s−1(34178)| = 9.

1The statement in [4] uses the less general “tail-bound descents” instead of right-bound descents, but
the same proof adapts easily to the more general setting. In any event, the version involving right-bound
descents follows from a much more general result proven in [5].
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Figure 2: Three different decompositions of 256341789. For each of the hooks H in
SW3(π), the H-unsheltered subpermutation of π is represented by blue squares, while
the H-sheltered subpermutation of π is represented by red triangles.

We briefly list some of the extensions and applications of the Decomposition Lemma.

1. In [5], the author has proven a result called the Tree Decomposition Lemma. This
is a vast generalization of the Decomposition Lemma that yields information about
sets of colored binary plane trees called “troupes.” For any permutation π, this
result gives a method to count the decreasing colored binary plane trees whose un-
derlying unlabeled trees belong to a specified troupe and whose postorder readings
are π. The Tree Decomposition Lemma is even further generalized to the Refined
Tree Decomposition Lemma, which takes into account special “insertion-additive”
tree statistics. By specializing the Refined Tree Decomposition Lemma, one can
count 2-stack-sortable permutations and 3-stack-sortable permutations according
to their descent and peak statistics; even for 2-stack-sortable permutations, this is a
new result that appeared originally in [4]. One can also enumerate 2-stack-sortable
permutations and 3-stack-sortable permutations satisfying certain additional con-
ditions. For example, one can impose the condition that the permutations are
alternating and of odd size. As another example, one can impose the condition
that all of the descents of the permutations are also peaks. All of these results can
be proved in a uniform manner from the Refined Tree Decomposition Lemma.

2. The article [5] details an intimate connection between stack-sorting and cumulants
in noncommutative probability theory. This connection allows one to use the com-
binatorics of cumulants in order to derive deep results about stack-sorting. On the
other hand, there is a surprising phenomenon concerning troupes and cumulants
(but not stated in terms of stack-sorting) that can be proved using stack-sorting
(and its generalizations) as a tool. The first step needed to establish these connec-
tions is the Refined Tree Decomposition Lemma.

3. As shown in [5], one can iterate the Decomposition Lemma in order to obtain a
clean proof of a Fertility Formula, which is an explicit formula for the number of
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preimages of a permutation under the stack-sorting map. This Fertility Formula
makes use of combinatorial objects called “valid hook configurations.” The author
has employed this formula to prove numerous new theorems about stack-sorting
(see the references in [4, 5]), uncovering much unexpected enumerative structure.

4. In [6], the Decomposition Lemma is used to prove the “fertility monotonicity”
theorem, which states that |s−1(σ)| ≤ |s−1(s(σ))| for every permutation σ. This
theorem represents the first step toward a law-of-diminishing-returns philosophy
for the stack-sorting map that Bóna has proposed.

5. In [3], the Decomposition Lemma is used to enumerate preimages of various per-
mutation classes under the stack-sorting map. These results provide a new example
of an unbalanced Wilf equivalence, settle a conjecture of Hossain, and allow one to
enumerate permutations sortable via a composition of the stack-sorting map with
either the bubble sort map or the deterministic pop-stack-sorting map.

3 A New Proof of the Formula for W2(n)

Our goal in this section is to give a new proof of the formula W2(n) = 2
(n+1)(2n+1)(

3n
n ),

which was originally proved by Zeilberger in [13]. Define the tail length of a permutation
π = π1 . . . πn ∈ Sn, denoted tl(π), to be the smallest integer ` ∈ {0, . . . , n} such that
πi = i for all i ∈ {n− `+ 1, . . . , n}. For example, we have tl(31245) = 2, tl(31254) = 0,
and tl(12345) = 5. Let

D`(n) = {π ∈ W1(n + `) : tl(π) = `} D≥`(n) = {π ∈ W1(n + `) : tl(π) ≥ `},

B`(n) = |s−1(D`(n))|, and B≥`(n) = |s−1(D≥`(n))|.
Recall also thatW1(m) is the set of 231-avoiding permutations in Sm by Theorem 1.2.

Suppose π ∈ D`(n + 1) is such that πn+1−i = n + 1 (where n ≥ 0). Then n +
1− i is a right-bound descent of π. The Decomposition Lemma (Theorem 2.1) tells us
that |s−1(π)| is equal to the number of triples (H, µ, λ), where H ∈ SWn+1−i(π), µ ∈
s−1(πH

U ), and λ ∈ s−1(πH
S ). Choosing H amounts to choosing the number j ∈ {1, . . . , `}

such that the northeast endpoint of H is (n + 1 + j, n + 1 + j). The permutation π and
the choice of H determine the permutations πH

U and πH
S . On the other hand, the choices

of H and the permutations πH
U and πH

S uniquely determine π. It follows that B`(n + 1),
which is the number of ways to choose an element of s−1(D`(n + 1)), is also the number
of ways to choose j, the permutations πH

U and πH
S , and the permutations µ and λ. Fix a

choice of j.
Because π avoids 231, we know that πH

U and πH
S are permutations of the sets

{1, . . . , n− i} ∪ {n+ 1} ∪ {n+ 2+ j, . . . , n+ `+ 1} and {n− i+ 1, . . . , n+ j} \ {n+ 1},
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respectively. Therefore, choosing πH
U and πH

S is equivalent to choosing their standard-
izations. The standardization of πH

U is in D≥`−j+1(n− i), while the standardization of
πH

S is in D≥j−1(i) (see Figure 3). Any element of D≥`−j+1(n− i) can be chosen as the
standardization of πH

U , and any element of D≥j−1(i) can be chosen as the standardiza-
tion of πH

S . Also, πH
U and πH

S each have the same number of preimages under s as their
standardizations. Combining these facts, we find that the number of choices for πH

U and
µ is |s−1(D≥`−j+1(n− i))| = B≥`−j+1(n− i). Similarly, the number of choices for πH

S and
λ is B≥j−1(i). Hence,

B`(n + 1) =
n

∑
i=1

`

∑
j=1

B≥`−j+1(n− i)B≥j−1(i). (3.1)

Figure 3: The decomposition of π into πH
U and πH

S .

The recurrence (3.1) contains the key combinatorial information needed to prove the
formula for W2(n). The remainder of the proof amounts to a careful manipulation of
generating functions, which we will only sketch. The details of these computations can
be found in [4].

Let
G`(w) = ∑

n≥0
B≥`(n)wn and I(w, z) = ∑

`≥0
G`(w)z`.

Let C(z) = ∑n≥0 Cnzn =
1−
√

1− 4z
2z

be the generating function of the Catalan numbers.

Because B≥0(n) = W2(n) is the total number of 2-stack-sortable permutations in Sn, we
are primarily interested in the generating function

I(w, 0) = G0(w) = ∑
n≥0

B≥0(n)wn = ∑
n≥0

W2(n)wn.
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In [4], the equation (3.1) is used to derive the identity

(I(w, z)− I(w, 0))(I(w, z)− C(z)) =
I(w, z)− C(z)

w
− I(w, z)− I(w, 0)

z
. (3.2)

In [1], Bousquet-Mélou and Jehanne developed a powerful method to handle func-
tional equations such as the one in (3.2); this method is employed in [4] to show that
R(I(w, 0), w) = 0, where

R(v, w) = −1 + 11w + w2 + v3w2 + v2w(2 + 3w) + v(1− 14w + 3w2).

We now consider the power series U(w) defined by U(w) = w(1 + U(w))3. One can
verify that R(1 + U(w)−U(w)2, w) = 0 and deduce that I(w, 0) = 1 + U(w)−U(w)2.
Lagrange inversion then completes the proof that

I(w, 0) = ∑
n≥0

2
(n + 1)(2n + 1)

(
3n
n

)
wn.

As mentioned in the previous section, there are much more general versions of the
Decomposition Lemma, including one that takes into account the descent and peak
statistics. In [4], this generalization was used to find an explicit polynomial R(v, w, x, y)
such that R(Ix,y(w, 0), w, x, y) = 0, where

Ix,y(w, 0) = ∑
n≥0

∑
σ∈W2(n)

wnxdes(σ)+1ypeak(σ)+1.

In [5], the author used the Refined Tree Decomposition Lemma (with only a slight mod-
ification of the argument used above) to enumerate 2-stack-sortable alternating permu-
tations of odd size and 2-stack-sortable permutations in which every descent is a peak.

4 3-Stack-Sortable Permutations

In the previous section, we counted 2-stack-sortable permutations by viewing them as
preimages of 231-avoiding (i.e., 1-stack-sortable) permutations under the stack-sorting
map. In doing so, we had to keep track of the tail lengths of the 231-avoiding permu-
tations under consideration. In this section, we count 3-stack-sortable permutations by
viewing them as preimages of 2-stack-sortable permutations. We will again keep track of
tail lengths, but we will also need an additional new statistic. Given π = π1 · · ·πn ∈ Sn
and a ∈ {0, . . . , n}, we say the open interval (a, a + 1) is a legal space for π if there do not
exist indices i1 < i2 < i3 such that πi3 ≤ a < πi1 < πi2 . Let leg(π) be the number of legal
spaces of π.

For example, if π ∈ Sn, then leg(π) = n + 1 if and only if π avoids 231. The legal
spaces of 145326 are (0, 1), (1, 2), (4, 5), (5, 6), (6, 7), so leg(145326) = 5. Imagine taking
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the plot of a permutation π and adding a new point to the left of all other points. One
can think of the legal spaces of π as the vertical positions where the new point can be
inserted so as to not form a new 2341 pattern. This is relevant for us because of the
following characterization of 2-stack-sortable permutations due to West.

Theorem 4.1 ([12]). A permutation is 2-stack-sortable if and only if it avoids the pattern 2341
and also avoids any 3241 pattern that is not part of a 35241 pattern.

The recurrence in the next theorem provides the desired polynomial-time algorithm
for computing W3(n). In what follows, let B(g)

≥` (n) be the number of 3-stack-sortable
permutations σ ∈ W3(n + `) such that tl(s(σ)) ≥ ` and leg(s(σ)) = `+ g. Let Cn denote
the nth Catalan number.

Theorem 4.2 ([4]). If n ≥ 1, then W3(n) = ∑n+1
g=1 B(g)

≥0 (n). We have B(0)
≥` (n) = 0 and

B(g)
≥` (1) =

{
0, if g 6= 2;
C`+1, if g = 2.

If n, g ≥ 1 and ` ≥ 0, then

B(g)
≥` (n + 1) =

`

∑
j=1

 n

∑
a=2

g−1

∑
b=max{2,g−a}

n−b+1

∑
i=a−1

B(a)
≥j−1(i)B(b)

≥`−j+1(n− i) + B(g−1)
≥j−1 (n)C`−j+1


+B(g−1)
≥`+1 (n).

Proof. The first statement and the fact that B(0)
≥` (n) = 0 are clear from the definitions we

have given. The permutations σ counted by B(g)
≥` (1) are in S`+1 and satisfy tl(s(σ)) ≥ `,

so they must actually satisfy s(σ) = 123 · · · (`+ 1). Since leg(123 · · · (`+ 1)) = `+ 2, the
formula for B(g)

≥` (1) follows from Theorem 1.2.

Now, let B(g)
` (n) be the number of 3-stack-sortable permutations σ ∈ W3(n + `) such

that tl(s(σ)) = ` and leg(s(σ)) = `+ g. Let

D(g)
` (n) = {π ∈ W2(n + `) : tl(π) = `, leg(π) = `+ g} (4.1)

and
D(g)
≥` (n) = {π ∈ W2(n + `) : tl(π) ≥ `, leg(π) = `+ g} (4.2)

so that
B(g)
` (n) = |s−1(D(g)

` (n))| and B(g)
≥` (n) = |s

−1(D(g)
≥` (n))|.
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We have B(g)
≥` (n + 1) = B(g)

` (n + 1) + B(g−1)
≥`+1 (n), so we need to show that

B(g)
` (n + 1) =

n

∑
a=2

g−1

∑
b=max{2,g−a}

n−b+1

∑
i=a−1

`

∑
j=1

B(a)
≥j−1(i)B(b)

≥`−j+1(n− i) +
`

∑
j=1

B(g−1)
≥j−1 (n)C`−j+1.

(4.3)
Suppose π ∈ D(g)

` (n + 1) is such that πn+1−i = n + 1 (where n ≥ 0). The Decom-
position Lemma (Theorem 2.1) tells us that |s−1(π)| is equal to the number of triples
(H, µ, λ), where H ∈ SWn+1−i(π), µ ∈ s−1(πH

U ), and λ ∈ s−1(πH
S ). Choosing H

amounts to choosing the number j ∈ {1, . . . , `} such that the northeast endpoint of
H is (n + 1 + j, n + 1 + j). The permutation π and the choice of H determine the per-
mutations πH

U and πH
S . On the other hand, the choices of H and the permutations πH

U

and πH
S uniquely determine π. It follows that B(g)

` (n + 1), which is the number of ways

to choose an element of s−1(D(g)
` (n + 1)), is also the number of ways to choose j, the

permutations πH
U and πH

S , and the permutations µ and λ. Let us fix a choice of j.
Assume for the moment that i ≤ n− 1, and let r be the largest entry appearing to the

left of n + 1 in π. Because π is 2-stack-sortable, we can use Theorem 4.1 to see that πH
U is

a permutation of the set {1, . . . , n− i− 1}∪ {r, n+ 1}∪ {n+ 2+ j, . . . , n+ `+ 1} and that
πH

S is a permutation of {n − i, . . . , n + j} \ {r, n + 1}. Therefore, choosing πH
U and πH

S
is equivalent to choosing their standardizations and the value of r. The standardization
of πH

S is in D(a)
≥j−1(i) for some a ∈ {2, . . . , i + 1}, while the standardization of πH

U is in

D(b)
≥`−j+1(n− i) for some b ∈ {2, . . . , n− i+ 1}. Once we have chosen a and b, the number

of choices for πH
U , µ, πH

S , λ is B(a)
≥j−1(i)B(b)

≥`−j+1(n− i).
Suppose we have already chosen the value of a. The fact that π avoids 2341 and the

definition of a legal space tell us that there are a possible values of r, say κ1 < · · · < κa
(see Example 4.3 for an illustration of this part of the proof). If we choose r = κm,
then π has a + b − m + 1 + ` legal spaces. We are assuming that leg(π) = ` + g, so
g = a + b−m + 1. It follows that 2 ≤ a ≤ n and max{2, g− a} ≤ b ≤ g− 1. Since a ∈
{2, . . . , i + 1} and b ∈ {2, . . . , n− i + 1}, we also have the constraint a− 1 ≤ i ≤ n− b+ 1.
This explains the expression ∑n

a=2 ∑
g−1
b=max{2,g−a} ∑n−b+1

i=a−1 ∑`
j=1 B(a)

≥j−1(i)B(b)
≥`−j+1(n − i) in

(4.3).
The expression ∑`

j=1 B(g−1)
≥j−1 (n)C`−j+1 in (4.3) comes from the case in which i = n.

In this case, πH
S is in D(g−1)

≥j−1 (n), and πH
U = (n + 1)(n + 2 + j)(n + 3 + j) · · · (n + `+ 1)

is an increasing permutation of size `− j + 1. The number of choices for πH
S and λ is

B(g−1)
≥j−1 (n). The number of choices for µ is |s−1(πH

U )| = C`−j+1.

Example 4.3. Consider the part of the proof of Theorem 4.2 in which we have already
chosen n, g, `, j, i and have assumed i ≤ n− 1. Suppose n = 8, ` = 5, j = 2, and i = 5.
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If we choose the standardization of πH
U to be 24315678 and choose the standardization

of πH
S to be 315246, then a = leg(315246)− (j− 1) = 5 and b = leg(24315678)− (`−

j + 1) = 4. The green squares in Figure 4 represent the possible choices for r, which are
κ1 = 4, κ2 = 5, κ3 = 7, κ4 = 8, and κ5 = 9. If r = κm, then we can refer to this figure to
see that leg(π) = 15−m = `+ a + b−m + 1. Hence, the choice of r is determined by g.

Figure 4: The decomposition of π into πH
U and πH

S with the possible choices for r.

In [4], the author used a generalization of the Decomposition Lemma to find a recur-
rence that counts 3-stack-sortable permutations according to the statistics des and peak.
In [5], he obtained recurrences that enumerate 3-stack-sortable alternating permutations
of odd size and 3-stack-sortable permutations in which all descents are peaks.

5 Data Analysis

It is known that for each t ≥ 1, the limit lim
n→∞

Wt(n)1/n exists and is equal to sup
n≥1

Wt(n)1/n.

Therefore, one can obtain lower bounds for this limit by computing values of Wt(n). In
[4], the author computed W3(174) and concluded that lim

n→∞
W3(n)1/n ≥ 8.6597; this was

the first nontrivial lower bound for this limit. Bóna had conjectured that W3(n) ≤ (4n
n )

and that the sequence (W3(n))n≥1 is log-convex; the computations of W3(n) for 1 ≤ n ≤
174 in [4] allowed the author to conclude that these two conjectures cannot both be true.

More recently, Elvey Price, Guttmann, and the current author [7] have modified the
argument given in Section 4 in order to obtain a functional equation satisfied by the
generating function that counts 3-stack-sortable permutations; this was used to compute
W3(n) for 1 ≤ n ≤ 1000. As a corollary, it was shown that lim

n→∞
W3(n)1/n ≥ 9.4854,

which fully disproves Bóna’s conjecture that W3(n) ≤ (4n
n ). This new data was also used
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to give very precise conjectures about the asymptotic nature of the sequence (W3(n))n≥1;
in particular, it was conjectured that lim

n→∞
W3(n)1/n ≈ 9.69963634535.

Another outstanding conjecture in the field of stack-sorting, also due to Bóna, states
that for all n, t ≥ 1, the polynomial ∑σ∈Wt(n) xdes(σ)+1 has only real roots. So far, this
conjecture is only known to be true when t ≤ 2 or t ≥ n − 2. Using the previously-
mentioned recurrence for counting 3-stack-sortable permutations according to the statis-
tics des and peak (specialized so as to ignore the peak statistic), the author found [4] that
this real-rootedness conjecture holds when t = 3 and n ≤ 43.

As explained more precisely in [4], Bóna has also conjectured that the numbers W3(n)
are “rarely odd.” However, the values of W3(n) for 1 ≤ n ≤ 174 suggest that this
conjecture is false.

6 Lower Bounds for t-Stack-Sortable Permutations

This final section gives the first nontrivial lower bound for lim
n→∞

Wt(n)1/n when t ≥ 4.

Theorem 6.1 ([4]). For every t ≥ 1, we have

lim
n→∞

Wt(n)1/n ≥ (
√

t + 1)2.

Proof. Let Γt be the set of all κ = κ1 · · · κt+2 ∈ St+2 such that κt+1 = t + 2 and κt+2 = 1.
Let Avn(Γt) be the set of permutations in Sn that avoid all of the patterns in Γt. After
applying a dihedral symmetry to the permutations in Γt, we can use Kremer’s main
result in [9] to see that

∑
n≥t
|Avn(Γt)|xn = (t− 1)!xt−2 1 + (t− 1)x−

√
1− 2(t + 1)x + (t− 1)2x2

2
. (6.1)

Some basic singularity analysis now shows that lim
n→∞
|Avn(Γt)|1/n = (

√
t + 1)2.

We will prove by induction that Avn(Γt) ⊆ Wt(n). Since Γ1 = {231}, this is certainly
true for t = 1 (by Theorem 1.2). Now suppose that t ≥ 2 and that Avn(Γt−1) ⊆ Wt−1(n).
Choose a permutation π ∈ Sn \Wt(n). This means that s(π) 6∈ Wt−1(n), so s(π) contains
a permutation in Γt−1. In other words, there exist entries b1, . . . , bt−1, c, a that appear in
this order in s(π) and satisfy a < bj < c for all j ∈ {1, . . . , t − 1}. Because c appears
to the left of a in s(π), it follows from the definition of s that there must be an entry
d > c that appears to the right of c and to the left of a in π. The entries b1, . . . , bt−1 must
appear to the left of d in π since they would appear to the right of c in s(π) otherwise.
The subpermutation of π formed by the entries a, b1, . . . , bt−1, c, d has a standardization
that is in Γt, so π 6∈ Avn(Γt). This completes the induction.
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Smith [10] investigated a variant of the stack-sorting map known as the “left-greedy
algorithm.” Let Ŵt(n) be the set of permutations in Sn that can be sorted by t stacks
in series using the left-greedy algorithm (see [10] for definitions). Smith proved that
Wt(n) ⊆ Ŵt(n) and lim

n→∞
|Ŵt(n)|1/n ≥ t + 1. The next corollary improves this estimate.

Corollary 6.2 ([4]). For every t ≥ 1, we have lim
n→∞
|Ŵt(n)|1/n ≥ (

√
t + 1)2.
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