
Séminaire Lotharingien de Combinatoire 85B (2021) Proceedings of the 33rd Conference on Formal Power
Article #10, 12 pp. Series and Algebraic Combinatorics (Ramat Gan)

Type cones of permutree fans

Doriann Albertin∗1, Vincent Pilaud†2, and Julian Ritter‡3

1LIGM, Université Gustave Eiffel, Champs-sur-Marne, France
2CNRS & LIX, École Polytechnique, Palaiseau, France
3LIX, École Polytechnique, Palaiseau, France

Abstract. Permutreehedra are polytopes that interpolate between the permutahedron,
the associahedron and the cube. They were constructed as removahedra, i.e. by deleting
inequalities in the facet description of the classical permutahedron. We investigate the
type cone (the space of polytopal realizations) of permutree fans and prove that this
removahedral construction works starting from any realization of the braid fan.

Résumé. Les permutarbrèdres sont des polytopes qui interpolent entre le permutaè-
dre, l’associaèdre et le cube. Ils sont construits comme des enlevoèdres, i.e. en supp-
rimant des inégalités de la description par facettes du permutaèdre classique. Nous
étudions le cône de type (l’espace de toutes les réalisations polytopales) des éventails
de permutarbres et nous montrons que cette construction par suppression de facettes
fonctionne en partant de toute rÃl’alisation de l’éventail de tresses.

Keywords: Deformed permutahedra, removahedra, permutrees, type cones

1 Introduction

Deformed permutahedra (or generalized permutahedra [15, 16]) form a fundamental family
of polytopes whose geometry is closely connected to the combinatorics of permutations
and posets on [n]. A polytope is a deformed permutahedron if its normal fan coarsens
the braid fan, or equivalently if it can be obtained from the permutahedron Permn by
moving facets orthogonally to their normal vectors and without passing a vertex. Pro-
totypical examples of deformed permutahedra include the permutahedron Permn itself
and the associahedron Asson of [21, 7]. In fact, the associahedron Asson belongs to a
subclass of deformed permutahedra called removahedra [12]: it is obtained by deleting
inequalities in the facet description of the permutahedron Permn. This removahedral
property is crucial to extend the construction of [21, 7] to generalized associahedra [4,
5], permutreehedra [13], and accordiohedra [8]. Not all deformed permutahedra (not
even all quotientopes [14, 11]) are removahedra, since it is sometimes inevitable to move
facets, not only to remove them.
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Permutrees are oriented trees on [n] where each node has one or two parents and one
or two children, and with a local condition at each node similar to the binary search
tree condition. They were introduced in [13] to generalize and interpolate between
permutations and binary trees, and explain the combinatorial, geometric and algebraic
similarities between them. For any decoration δ, there is a simple rotation operation on
δ-permutrees, and the rotation graph is the Hasse diagram of the δ-permutree lattice,
which generalizes the weak order on permutations and the Tamari lattice on binary
trees. This rotation graph is realized geometrically by the δ-permutree fan Fδ and the
δ-permutreehedron PTδ of [13], obtained as a removahedron following [21, 7, 4].

The motivation of this paper is a more general removahedral construction for per-
mutreehedra. Indeed, we show that, for any decoration δ, the δ-permutree fan is the
normal fan of a polytope obtained by deleting inequalities in the facet description of
any polytope whose normal fan is the braid fan, not necessarily the classical permutahe-
dron Permn. This statement is based on the understanding of the inequalities governing
the facet heights that ensure to obtain a polytopal realization of the permutree fan. These
inequalities, given by pairs of adjacent cones of the fan and known as wall-crossing in-
equalities, define the space of all realizations of the fan. This space of realizations is a
polyhedral cone called type cone [9], whose closure is called deformation cone [15, 16]. For
instance, the deformation cone of the permutahedron Permn is the space of submodular
functions, and corresponds to all deformed permutahedra. Our main contribution is a
combinatorial description of the facets of the type cone of any permutree fan, providing
a complete description of all polytopal realizations of the permutree fans. In particular,
we obtain summation formulas for the number of facets of the type cones of permutree
fans, leading to a characterization of the permutree fans whose type cone is simplicial.
As advocated in [10], this property is interesting because it leads on the one hand to a
simple description of all polytopal realizations of the fan in the kinematic space [2], and
on the other hand to canonical Minkowski sum decompositions of these realizations.

These results open the door to a description of the type cone of the quotient fan F≡
for any lattice congruence ≡ of the weak order [17, 18], not only for permutree congru-
ences. Preliminary computations however indicate that the combinatorics of the facet
description of the type cone of an arbitrary quotient fan is much more intricate than
that of permutree fans. In particular, we show in [1] that if a lattice congrence ≡ is not a
permutree congruence, then its quotient fan F≡ is not the normal fan of a removahedron.

This extended abstract is organized as follows. Section 2 presents some needed ma-
terial, including brief recollections of type cones, of the geometry of permutations, and
of permutrees. Section 3 describes the wall-crossing inequalities of the permutree fans,
from which the general removahedral construction follows. Finally, Section 4 describes
the facet defining inequalities of the type cones of the permutree fans, and the kinematic
permutreehedra derived when the type cone is simplicial. All proofs, omitted here for
space reasons, are based on the combinatorics of permutrees and can be found in [1].
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2 Preliminaries

Type cone. Fix an essential complete simplicial fan1 F in Rn. Let G be the N × n-matrix
whose rows are (representative vectors for) the N rays of F . For any vector h ∈ RN, we
define the polytope2 Ph := {x ∈ Rn | Gx ≤ h}. Unfortunately, the fan F is not necessar-
ily the normal fan3 of Ph. The vectors h for which this holds are characterized by the
wall-crossing inequalities given in the next statement (see e.g. [3, Lem. 2.1]).

Proposition 2.1. Let F be an essential complete simplicial fan in Rn. Then the following are
equivalent for any height vector h ∈ RN:

1. The fan F is the normal fan of the polytope Ph := {x ∈ Rn | Gx ≤ h}.
2. For any two adjacent maximal cones R≥0R and R≥0R′ of F with R r {r} = R′ r {r′},

we have ∑s∈R∪R′αR,R′(s) hs > 0, where ∑s∈R∪R′αR,R′(s) s = 0 is the unique linear
dependence among the rays of R ∪ R′ such that αR,R′(r) + αR,R′(r

′) = 2.

Definition 2.2 ([9]). The type cone of F is the cone TC(F ) of all polytopal realizations of F :

TC(F ) :=
{

h ∈ RN
∣∣∣ F is the normal fan of Ph

}
=
{

h ∈ RN
∣∣∣ ∑

t∈R∪S
αR,S(t) ht > 0

for any adjacent chambers
R≥0R and R≥0S of F

}
.

Note that the type cone TC(F ) is an open cone. We denote by TC(F ) the closure
of TC(F ), and call it the closed type cone of F . If F is the normal fan of the polytope P,
then TC(F ) is the deformation cone of P in [15, 16].

Also observe that the lineality space of the type cone TC(F ) has dimension n (it
is invariant by translation in GRn). In particular, the type cone is simplicial when it
has N− n facets. While very particular, the fans for which the type cone is simplicial are
very interesting as all their polytopal realizations can be described as follows.

Proposition 2.3 ([10, Coro. 1.11]). Let F be an essential complete simplicial fan in Rn with N
rays, with a simplicial type cone TC(F ). Let K be the (N − n)× N-matrix whose rows are the
inner normal vectors of the facets of TC(F ). Then the polytope Q(u) :=

{
z ∈ RN

≥0

∣∣ Kz = u
}

is a realization of the fan F for any positive vector u ∈ RN−n
>0 . Moreover, the polytopes Q(u)

for u ∈ RN−n
>0 describe all polytopal realizations of F .

1A polyhedral cone is the positive span of finitely many vectors or equivalently, the intersection of finitely
many closed linear half-spaces. The faces of a cone are its intersections with its supporting hyperplanes.
A fan F is a set of polyhedral cones such that any face of a cone of F belongs to F , and any two cones
of F intersect along a face of both. A fan is essential if the intersection of its cones is the origin, complete if
the union of its cones covers Rn, and simplicial if all its cones are generated by dimension many rays.

2A polytope is the convex hull of finitely many points or equivalently, a bounded intersection of finitely
many closed affine half-spaces. The faces of a polytope are its intersections with its supporting hyperplane.
The vertices (resp. edges, resp. facets) are the faces of dimension 0 (resp. dimension 1, resp. codimension 1).

3The normal cone of a face F of a polytope P is the cone generated by the normal vectors of the facets
of P containing F. The normal fan of P is the set of normal cones of all its faces.
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Permutahedron, braid arrangement, and submodular inequalities. In this paper, we
consider more specifically the classical permutahedron and braid fan.

Definition 2.4. The permutahedron is the polytope Permn ⊂ Rn defined equivalently as
• the convex hull of the points ∑i∈[n] i eσi for all permutations σ ∈ Sn,
• the intersection of the hyperplane H :=

{
x ∈ Rn

∣∣ ∑i∈[n] xi = (n+1
2 )
}

with the halfspaces{
x ∈ Rn

∣∣ ∑i∈I xi ≥ (|I|+1
2 )
}

for all proper subsets ∅ 6= I ( [n].

Definition 2.5. The braid fan is the fan Fn in H :=
{

x ∈ Rn
∣∣ ∑i∈[n] xi = 0

}
with

• a chamber C(σ) := {x ∈H | xσ1 ≤ xσ2 ≤ · · · ≤ xσn} for each permutation σ of Sn,
• a ray C(I) :=

{
x ∈ H

∣∣ xi1 = · · · = xip ≤ xj1 = · · · = xjn−p

}
for each sub-

set ∅ 6= I ( [n], where I = {i1, . . . , ip} and [n]r I = {j1, . . . , jn−p}.
Proposition 2.6. The braid fan Fn is the normal fan of the permutahedron Permn.

The chamber C(σ) has rays C(σ([k])) for k ∈ [n]. Two chambers C(σ) and C(τ) are
adjacent if and only if σ and τ differ by transposition of two consecutive entries.

We use the representative vector r(I) := |I|1− n1I in C(I), where 1 := ∑i∈[n] ei and
1I := ∑i∈I ei. We also set r(∅) = r([n]) = 0 by convention. These vectors satisfy the linear
dependence r(I) + r(J) = r(I ∩ J) + r(I ∪ J) for any I, J ⊆ [n]. This yields the following
classical description of the type cone of the braid fan Fn (or deformation cone of the
permutahedron Permn [15, 16]). We identify a vector h with coordinates indexed by the
rays of the braid fan Fn with a height function h : 2[n] → R≥0 with h(∅) = h([n]) = 0.

Proposition 2.7. The closed type cone of the braid fan Fn (or deformation cone of the permutahe-
dron Permn) is (isomorphic to) the set of functions h : 2[n] → R≥0 satisfying h(∅) = h([n]) = 0
and the submodular inequalities h(I) + h(J) ≥ h(I ∩ J) + h(I ∪ J) for any I, J ⊆ [n]. The facets
of TC(Fn) correspond to those submodular inequalities where |I r J| = |J r I| = 1.

For instance, the height function for the permutahedron Permn is given by

h◦(I) = max
σ∈Sn

〈 r(I) | σ 〉 = |I|n(n + 1)/2− n|I|(|I|+ 1)/2 = n|I|(n− |I|)/2.

It is clearly submodular since h◦(I) + h◦(J)− h◦(I ∩ J)− h◦(I ∪ J) = 2n|I r J||J r I| ≥ 0.
The polytopes in the closed type cone TC(Fn) are known as deformed permutahedra,

or generalized permutahedra [15]. They are characterized as those polytopes whose normal
fan coarsen the braid fan, or equivalently as those polytopes obtained from the permu-
tahedron Permn by moving facets without passing a vertex [15, 16]. In this paper, we are
interested in the following special way of moving facet inequalities.

Definition 2.8 ([12]). A removahedron is a deformed permutahedron obtained by deleting in-
equalities in the facet description of the permutahedron Permn. In other words, it can be written
as
{

x ∈ H
∣∣ ∑i∈I xi ≤ h◦(I) for all I ∈ I

}
for some collection I of proper subsets of [n].

Examples of removahedra include the permutahedron Permn itself (remove no in-
equality), the associahedron Asson (remove the inequalities that do not correspond to
intervals), and more generally the permutreehedra [13] described below.
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Permutrees. In an oriented tree T, we call parents (resp. children) of a node j the out-
going (resp. incoming) neighbors of j, and ancestor (resp. descendant) subtrees of j the
connected components of the parents (resp. children) of j in T r {j}.
Definition 2.9 ([13]). A permutree is an oriented tree T with nodes [n], such that
• any node has either one or two parents and either one or two children, and
• if j has two parents (resp. children), then i < j < k for every i in the left ancestor (resp. de-

scendant) subtree of j and every k in the right ancestor (resp. descendant) subtree of j.
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Figure 1: Four examples of permutrees. While the first is generic, the last three use spe-
cific decorations corresponding to permutations, binary trees, and binary sequences.

Figure 1 provides four examples of permutrees, with the following conventions:
• All edges are oriented bottom-up and the nodes appear in order from left to right.
• We decorate the nodes with , , , depending on their number of par-

ents and children. The sequence of these symbols is the decoration δ of T. We
set δ− :=

{
i ∈ [n]

∣∣ δi = or
}

and δ+ :=
{

i ∈ [n]
∣∣ δi = or

}
.

In the sequel, we fix a decoration δ and consider only δ-permutrees. Figure 1 illustrates
that δ-permutrees extend and interpolate between permutations when δ = n, binary
trees when δ = n, and binary sequences when δ = n.

Remark 2.10. There is a simple rotation operation on δ-permutrees and the graph of right rota-
tions is the Hasse diagram of the δ-permutree lattice. This lattice specializes to the weak order
when δ = n, the Tamari lattice when δ = n, the Cambrian lattices [19] when δ ∈ { , }n

and the boolean lattice when δ = n. In general, it is the quotient of the weak order by the
δ-permutree congruence, whose equivalence classes are defined by the sets of linear extensions of
δ-permutrees. The δ-permutree fan and δ-permutreehedron defined below are geometric realiza-
tions of the rotation graph. We skip the lattice perspective to focus on the geometric perspective.

Deleting an oriented edge e of a permutree T, we obtain a partition [n] = I t J into
the connected component I of the source of e and the connected component J of the
target of e. We say that such a partition is an edge cut of T and write it (I ‖ J). We denote
by Iδ the collection of proper subsets ∅ 6= I 6= [n] that define an edge cut (I ‖ [n]r I) in
at least one δ-permutree. These subsets will be characterized in Proposition 4.1.
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Figure 2: Stereographic projections of the permutree fans F and F .

We now recall the constructions of the δ-permutree fan and δ-permutreehedron [13].

Definition 2.11 ([13]). The δ-permutree fan is the fan Fδ in H with
• a chamber C(T) for each δ-permutree T, which can be defined either as the union of the

chambers C(σ) for all linear extensions σ of T, or by the inequalities xi ≤ xj for all
edges i→ j in T, or as the cone generated by |I|1J − |J|1I for all edge cuts (I ‖ J) of T,
• a ray C(I) for each I ∈ Iδ.

See Figure 2. The δ-permutree fan Fδ specializes to the braid fan when δ = n, the
(type A) Cambrian fans of N. Reading and D. Speyer [19, 20] when δ ∈ { , }n, and the
fan defined by the hyperplane arrangement xi = xi+1 for each i ∈ [n− 1] when δ = n.

Definition 2.12 ([13]). The δ-permutreehedron PTδ is the polytope defined equivalently as:
• the convex hull of the points ∑j∈[n]

(
1 + d(T, j) + `(T, j) r(T, j)− `(T, j) r(T, j)

)
ej for

all δ-permutrees T, where d(T, j), `(T, j), r(T, j), `(T, j), r(T, j) respectively denote the
numbers of nodes in the descendant, left descendant, right descendant, left ancestor, right
ancestor subtrees of j in T,
• the intersection of the hyperplane H :=

{
x ∈ Rn

∣∣ ∑i∈[n] xi = (n+1
2 )
}

with the halfspaces{
x ∈ Rn

∣∣ ∑i∈I xi ≥ (|I|+2
2 )
}

for all I in Iδ.

See Figure 3. The δ-permutreehedron PTδ specializes to the permutahedron Permn
when δ = n, J.-L. Loday’s associahedron Asson [21, 7] when δ = n, C. Hohlweg and
C. Lange’s associahedra Assoδ [4, 6] when δ ∈ { , }n, and the parallelepiped with
directions ei − ei+1 for each i ∈ [n− 1] when δ = n.

Finally, the following statement relates Definitions 2.11 and 2.12 as expected.

Proposition 2.13 ([13]). The δ-permutree fanFδ is the normal fan of the δ-permutreehedronPTδ.
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Figure 3: The permutreehedra PT and PT .

3 Permutreehedra and removahedra

Definition 2.12 implies that the δ-permutreehedron PTδ is the removahedron RemoIδ
for

the set Iδ (that will be characterized in Proposition 4.1). This intriguing property is in
fact not a coincidence, as it extends to the following stronger property.

Theorem 3.1. For any decoration δ, deleting the inequalities corresponding to the proper subsets
not in Iδ in the facet description of any polytope whose normal fan is the braid fan Fn yields a
polytope whose normal fan is the δ-permutree fan Fδ.

Remark 3.2. In view of Theorem 3.1, it is natural to wonder whether this removahedron con-
struction would enable to realize any lattice quotient of the weak order [17]. However, it turns out
that there is a strong dichotomy between the permutree congruences and the other congruences of
the weak order. Namely, we show in [1, Thm. 21] that if a lattice congrence ≡ is not a permutree
congruence, then its quotient fan F≡ is not the normal fan of the corresponding removahedron.

We obtain Theorem 3.1 as a consequence of the following observation concerning the
wall-crossing inequalities of the δ-permutree fan Fδ.

Proposition 3.3. Consider two adjacent chambers R≥0R and R≥0S of the δ-permutree fan Fδ

with R r S = {r(I)} and S r R = {r(J)}. Then the rays r(I ∩ J) and r(I ∪ J) are also rays
of the δ-permutree fan Fδ and belong to R ∩ S. Therefore, all wall-crossing inequalities of the
δ-permutree fan Fδ are of the form h(I) + h(J) > h(I ∩ J) + h(I ∪ J), with h(∅) = h([n]) = 0
by convention. Thus, any submodular function belongs to the type cones of all permutree fans.

Our next section is devoted to the description of those wall-crossing inequalities
defining the facets of the type cone TC(Fδ).
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4 Type cones of permutree fans

In this section, we provide a complete facet description of the type cone TC(Fδ) of the
δ-permutree fan Fδ. As an immediate corollary of Proposition 3.3, the linear dependence
between the rays of two adjacent chambers C = R≥0R and C′ = R≥0S of the δ-permutree
fan Fδ with R r S = {r} and S r R = {s} only depend on the rays r and s, not on
the chambers C and C′. This property is called unique exchange relation property in [10]
and allows to describe the type cone by inequalities associated with exchangeable rays
rather than with walls. Our combinatorial description of the type cone TC(Fδ) of the
δ-permutree fan Fδ thus proceeds in three steps. Namely, we identify:
• the subsets of [n] corresponding to rays of the δ-permutree fan Fδ (Proposition 4.1),
• the pairs of rays that are exchangeable in the δ-permutree fan Fδ (Proposition 4.7),
• the pairs of exchangeable rays that define a facet of TC(Fδ) (Proposition 4.13).

These characterizations also enable us to derive explicit summation formulas that count
the number of rays of Fδ, pairs of exchangeable rays of Fδ, and facets of the type
cone TC(Fδ). We will use these formulas to determine the decorations δ for which the
type cone TC(Fδ) is simplicial (Corollary 4.20), and derive in that case an explicit em-
bedding of all δ-permutreehedra in the kinematic space (Corollary 4.21). We start with
the characterization of the rays of the δ-permutree fan Fδ. Recall that for a decoration δ,
we defined δ− :=

{
i ∈ [n]

∣∣ δi = or
}

and δ+ :=
{

i ∈ [n]
∣∣ δi = or

}
.

Proposition 4.1. The following conditions are equivalent for a proper subset ∅ 6= I 6= [n]:
• C(I) is a ray of the δ-permutree fan Fδ,
• I defines an edge cut (I ‖ [n]r I) in at least one δ-permutree,
• for all a < b < c, if a, c ∈ I then b /∈ δ− r I, and if a, c /∈ I then b /∈ δ+ ∩ I.

Example 4.2. In Figure 2, the rays of F correspond to the subsets 1, 2, 3, 4, 12, 13, 23,
34, 123, 134, 234 while the rays of F correspond to the subsets 1, 4, 12, 34, 123, 124, 234.

Example 4.3. Specializing Proposition 4.1, we recover the following classical descriptions:
• if δ = n, the rays of the braid fan F n are all proper subsets ∅ 6= I ( [n],
• if δ = n, the rays of F n are all proper intervals [i, j] of [n], (equivalently, one can think

of the interval [i, j] as corresponding to the internal diagonal (i − 1, j + 1) of a polygon
with vertices labeled 0, . . . , n + 1),
• if δ = n, the rays of F n are all proper initial intervals [1, i] or final intervals [i, n].

Corollary 4.4. The number ρ(δ) of rays of the δ-permutree fan Fδ is

ρ(δ) = n− 1 + ∑
1≤i<j≤n

∀ i<k<j, δk 6=

2|{i<k<j | δk= }|.

Example 4.5. In Figure 2, we have ρ( ) = 11 and ρ( ) = 7.



Type cones of permutree fans 9

Example 4.6. Specializing the formula of Corollary 4.4, we recover the following numbers:
• if δ = n, the braid fan F n has 2n − 2 rays,
• if δ = n, the fan F n has (n+1

2 )− 1 rays (equalling the number of internal diagonals of
the (n + 2)-gon),
• if δ = n, the fan F n has 2n− 2 rays.

We now identify the pairs of exchangeable rays of the δ-permutree fan Fδ. We con-
sider two subsets I, J ∈ Iδ as characterized in Proposition 4.1.

Proposition 4.7. The rays r(I) and r(J) are exchangeable in the δ-permutree fan Fδ if and only
if, up to swapping the roles of I and J,

(1) i := max(I r J) < min(J r I) =: j,
(2) I r J = {i} or δi 6= and J r I = {j} or δj 6= ,
(3) ]i, j[ ∩ δ− ⊆ I ∩ J and ]i, j[ ∩ δ+ ∩ I ∩ J = ∅.

Example 4.8. In Figure 2, the pairs of exchangeable rays of F correspond to the pairs of
subsets {1, 2}, {1, 3}, {1, 34}, {12, 13}, {12, 134}, {12, 23}, {12, 234}, {123, 134}, {123, 234},
{123, 4}, {13, 23}, {13, 34}, {13, 4}, {134, 234}, {2, 3}, {2, 34}, {23, 34}, {23, 4}, {3, 4},
while the pairs of exchangeable rays of F correspond to the pairs of subsets {1, 234},
{12, 34}, {12, 4}, {123, 124}, {123, 4}, {124, 34}.

Example 4.9. Specializing Proposition 4.7, we recover that the pairs of exchangeable rays in Fδ

correspond to the pairs of proper subsets {I, J} where
• if δ = n, we have I = K ∪ {i} and J = K ∪ {j} for 1 ≤ i < j ≤ n and K ⊆ [n]r {i, j},
• if δ = n, we have I = [h, j[ and J = ]i, k] for some 1 ≤ h ≤ i < j ≤ k ≤ n, (equiva-

lently, the internal diagonals (h− 1, j) and (i, k + 1) of the (n + 2)-gon intersect),
• if δ = n, we have I = [1, i] and J = ]i, n] for some 1 ≤ i < n.

Corollary 4.10. The number χ(δ) of pairs of exchangeable rays in the δ-permutree fan Fδ is

χ(δ) = ∑
1≤i<j≤n

∀ i<k<j, δk 6=

Ω(δ1 . . . δi−1)
δi 6= · 2|{i<k<j | δk= }| ·Ω(δn . . . δj+1)

δj 6= ,

where Ω(ε) = 1 and Ω(δ1 . . . δk) =


2 ·Ω(δ1 . . . δk−1) if δk = ,
1 + Ω(δ1 . . . δk−1) if δk ∈ { , },
2 if δk = .

Example 4.11. In Figure 2, we have χ( ) = 19 and χ( ) = 6.

Example 4.12. Specializing the formula of Corollary 4.10, we recover the following numbers:
• when δ = n, the braid fan F n has 2n−2(n

2) pairs of exchangeable rays,
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• when δ = n, the fan F n has (n+2
4 ) pairs of exchangeable rays (equalling the number of

quadruples of vertices of the (n + 2)-gon),
• when δ = n, the fan F n has n− 1 pairs of exchangeable rays.

In view of the unique exchange property of the δ-permutree fan Fδ, each pair of
exchangeable rays of Fδ yields a wall-crossing inequality for the type cone TC(Fδ).
However, not all pairs of exchangeable rays yield facet-defining inequalities of TC(Fδ).
The characterization of the facets of TC(Fδ) is very similar to that of the exchangeable
rays, only point (ii) slightly differs.

Proposition 4.13. The rays r(I) and r(J) define a facet of the type cone TC(Fδ) if and only if,
up to swapping the roles of I and J,

(1) i := max(I r J) < min(J r I) =: j,
(2) I r J = {i} or δi = and J r I = {j} or δj = ,
(3) ]i, j[ ∩ δ− ⊆ I ∩ J and ]i, j[ ∩ δ+ ∩ I ∩ J = ∅.

Example 4.14. In Figure 2, the facets of the type cone TC(F ) correspond to the pairs of
subsets {1, 2}, {1, 3}, {12, 13}, {12, 23}, {123, 134}, {123, 234}, {13, 23}, {13, 34}, {134, 234},
{2, 3}, {23, 34}, {3, 4}, while the facets of the type cone TC(F ) correspond to the pairs
of subsets {1, 234}, {12, 4}, {123, 124}, {124, 34}.

Example 4.15. Specializing Proposition 4.13, we recover that all pairs of exchangeable rays
of Fδ described in Example 4.9 define facets of the type cone TC(Fδ) when δ = n or δ = n.
In contrast, when δ = n, only the pairs of intervals {[i, j[, ]i, j]} for some 1 ≤ i < j ≤ n
correspond to facets of TC(F n) (equivalently, the internal diagonals (i− 1, j) and (i, j + 1) of
the (n + 2)-gon that just differ by a shift).

Corollary 4.16. The number φ(δ) of facets of the type cone TC(Fδ) of the δ-permutree fan Fδ is

φ(δ) = ∑
1≤i<j≤n

∀ i<k<j, δk 6=

Ω(δ1 . . . δi−1)
δi= · 2|{i<k<j | δk= }| ·Ω(δn . . . δj+1)

δj= ,

where Ω(δ1 . . . δk) is defined inductively as in Corollary 4.10.

Example 4.17. In Figure 2, we have φ( ) = 12 and φ( ) = 4.

Example 4.18. Specializing the formula of Corollary 4.16, we recover the following numbers:
• when δ = n, the type cone TC(F n) has 2n−2(n

2) facets,
• when δ = n, the type cone TC(F n) has (n

2) facets (equalling the number of squares of
the form (i− 1, i, j, j + 1) in the (n + 2)-gon),
• when δ = n, the type cone TC(F n) has n− 1 facets.

Corollary 4.19. If δ∈{ , , }n, we have φ(δ) =
∣∣{1 ≤ i < j ≤ n

∣∣ ∀ i < k < j, δk 6=
}∣∣.
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Using Corollaries 4.4 and 4.16, it is now immediate to characterize the decorations δ

for the type cone TC(Fδ) is simplicial, i.e. for which the number ρ(δ) of rays of Fδ and
the number φ(δ) of facets of TC(Fδ) satisfy the equality φ(δ) = ρ(δ) + n− 1.

Corollary 4.20. The type cone TC(Fδ) is simplicial if and only if δk 6= for any k ∈ ]1, n[.

Applying Proposition 2.3, we obtain the following explicit realizations of the δ-
permutree fans in the kinematic space [2] when δ ∈ { , , }n. To simplify our
statement, we assume that δ1 = δn = (this assumption does not lose generality as
the decorations δ1 and δn are irrelevant in all constructions). Consider the sets

F :=
{

1 ≤ i < j ≤ n
∣∣ ∀ i < k < j, δk 6=

}
and R := {0, 1} × [n]2 × {0, 1}

and define pε
i,j and qε

i,j for (i, j) ∈ F and ε ∈ {+,−} by

pε
i,j :=

{
min

(
{j} ∪

(
]i, j[ ∩ δε

))
− 1 if i ∈ δε,

i− 1 if i /∈ δε,
qε

i,j :=

{
max

(
{i} ∪

(
]i, j[ ∩ δε

))
+ 1 if j ∈ δε,

j + 1 if j /∈ δε.

Using these notations, we obtain the following realizations of the δ-permutree fan.

Corollary 4.21. Let δ ∈ { , , }n with δ1 = δn = , and the notations introduced above.
Then, for any u ∈ RF

>0, the polytope Qδ(u) defined by{
z ∈ RR

≥0

∣∣∣∣∣ z(`, p, q, r) = 0 if (p, q) /∈ F, z(`, p, q, r) = z(`′, p, q, r′) if p + 1 6= q, and ∀ (i, j) ∈ F,
z(1, p+i,j, q−i,j, 0)+ z(0, p−i,j, q+i,j, 1)− z(i/∈δ−, p−i,j+1, q−i−1,j, j/∈δ−)− z(i∈δ+, p+i,j+1, q+i−1,j, j∈δ+)= u(i, j)

}
is a kinematic δ-permutreehedron, whose normal fan is affinely equivalent to the the δ-permutree
fan Fδ. Moreover, the polytopes Qδ(u) for u ∈ RF

>0 describe all polytopal realizations of the
δ-permutree fan Fδ.

Example 4.22. Specializing the construction of Corollary 4.21, we obtain:
• when δ = n−2 , we have

p−i,j =

{
j− 1 if i = 1,
i− 1 if i 6= 1,

p+i,j = i, q−i,j =

{
i + 1 if j = n,
j + 1 if j 6= n,

and q+i,j = j,

so that the polytope Qδ(u) is affinely equivalent to the kinematic associahedron of [2]:{
y ∈ R([0,n+1]

2 )

∣∣∣∣∣ y ≥ 0, y(i, j) = 0 if i + 1 = j, y(0,n+1) = 0, and

y(i, j+1)+ y(i−1, j)− y(i−1, j+1)− y(i, j)= u(i, j) for all (i, j) ∈ ([n]2 )

}
.

(The map is given by y(0, j) = z(1, j−1, j, 0), y(i, n+1) = z(0, i, i+1, 1) and y(i, j) = z(`, i, j, r) for
any `, r ∈ {0, 1}.)
• when δ = n, we have p−i,j = p+i,j = i and q−i,j = q+i,j = j, so that the polytope Qδ(u) is

affinely equivalent to the following kinematic cube:{
y ∈ R{0,1}×[n−1]

∣∣∣ y ≥ 0 and y(0, i)+ y(1, i)= u(i, i+1) for all i ∈ [n− 1]
}

(The map is given by y(0, i) = z(0, i, i+1, 1) and y(1, i) = z(1, i, i+1, 0).)
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