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Abstract. For any lattice congruence of the weak order on permutations, N. Reading
proved that glueing together the cones of the braid fan that belong to the same con-
gruence class defines a complete fan, called quotient fan, and V. Pilaud and F. Santos
showed that it is the normal fan of a polytope, called quotientope. We provide an al-
ternative simpler approach based on Minkowski sums of elementary polytopes, called
shard polytopes, which have remarkable combinatorial and geometric properties. In
contrast to the original construction of quotientopes, our approach extends to type B.

Résumé. Pour toute congruence de treillis de l’ordre faible sur les permutations,
N. Reading a montré que recoller ensemble les cônes de l’éventail de tresses qui appar-
tiennent à une même classe de congruence définit un éventail complet, appelé éventail
quotient, et V. Pilaud et F. Santos ont montré que cet éventail quotient est l’éventail
normal d’un polytope, appelé quotientope. Nous présentons une approche alternative
basée sur des sommes de Minkowski de polytopes élémentaires, appelés polytopes de
tessons, avec des propriétés combinatoires et géométriques remarquables. Contraire-
ment à la construction originale des quotientopes, notre approche s’étend au type B.
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1 Introduction

The weak order is a fundamental lattice structure on the set Sn of permutations of [n],
defined by inclusion of inversion sets: σ ≤ τ if and only if inv(σ) ⊆ inv(τ) where
inv(σ) := {(σ(i), σ(j)) | i < j and σ(i) > σ(j)}. See Figure 1 for illustrations when n = 4.
Its Hasse diagram can be seen geometrically as:
• the dual graph of the braid fan Fn, defined by the hyperplanes

{
x ∈ Rn

∣∣ xi = xj
}

for all 1 ≤ i < j ≤ n, directed from the region x1 < · · · < xn to the opposite one,
• or the graph of the permutahedron Permn := conv

{(
σ−1(1), . . . , σ−1(n)

) ∣∣ σ ∈ Sn
}

,
oriented in the linear direction γ := (−n + 1,−n + 3, . . . , n− 3, n− 1).
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Figure 1: The Hasse diagram of the weak order on S4 (left) can be seen as the dual
graph of the braid fan F4 (middle) or as the graph of the permutahedron Perm4 (right).

Here, we discuss similar geometric realizations for lattice quotients of the weak order.
A lattice congruence is an equivalence relation ≡ that respects meets and joins (x ≡ x′

and y ≡ y′ implies x ∧ y ≡ x′ ∧ y′ and x ∨ y ≡ x′ ∨ y′). It defines a lattice quotient Sn/≡
on its equivalence classes. The prototype is the classical Tamari lattice on binary trees with
n nodes [18], seen as the quotient of the weak order on Sn by the sylvester congruence.
Its Hasse diagram is the graph of the classical associahedron Asson which admits elegant
descriptions by vertices [6], by facets [17], or as a Minkowski sum of the faces of the
standard simplex [12]. See Figure 2. In general, for any lattice congruence ≡ of the weak
order, the Hasse diagram of the lattice quotient Sn/≡ can be seen geometrically as:
• the dual graph of the quotient fan F≡ of [14], obtained by glueing together the

chambers of the braid fan Fn that belong to the same congruence class of ≡,
• or the graph of a quotientope of [11], oriented in the direction γ defined above.

The quotientopes of [11] were obtained by a careful but slightly obscur choice of right-
hand sides defining an inequality normal to each ray of the braid fan. We present here
an alternative approach based on Minkowski sums of elementary polytopes.
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Figure 2: The quotient of the weak order by the sylvester congruence (left) is the Tamari
lattice (middle), and its quotient fan is the normal fan of the associahedron (right).
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Figure 3: The stereographic projection of the braid fan F4 from the pole 4321 (left), the
corresponding shards (middle), the quotient fan by the sylvester congruence (right).

Our construction is based on arcs and shards. An arc is a quadruple α := (a, b, A, B)
where 1 ≤ a < b ≤ n and A t B = ]a, b[. It is represented by a curve wiggling around
points on the horizontal axis, joining a to b while passing above the points of A and
below the points of B. The set of all arcs is denoted by An. Each lattice congru-
ence ≡ of Sn corresponds to an upper ideal A≡ of the forcing order on arcs, defined
by (a, b, A, B) ≺ (a′, b′, A′, B′) if a ≤ a′ < b′ ≤ b and A′ ⊆ A and B′ ⊆ B. For in-
stance, the sylvester congruence defining the Tamari lattice corresponds to the ideal of
up arcs {(a, b, ]a, b[,∅) | 1 ≤ a < b ≤ n}. Geometrically, an arc α := (a, b, A, B) defines
a shard S(α), given by the piece of the hyperplane xa = xb satisfying the inequali-
ties xa′ ≤ xa = xb ≤ xb′ for all a′ ∈ A and b′ ∈ B. The union of the walls of the quotient
fan F≡ is the union of shards S(α) over all arcs of A≡. See Figure 3.

The central idea of our work is to realize the quotient fan F≡ as a Minkowski sum
where each summand is responsible for some shards of A≡ to appear in the normal
fan. To illustrate this idea, let us start with a simple construction. For any arc α, denote
by Aα the arc ideal generated by α. The corresponding congruence ≡α is a Cambrian
congruence [15], and the quotient fan Fα is the normal fan of the α-associahedron Assoα [4].

Theorem 1.1. Consider an arbitrary congruence ≡ of the weak order, and let α1, . . . , αp denote
the arcs generating the ideal A≡. Then the quotient fan F≡ is
• the common refinement of the Cambrian fans Fα1 , . . . ,Fαp , and
• the normal fan of the Minkowski sum of the associahedra Assoα1 , . . . ,Assoαp .

This construction was already used for certain specific quotients but never exploited
for arbitrary lattice congruences. In contrast to the intricate construction of [11], Theo-
rem 1.1 has the advantage to transfer the geometric difficulty into the construction of the
α-associahedron Assoα, already done in [4]. Here, each αi-associahedron Assoαi is respon-
sible for the shards of the ideal Aαi to appear in the normal fan of the Minkowski sum.
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We already mentioned that the classical associahedron decomposes as the Minkowski
sum of faces of the standard simplex [12]. In general, the α-associahedron can be de-
composed further into Minkowski sums of more elementary pieces. The main idea of
our work is to push this idea forward, looking for the most possible elementary pieces.

Theorem 1.2. For each arc α, there exists a Minkowski indecomposable polytope SP(α), called
shard polytope, such that the union of the walls of the normal fan of the shard polytope SP(α)
contains the shard S(α) and is contained in the union of the shards S(α′) for all arcs α′ forcing α.

We describe these polytopes by a simple combinatorial construction in Section 2.1,
and as matroid polytopes of series-parallel graphs in Section 2.2.

As a consequence of their normal fan property, we can use shard polytopes to con-
struct polytopal realizations of quotient fans, in a similar way as we used α-associahedra
in Theorem 1.1. Each shard polytope SP(α) is now responsible for the shard S(α) to ap-
pear in the normal fan, and the remaining of the normal fan of SP(α) does not mess up
the picture since it is contained in the union of the shards S(α′) for all arcs α′ forcing α.

Theorem 1.3. For any lattice congruence≡ of the weak order and positive coefficients sα ∈ R
A≡
>0 ,

the quotient fan F≡ is the normal fan of the Minkowski sum SP(A≡) := ∑α∈A≡ sα SP(α).

Already setting the coefficients sα = 1, this construction recovers (up to translation)
relevant realizations of some specific quotient fans mentioned above: the classical associ-
ahedron of [17, 6, 12] for the sylvester congruence and the α-associahedron of [4] for the
α-Cambrian congruence. More generally any quotientope of [11] is a Minkowski sum of
dilated shard polytopes (up to translation). More details are given in Section 2.3.

In fact, if we allow for Minkowski sums and differences, the family of shard polytopes
provides a relevant Minkowski basis of the space of deformed permutahedra of [12, 13] (or
“generalized permutahedra”, those polytopes whose normal fan coarsens the braid fan).

Theorem 1.4. Up to translation, any deformed permutahedron has a unique decomposition as a
Minkowski combination DPs(s) := ∑α∈An sα SP(α) of shard polytopes, with sα ∈ R for α ∈ An.

This statement and the exchange matrix with the classical basis of faces of the stan-
dard simplex [1] are presented in Section 3.2, and used to the compute the (mixed)
volumes of shard polytopes as reported in Section 3.3.

Finally, our long term objective is to extend the construction of shard polytopes to lat-
tices of regions of hyperplane arrangements beyond the braid arrangement (see [16] for
an introduction to the topic). We achieve the first step in this perspective by constructing
shard polytopes for the type B Coxeter group in Section 4. They provide elementary
pieces for the first construction of quotientopes for all lattice quotients of the type B
weak order, and the first natural Minkowski basis for type B deformed permutahedra.

Many details and all proofs are omitted in this extended abstract for space reason,
but a complete treatment can be found in the long version of this work [10].
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2 Shard polytopes

2.1 Definition and basic properties

Definition 2.1. For an arc α := (a, b, A, B), we define
• an α-alternating matching as a (possibly empty) sequence M = {a1, b1, . . . , ak, bk}

with a ≤ a1 < b1 < · · · < ak < bk ≤ b and ai∈{a} ∪ A while bi∈B ∪ {b} for i ∈ [k],
• the characteristic vector of the α-alternating matching M as χ(M) = ∑i∈[k] eai − ebi ,
• an α-fall (resp. α-rise) as a position j ∈ [a, b[ such that j ∈ {a}∪ A and j+ 1 ∈ B∪{b}

(resp. such that j ∈ {a} ∪ B and j + 1 ∈ A ∪ {b}).
Proposition 2.2. The shard polytope SP(α) of an arc α is the polytope defined equivalently as
• the convex hull of the characteristic vectors of all α-alternating matchings,
• the subset of the hyperplane H :=

{
x ∈ Rn

∣∣ ∑i∈[n] xi = 0
}

defined by
◦ xi = 0 for any i ∈ [n]r [a, b], xa′ ≥ 0 for any a′ ∈ A, and xb′ ≤ 0 for any b′ ∈ B,
◦ ∑i≤ f xi ≤ 1 for any α-fall f and ∑i≤r xi ≥ 0 for any α-rise r.

Figure 4 shows some shard polytopes and illustrates the following elementary prop-
erties of their vertices, edges, faces and facets, and their behavior by central symmetry.

Proposition 2.3. For any arc α := (a, b, A, B),
• the shard polytope SP(α) has dimension b− a,
• the vertices of SP(α) are precisely all characteristic vectors of α-alternating matchings,
• two α-alternating matchings M, M′ form an edge of SP(α) if and only if |M4M′| = 2,
• any face of SP(α) is a Cartesian product of shard polytopes,
• the facets of SP(α) are precisely defined by the inequalities of Proposition 2.2.

Proposition 2.4. Consider the central symmetries on arcs θ(a, b, A, B) = (b̄, ā, B̄, Ā) and on
vectors Θ(ei) = −eī where ī := n + 1− i. Then SP(θ(α)) = Θ(SP(α)) for any arc α.

Finally, the central property of shard polytopes is the following.

Proposition 2.5. For any arc α, the union of the walls of the normal fan of the shard polytope
SP(α) contains the shard S(α) and is contained in the union of the shards S(α′) for α′ forcing α.

Figure 4: Some shard polytopes with n = 4 (by convention • = 1, · = 0 and ◦ = −1).
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2.2 Shard polytopes as matroid polytopes

Let M be a matroid on the ground set [n] (see [8] for an introduction to matroid the-
ory). Its matroid polytope PM ⊂ Rn is the convex hull of the characteristic vectors of
its bases. The following characterization gives a geometric axiomatization of matroids,
which provides directly the proof that shard polytopes are actually matroid polytopes.

Theorem 2.6 ([3, Thm. 4.1]). A polytope is a matroid polytope if and only if all its vertices have
0/1 coordinates and all its edges are translations of some vectors ei − ej with i 6= j.

Corollary 2.7. The translated shard polytope
−→
SP(α) := SP(α) + 1B∪{b} is a matroid polytope for

any arc α := (a, b, A, B).

We can give a precise description of these matroids, which are actually certain con-
nected series-parallel graphic matroids. Let us recall some terminology. A graph is
series-parallel if it can be obtained from a single edge with distinct endpoints via the
operations of series extension (replacing an edge by a path of length 2) and parallel ex-
tension (replacing an edge by two parallel edges with the same endpoints). The (cycle)
matroid of a connected graph G := (V, E) is the matroid on E whose bases are the edge
sets of spanning trees of G. A matroid is graphic if it is the cycle matroid of a graph, and
series-parallel if it is the cycle matroid of a series-parallel graph, see [8, Sect. 5.4].

Definition 2.8. For an arc α := (a, b, A, B) ∈ An, let {a} ∪ A = {a = a1 < · · · < a|A|+1}
and B ∪ {b} = {b1 < · · · < b|B|+1 = b}, and set b0 := a− 1 for convenience. Define the
shard graph Γα to be the (multi-)graph with vertex set [0, |B|+ 1] and
• for each 1 ≤ i ≤ |A|+ 1, an edge labeled ai joining vertex k to vertex |B|+ 1, where

0 ≤ k ≤ |B| is such that bk < ai < bk+1,
• for each 1 ≤ j ≤ |B|+ 1, an edge labeled bj joining vertex j− 1 to vertex j,
• for each k ∈ [n]r [a, b], a loop labeled by k on vertex |B|+ 1.

The shard matroid of the arc α is the cycle matroid Mα of Γα, whose ground set is [n].

Proposition 2.9. The graph Γα stripped of loops is a 2-connected series-parallel graph.

Proposition 2.10. The matroid polytope of the shard matroid Mα is the translated shard poly-
tope
−→
SP(α) := SP(α) + 1B∪{b}.

0 1 2 3 4 5 6 7

a1 = a
a2

a3 a4
a5

a6 a7

b1 b2 b3 b4 b5 b6 b7 = b

Figure 5: The graph Γα for the arc α := (1, 14, {2, 4, 6, 9, 10, 13}, {3, 5, 7, 8, 11, 12}).
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2.3 Quotientopes from shard polytopes

We now construct polytopal realizations of quotient fans in the same spirit as in Theo-
rem 1.1, but using shard polytopes rather than associahedra as elementary summands.
The following statements immediately follow from Propositions 2.4 and 2.5.

Proposition 2.11. For any lattice congruence ≡ of the weak order, the quotient fan F≡ is the
normal fan of the Minkowski sum SP(A≡) := ∑α∈A≡ SP(α).

Proposition 2.12. If an arc ideal A is centrally symmetric, then SP(A) = Θ(SP(A)).
Observe that the quotient fan F≡ is actually the normal fan of any Minkowski

sum ∑α∈A≡ sα SP(α) with sα > 0 for any α ∈ A≡, see Theorem 1.3. We stick with coeffi-
cients sα = 1 as this convention recovers the original constructions of [6, 4] as described
in Examples 2.14 and 2.15. The following four examples are illustrated in Figure 6.

Example 2.13. For basic arcs, the (i, i+ 1,∅,∅)-alternating matchings are ∅ and {i, i + 1},
thus the shard polytope SP(i, i+ 1,∅,∅) is just the segment [0, ei− ei+1]. The Minkowski
sum SP({(i, i + 1,∅,∅) | i ∈ [n− 1]}) is thus the parallelotope ∑i∈[n−1][0, ei − ei+1].

Example 2.14. For up arcs, the (a, b, ]a, b[,∅)-alternating matchings are ∅ and {i, b} for
a ≤ i < b, thus the shard polytope SP(a, b, ]a, b[,∅) is the translate of the standard sim-
plex 4[a,b] by the vector −eb. The Minkowski sum SP({(a, b, ]a, b[,∅) | 1 ≤ a < b ≤ n})
is thus the translate by the vector −∑i∈[n] ei of the classical associahedron of [17, 6, 12].

Example 2.15. For the α-Cambrian congruence, the Minkowski sum SP(Aα) is actually
the translate by the vector −∑i∈[a,b] ei of the α-associahedron Assoα of [4].

Example 2.16. For the ideal of all arcs An, the Minkowski sum of all shard polytopes
gives a realization of the braid fan Fn. Although it is not the convex hull of all permuta-
tions of a given point as the classical permutahedron Permn, the resulting polytope has
clearly centrally symmetry by Proposition 2.12.

Besides these specific examples, the following statement shows that our construction
strictly contains that of [11].

Proposition 2.17. Any quotientope of [11] is a Minkowski sum of dilated shard polytopes.

Figure 6: Minkowski sums SP(A) for all arc ideals A ⊆ A3 containing the basic arcs.
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3 Minkowski geometry of shard polytopes

3.1 Type cones and shard polytopes

A weak Minkowski summand of a polytope P is a polytope Q satisfying the following
equivalent conditions:
• there are a real λ ≥ 0 and a polytope R such that Q+ R = λP,
• the normal fan of Q coarsens the normal fan of P,
• Q is obtained from P by parallelly translating its facets without passing vertices.

The set of weak Minkowski summands of a polytope P has the structure of a polyhedral
cone, which is sometimes called (closed) type cone [7] or deformation cone [12, 13] of the
polytope P. This cone has dimension equal to the number N of facets of P, but it has
a lineality space of dimension equal to the dimension n of P (corresponding to trans-
lations), so its intrinsic dimension is N − n. An important property is that Minkowski
sums of weak Minkowski summands translate to positive combinations in the type cone.
Thus, the rays of the type cone represent Minkowski indecomposable summands of P.

The weak Minkowski summands of the classical permutahedron Permn form a par-
ticularly interesting family, studied under the name generalized permutahedra in [12, 13].
Here, we prefer to use the more explicit name deformed permutahedra. They are usu-
ally described by submodular inequalities [12] or as Minkowski sums and differences of
faces 4J := conv

{
ej
∣∣ j ∈ J

}
of the standard simplex 4[n] [1] as follows.

Proposition 3.1 ([12]). Any deformed permutahedron can be represented as

DPz(z) :=
{

x ∈ Rn ∣∣ 〈 1 | x 〉 = z[n] and 〈 1R | x 〉 ≥ zR for all ∅ 6= R ( [n]
}

for some z ∈ R2[n] with z∅ = 0 and zR + zS ≤ zR∪S + zR∩S for all R, S ∈ 2[n]. Moreover, this
representation is unique if all inequalities 〈 1R | x 〉 ≥ zR are tight (as always implicitly assumed).

Proposition 3.2 ([1]). Any deformed permutahedron has a unique decomposition as a Minkowski
combination DPy(y) := ∑J⊆[n] yJ4J of faces of the standard simplex, with yJ ∈ R for J ⊆ [n].

Proposition 3.3 ([12, 1]). The parameters y and z in Propositions 3.1 and 3.2 are related by

zR = ∑
J⊆R

yJ and yJ = ∑
R⊆J

(−1)|JrR| zR.

Example 3.4. Type cones are high dimensional objects difficult to visualize. We can
however see the type cone of the 2-dimensional permutahedron Perm3 by intersecting
it with a hyperplane. The resulting polytope is a triangular bipyramid illustrated in
Figure 7. We have located in the type polytope the shard polytopes of the four arcs
of A3 together with different polytopes considered along this extended abstract. Note
that the four shard polytopes are all vertices of the type polytope (see Proposition 3.5)
and form an affine basis of the space (see Proposition 3.9).
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Figure 7: The type polytope of the permutahedron Perm3.

The main point of this section is the following statement. It is shown in [10] either
from a direct Minkowski indecomposability criterion, or from the description of shard
polytopes as matroid polytopes of 2-connected series-parallel graphs (see Section 2.2).

Proposition 3.5. For any arc α, the shard polytope SP(α) is Minkowski indecomposable.

Thus, shard polytopes correspond to certain rays of the submodular cone. However,
not all indecomposable deformed permutahedra are shard polytopes.

Theorem 3.6. For any arc α ∈ An, the shard polytopes of the arcs forcing α are precisely
(representatives of) the rays of the type cone of the α-associahedron.

We get the following result as a direct consequence of the simpliciality of the type
cones of associahedra and the description of its rays [9].

Corollary 3.7. Any polytope whose normal fan is the α-Cambrian fan Fα has a unique decompo-
sition (up to translation) as a Minkowski sum of dilated shard polytopes SP(α′) for α′ forcing α.

Remark 3.8. Theorem 3.6 connects shard polytopes to other interpretations of the rays
of the type cone of the Cambrian fans: as Newton polytopes of F-polynomials of cluster
variables of acyclic type A cluster algebras [2], and as brick polytope summands of
certain sorting networks [5]. We skip all precise definitions here as these interpretations
are not needed in the rest of our discussion. We are not aware that our vertex and facet
descriptions from Proposition 2.2 have been observed earlier for these polytopes.
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3.2 Minkowski basis of shard polytopes

It turns out that shard polytope also provide a relevant Minkowski basis for the space of
deformed permutahedra, similar to faces of the standard simplex (see Proposition 3.2).

Proposition 3.9. Up to translations, any deformed permutahedron has a unique decomposition as
a Minkowski combination DPs(s) := ∑α∈An sα SP(α) of shard polytopes, with sα∈R for α∈An.

We thus have three parametrizations of the space of deformed permutahedra: as Min-
kowski combinations of shard polytopes DPs(s) := ∑α∈A sα

−→
SP(α) (see Proposition 3.9),

as Minkowski combinations of faces of the standard simplex DPy(y) := ∑J⊆[n] yJ4J (see
Proposition 3.2), or from their right hand sides as DPz(z) (see Proposition 3.1). The
exchange matrices between the parameters s, y and z are given by explicit combinatorial
formulas. Next, we describe the connection between the parameters s and y, which can
be combined with Proposition 3.3 to get the connection between the parameters s and z.
Note that we only consider simplices 4J with |J| ≥ 2, as we work up to translations.

Proposition 3.10. The parameters s and y in Propositions 3.2 and 3.9 are related by

sα = ∑
JB(A∪{a,b})

(−1)|{a,b}∩{min J,max J}| zR and yJ = ∑
α=(a,b,A,B)
(A∪{a,b})BJ

(−1)|J∩(B∪{a,b})| sα,

where we write I B J when {min J, max J} ⊆ ]min I, max I[4 I and ]min J, max J[ ∩ I ⊆ J.

3.3 Mixed volumes of shard polytopes

The mixed volume is the unique function Vol(−, · · · ,−) on n-tuples of polytopes such that
Vol(y1P1 + · · · + ymPm) = ∑(i1,...,in)∈([m]

n )
Vol(Pi1 , . . . ,Pin) yi1 . . . yin for any collection of

m ≥ n polytopes P1, . . . ,Pm and any real numbers y1, . . . , ym such that y1P1 + · · ·+ ymPm
is a polytope. Note that Vol(P, . . . ,P) = Vol(P) and that mixed volumes are multilinear.
Via Proposition 3.10, we can thus compute (mixed) volumes of shard polytopes using
mixed volumes of simplices already computed by A. Postnikov in [12].

Lemma 3.11 ([12]). The mixed volume of the faces 4J1 , . . . ,4Jn−1 of the standard simplex is

Vol(4J1 , . . . ,4Jn−1)=


1

(n− 1)!
if J1, . . . , Jn−1 satisfy the dragon marriage condition of [12]:
|Ji1 ∪ · · · ∪ Jik | ≥ k + 1 for any distinct i1, . . . , ik ∈ [n− 1]

0 otherwise.

Theorem 3.12. For any arcs α1, . . . , αn−1 ∈ An, the mixed volume of SP(α1), . . . , SP(αn−1) is

Vol(SP(α1), . . . , SP(αn−1)) =
1

(n− 1)! ∑
J1,...,Jn−1

(−1)∑i∈[n−1] |Ji∩(Bi∪{ai,bi})|

summing over all J1, . . . , Jn−1 with |Ji| ≥ 2 and (Ai ∪ {ai, bi})B Ji for all i ∈ [n− 1], and such
that J1, . . . , Jn−1 satisfy the dragon marriage condition.
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4 Type B shard polytopes

Based on Propositions 2.4 and 2.12, we extend shard polytopes to the type Bn Coxeter
group. It is the group of permutations σ of [±n] = {−n, . . . ,−1} ∪ {1, . . . , n} such that
σ(−i) = −σ(i) for all i ∈ [±n]. The following are the analogues of arcs.

Definition 4.1. A B-arc on [±n] is either a centrally symmetric A-arc on [±n] or a cen-
trally symmetric and noncrossing pair of A-arcs on [±n] with disjoint endpoints.

As in type A, there is a forcing order on B-arcs, and the lattice congruences of the
type Bn weak order correspond to the upper ideals in forcing order. Geometrically, the
type Bn arrangement is defined by the hyperplanes {x ∈ Rn | xa = xb} for a < b ∈ [±n],
with the convention that x−i := − xi. Each B-arc β := (−α, α) with α := (a, b, A, B) cor-
responds to a shard S(β) defined as the piece of the hyperplane xa = xb satisfying the
inequalities xa′ ≤ xa = xb ≤ xb′ for all a′ ∈ A and b′ ∈ B, again with the convention
that x−i = −xi. See Figure 8. The following are the analogues of shard polytopes.

Definition 4.2. The shard polytope SP(β) of a B-arc β := (−α, α) is the convex hull of the
characteristic vectors of all α-alternating matchings, with the convention that e−i = −ei.

Again, these polytopes are designed to fulfill the following normal fan property.

Proposition 4.3. For any B-arc β, the union of the walls of the normal fan of the shard polytope
SP(β) contains the shard S(β) and is contained in the union of the shards S(β′) for β′ forcing β.

Corollary 4.4. For any B-arc ideal Ab ⊆ Ab

n, the quotient fan F b

Ab is the normal fan of the
Minkowski sum SP(Ab) := ∑β∈Ab SP(β) of the shard polytopes SP(β) of all B-arcs β ∈ Ab.

Finally, we conjecture that type B shard polytopes are Minkowski indecomposable. In
any case, we prove that they form a Minkowski basis for type B deformed permutahedra.

Theorem 4.5. Up to translation, any type B deformed permutahedron has a unique decomposi-
tion as a Minkowski sum and difference of dilated type B shard polytopes.

2̅12̅1̅

2121̅

0>x2
1

x 1>
x 2‒x

1 >x
2

0
>
x
1

21̅2

1̅

12

2̅1̅2̅ 12̅

1̅2 12

1̅2̅ 12̅

Figure 8: The type B2 Coxeter fan F b

2 (left) and the corresponding B-shards (right).
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