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Equidistributions of mesh patterns of length two
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Abstract. A systematic study of avoidance of mesh patterns of length 2 was conducted
by Hilmarsson et al. in 2015. In a recent paper Kitaev and Zhang examined the dis-
tribution of the aforementioned patterns. The aim of this paper is to prove more
equidistributions of mesh pattern and confirm Kitaev and Zhang’s four conjectures by
constructing two involutions on permutations.
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1 Introduction

Patterns in permutations and words have implicitly appeared in the mathematics liter-
ature for over a century, but interest in them has blown up in the past four decades
(see [4, 6, 7, 10, 11, 14, 17] and references therein), and the research of this area continues
to increase gradually.

A permutation σ = σ(1) · · · σ(n) of length n is an arrangement of 1 · · · n. If π and
σ are two permutations represented in this way, then π is said to contain σ as a pattern
if some subsequence of the digits of π has the same relative order as all of the digits of
σ. For example, the permutation 31542 contains two occurrences of the pattern 231 as
the two subwords 352 and 342 all have the same ordering as 231. Let Sn be the set of all
permutations of length n. We call σ(i) the value of σ at position i (1 ≤ i ≤ n) and draw
a graphical presentation of σ by putting a dot at (i, σ(i) for i = 1, . . . , n in the plan. For
example, the permutation 231 ∈ S3 is presented as follows,

where the horizontal lines represent the values and the vertical lines denote the positions
in the permutation. In [4] Brändén and Claesson introduced and studied mesh patterns
as a common extension of several types of generalized permutation patterns.
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A mesh pattern of length k is a pair (τ, R), where τ is a permutation of length k and
R is a subset of J0, kK× J0, kK with J0, kK = {0, 1, . . . , k}. Let (i, j) denote the box whose
corners have coordinates (i, j), (i, j + 1), (i + 1, j + 1), and (i + 1, j). Mesh patterns can be
depicted by shading the boxes in R. A mesh pattern with τ = 231 and R = {(1, 2), (2, 1)}
is drawn as follows.

For example, the permutation 346512 depicted in the following picture contains the
mesh pattern (231, {(1, 2), (2, 1)}) since the subsequence 462 forms the classical pattern
231 and there are no points in the shaded areas.

346512 =

Mesh patterns and their generalizations were studied in many papers; e.g. see [1, 2,
3, 8, 9, 10, 12, 13, 14, 18]. In the first systematic study of the mesh patterns avoidance,
Hilmarsson et al. [10] solved 25 out of 65 non-equivalent avoidance cases of patterns of
length 2. In a recent paper [14], Kitaev and Zhang further studied the distributions
of mesh patterns considered in [10] by giving 27 distribution results, see [14, Table 1].
Moreover, for the unsolved case, they gave an equidistribution result and conjectured
6 more equidistributions (see Table 1). We prove 3 conjectured equidistributions and
2 more equidistribuions (see Table 2) by constructing two involutions. This extended
abstract is a summary of the recent paper [9].

For a pattern p and a permutation π, we let p(π) denote the number of occurrences
of p in π. Kitaev and Zhang [14, Conjecture 6.1] conjectured a Stieltjes continued frac-
tion formula for the distribution of pattern Nr. 3 = (see [15, A200545]), which is
equivalent to the following identity.

Conjecture 1.1 ([14, Conjecture 6.1]). We have

∑
n≥0

tn ∑
π∈Sn

y (π) =
1

1−
α1t

1−
α2t

1− · · ·

(1.1a)
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Nr. Repr. p Ref. Nr. Repr. p Ref.

proved 48
[14, Theorem 5.1]

equidistributions 49

23
Theorem 1.6

53
Corollary 1.1

conjectured
24 54

equidistributions
48

57
N/A

49 Corollary 1.1 and
58

in [14]
50 [14, Theorem 5.1]

61
N/A

62

Table 1: Equidistributions for which enumeration is unknown. Pattern’s numbers are
adopted from [10, 14]

with coefficients

α2k−1 = k, α2k = y + k− 1. (1.1b)

Presenting their conjecture in this way, we notice that the S-continued fraction (1.1a)
appears in a recent paper of Sokal and Zeng [16]. Let us reformulate the relevant per-
mutation statistics in [16] in terms of mesh patterns. Given a permutation π ∈ Sn, an
index i ∈ [n] (or a value π(i) ∈ [n]) is called

• an excedance if π(i) > i;

• a record (rec) (or left-to-right maximum) if π(j) < π(i) for all j < i [note in particular
that the index 1 is always a record and that the value n is always a record]; in other
words, a record of π is one occurrence of pattern of π;

• an antirecord (arec) (or right-to-left minimum) if π(j) > π(i) for all j > i [note in
particular that the index n is always an antirecord and that the value 1 is always an
antirecord]; in other words, an antirecord of π is one occurrence of pattern of
π;

• an exclusive record (erec) if it is a record and not also an antirecord; in other words,
an exclusive record of π is one occurrence of pattern of π, see (1.9);
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• an exclusive antirecord (earec) if it is an antirecord and not also a record; in other
words, an exclusive antirecord of π is one occurrence of pattern of π, see (1.8);

• a record-antirecord (rar) (or pivot) if it is both a record and an antirecord; in other
words, a record-antirecord of π is one occurrence of pattern of π.

An inversion of a permutation π ∈ Sn is a pair (i, j) ∈ [n] × [n] such that i < j and
π(i) > π(j), in other words, an inversion of π is one occurrence of pattern of π.
We denote the number of excedances, records, antirecords, exclusive records, exclusive
antirecords, record-antirecords and inversions in π by exc(π), rec(π), arec(π), erec(π),
earec(π), rar(π) and inv(π) respectively.

Nr. Repr. p Ref. Nr. Repr. p Ref.

proved 1∗
Theorem 1.6

3∗
Theorem 1.6

equidistributions 2∗ 4∗

Table 2: More proved equidistributions. Pattern’s numbers are not considered in [10,
14]

Dumont and Kreweras [5] gave the joint distribution of ( , ), Zeng [19] gave the
joint distribution of ( , , ). Recently Sokal and Zeng [16] proved much more
general results. For example, define the generating function of the generalized Eulerian
polynomials

F(x, y, z, v, q; t) =
∞

∑
n=0

tn ∑
σ∈Sn

xarec(σ)yerec(σ)zrar(σ)vexc(σ)qinv(σ). (1.2)

From [16, Theorems 2.7 and 2.8] we derive the following result.

Theorem 1.2. We have

F(x, y, z, v, q; t) =
F(x, y, 1, v, q; t)

1 + x(1− z)tF(x, y, 1, v, q; t)
, (1.3a)

where

F(x, y, 1, v, q; t) =
1

1−
α1t

1−
α2t

1− · · ·

(1.3b)
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with coefficients

α2k−1 = qk−1(x + q + q2 + · · ·+ qk−1) (1.3c)

α2k = qkv(y + q + q2 + · · ·+ qk−1). (1.3d)

Remark 1.3.

• We can also prove (1.3a) by following the same steps in the special case as in [14] and then
derive (1.3b) directly from [16, Theorem 2.8].

• The case x = y = v = q = 1 of Theorem 1.2 is Theorem 1.1 in [14].

• Since (arec, inv)π = (rec, inv)π−1 we derive from [19] that

F(x, 1, 1, 1, q; t) =
∞

∑
n=0

x(x + q) . . . (x + q + · · · qn−1)tn. (1.4)

For π = π(1) . . . π(n) ∈ Sn we define the following three associated permutations:

π−1 := π−1(1)π−1(2) · · ·π−1(n) (1.5)
πr := π(n) · · ·π(2)π(1) (1.6)
πc := (n + 1− π(1))(n + 1− π(2)) · · · (n + 1− π(n)) (1.7)

Obviously we have

(π) = (πc) = (πr◦c) = (πr)

and

(π) = (πc) = (πr◦c) = (πr)

= (π−1) = (τr) = (τr◦c) = (τc)

with τ = π−1.

Lemma 1.1. For π ∈ Sn, we have

earec(π) = (π) = (π) = (π) = (π), (1.8)

erec(π) = (π) = (π) = (π) = (π). (1.9)

Proof. We just prove (1.8) as the proof of (1.9) is similar. In the entries placement rep-
resentation of a permutation π ∈ Sn the entry y = (i, π(i)) is an exclusive antirecord
iff there is another entry x = (j, π(j)) at left of y, i.e., j < i and higher than x, i.e.,
π(j) > π(i). Hence there are four unique choices for such a entry x: the highest, lowest,
farthest and nearest. This corresponds to the four mesh patterns in (1.8), respectively.
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Remark 1.4. As earec(π) = erec(πr◦c) for π ∈ Sn, we can also derive (1.9) from (1.8).

Theorem 1.5. There exists an involution Φ on Sn such that for π ∈ Sn,

( , , )π = ( , , )Φ(π).

Corollary 1.1. The triple pattern (Nr.3, Nr.48, Nr.53) is equidistributed with the triple pattern
(erec, Nr.50, Nr.54) on Sn.

Proof. For any π ∈ Sn we have
Nr.3

Nr.48

Nr.53

 π =



 π =



 π−1 =



 (π−1)r (1.10)

and

(Nr.50, Nr.54)π = ( , )π = ( , )π−1 = ( , )(π−1)r. (1.11)

By Theorem 1.5 the result follows from (1.9), (1.10) and (1.11).

Corollary 1.2. Conjecture 1.1 holds true.

Proof. By Corollary 1.1 this follows from (1.3b) with x = v = q = 1.

As the equidistribution of Nr.48 and Nr.49 is known [14, Theorem 5.1], Corollary 1.1
confirms two conjectured equidistributions in Table 1.

Theorem 1.6. There exist an involution Ψ on Sn such that for π ∈ Sn,

( , , )(π) = ( , , )Ψ(π)).

For the patterns Nr.23 and Nr.24, we have

(Nr.23, Nr.24)π = ( , )π = ( , )πr.

By Theorem 1.6, we confirm another conjecture in Table 1, i.e., the patterns Nr.23 and
Nr.24 are equidistributed.

We shall prove Theorem 1.5 and Theorem 1.6 in Section 2 and Section 3, respectively.
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2 Proof outlines of Theorem 1.5

For π ∈ Sn let AREC(π) = (i1, i2, . . . , il) be the sequence of antirecord positions of π

from left to right. So π(i1) = 1, i1 < · · · < il and il = n. For each antirecord position ik
define two mappings

ϕ
(ik)
1 : π 7→ π′ (2.1a)

ϕ
(ik)
2 : π 7→ π′′ (2.1b)

as follows:

• let w = w1 . . . wr be the subword of π consisting of letters greater than π(ik) on the
left of π(ik) (resp. π(ik−1));

• let w′ = w′1 . . . w′r be the word obtained by substituting the jth largest letter with
the jth smallest letter in w for j = 1, . . . , r;

• let π′ (resp. π′′) be the word obtained by replacing wj with w′j for j = 1, . . . , r in π.

Remark 2.1. By convention, we define ϕ
(i1)
2 to be the identity mapping. Clearly the two opera-

tions keep the sequence of antirecords for both values and positions, that is,

AREC(π) = AREC(π′) = AREC(π′′) (2.2a)
π′(ik) = π′′(ik) = π(ik) for k = 1, . . . l. (2.2b)

Let P = {p1 < · · · < pr} and Q = {q1 < · · · < qr} be two ordered sets and
π = p1 . . . pr and τ = q1 . . . qr are permutations of P and Q, respectively. We say that π

and τ are order isomorphic and write π ∼ τ if for any two indices r and s we have the
equivalence pr < ps if and only if qr < qs. In other words, τ is the permutation obtained
from π by substituting pi by qi for i = 1, . . . , r.

Let w = w1 . . . wn be a permutation of a1 < a2 < · · · < an. We define the complement
of w by wc1, which is the word obtained by substituting ai by an+1−i in w for i = 1, . . . , n.
If x is a subset of the letters in w, we write [w]x as the subword of w consisting of the
letters a ∈ x.

Lemma 2.1. 1. If w = w1w2 and wc = w′1w′2, then (w′1)
c ∼ w1.2

2. Let w = w1w2w3 and v = v1v2v3 with |w1| = |v1|. If w1w2 ∼ v1v2 with (w1w2)
c =

w′1w′2 and (v1v2)
c = v′1v′2, then w1 ∼ v1, w2 ∼ v2, w′1 ∼ v′1 and w′2 ∼ v′2. Moreover, we

have (w′1)
c ∼ (v′1)

c and (w′2)
c ∼ (v′2)

c.

1When ai = i, wc reduces to πc, see (1.7).
2The word w′1 is the complement of w1 in the alphabet of w, while (w′1)

c is the complement of w′1 in
the alphabet of w′1.
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3. If w ∼ v and [w]x = [v]x for some set x of some common letters in w and v, then

• wc ∼ vc and [wc]x = [vc]x.

• [w]y ∼ [v]z, where y (resp. z) is the complementary of x in the alphabet of w (resp.
v).

For example, if w = 3 5 9 1 4 7 2 8 6, then wc = 7 5 1 9 6 3 8 2 4. Let w = w1w2 with
w1 = 3 5 9 1 4 7 and w2 = 2 8 6, then w′1 = 7 5 1 9 6 3 and (w′1)

c = 3 6 9 1 5 7. Clearly
(w′1)

c ∼ w1 and [(w′1)
c]x = [w1]x with x = {1, 3, 9}. We see that wc

1 = 7 4 1 9 5 3 and
[w′1]x = [wc

1]x = 1 9 3.

Lemma 2.2. For any antirecord position i of π ∈ Sn the mappings ϕ
(i)
1 and ϕ

(i)
2 are involutions

and commute, namely,
ϕ
(i)
1 ◦ ϕ

(i)
1 (π) = ϕ

(i)
2 ◦ ϕ

(i)
2 (π) = π (2.3)

and
ϕ
(i)
2 ◦ ϕ

(i)
1 (π) = ϕ

(i)
1 ◦ ϕ

(i)
2 (π). (2.4)

Proof. From the definitions of ϕ
(i)
1 and ϕ

(i)
2 in Eq. (2.1), it is easy to check Eq. (2.3) holds

and
ϕ
(i)
2 ◦ ϕ

(i)
1 (π) ∼ ϕ

(i)
1 ◦ ϕ

(i)
2 (π).

Since the set of letters greater than π(i) on the left of π(i) are invariant under the oper-
ation ϕ

(i)
1 and ϕ

(i)
2 on π, we obtain Eq.(2.4) immediately.

Let π ∈ Sn with sequence of antirecord positions AREC(π) = (i1, i2, . . . , il). We define
the operation Φ on π by

Φ(π) = ϕ(i1) ◦ ϕ(i2) ◦ · · · ◦ ϕ(il)(π) (2.5)

with ϕ(ik) = ϕ
(ik)
2 ◦ ϕ

(ik)
1 for k = 1, . . . , l.

Lemma 2.3. For π ∈ Sn with AREC(π) = {i1, . . . , il}. The mappings g := ϕ(ik−1) and
f := ϕ(ik) commute, i.e.,

g ◦ f (π) = f ◦ g(π).

Lemma 2.4. The mapping ϕ(ik) is an involution such that for π ∈ Sn and r 6= k,

( , , )k π = ( , , )k ϕ(ik)(π), (2.6a)

( , , )r π = ( , , )r ϕ(ik)(π), (2.6b)

( , , )r π = ( , , )r ϕ(ik)(π), (2.6c)

where (pattern)k means the number of the patterns between π(ik−1) and π(ik).
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Proof of Theorem 1.5. By (2.5) the reverse of the mapping Φ is given by

Φ−1(π) = ϕ(il) ◦ · · · ◦ ϕ(i2) ◦ ϕ(i1)(π). (2.7)

Theorem 1.5 follows from Lemma 2.2, Lemma 2.3 and Lemma 2.4.

2 5 7 1 8 9 4 6 3

ϕ
(3)
1

2 8 6 1 5 4 9 7 3

ϕ
(3)
2

2 6 8 1 5 4 9 7 3

ϕ
(1)
1

8 6 2 1 5 4 9 7 3

Figure 1: The involution Φ on the permutation 257189463

Example 2.2. We show the process of the involution Φ in Figure 1, For π = 2 5 7 1 8 9 4 6 3, we
have AREC(π) = (4, 9). We proceed from right to left.

1. For position 9 with value 3, w have w = 5 7 8 9 4 6 and w′ = 8 6 5 4 9 7. Thus ϕ
(9)
1 : π 7→

π′ = 2 8 6 1 5 4 9 7 3. Next, we have w = 8 6 and w′ = 6 8. Thus ϕ
(9)
2 : π′ 7→ π′′ =

2 6 8 1 5 4 9 7 3.

2. For position 4 with value 1 we have w = 2 6 8 and w′ = 8 6 2. Finally we obtain Φ(π) =
8 6 2 1 5 4 9 7 3.

Now, we check the mesh patterns.
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• First, ϕ
(9)
1 : π = 2 5 7 1 8 9 4 6 3 7→ π′ = 2 8 6 1 5 4 9 7 3, the pair (8, 3) of π contributes

the pattern without the patterns , ), the pair (5, 3) of π′ contributes the pattern
without the patterns , , the operations ϕ

(9)
2 , ϕ

(1)
1 do not change the correspond-

ing mesh pattens at position 9 of π′.

• Second, ϕ
(9)
2 ◦ ϕ

(9)
1 : π = 2 5 7 1 8 9 4 6 3 7→ π′′ = 2 6 8 1 5 4 9 7 3 it is easy to see that

257 ∼ 268. The pair (5, 1) of π contributes the patterns , without the pattern
, the pair (6, 1) of π′′ also contributes the pattern , without the pattern ,

ϕ
(1)
1 : π′′ = 2 6 8 1 5 4 9 7 3 7→ π′′′ = 8 6 2 1 5 4 9 7 3, the pair (6, 1) of π′′′ contributes the

pattern , without the pattern .

3 Proof outlines of Theorem 1.6

First we introduce two mappings different from Section 2. For π ∈ Sn, recall that
AREC(π) = (i1, i2, . . . , il) be the sequence of antirecord positions of π from left to right.
For any antirecord position ik we define two mappings

ψ
(ik)
1 : π 7→ π′ (3.1a)

ψ
(ik)
2 : π 7→ π′′ (3.1b)

as follows:

• let w = w1 . . . wr is the subword of π consisting of letters greater than π(ik) on the
right side of π(ik−1) (resp. π(ik)) with π(i0) = 0;

• let w′ = w′1 . . . w′r be the word obtained by substituting the jth largest letter with
the jth smallest letter in w for j = 1, . . . , r;

• let π′ (resp. π′′) is defined to be the word obtained by replacing wj with w′j in π.

Note that π′(ik) = π(ik).

Lemma 3.1. For any antirecord positions ik−1 and ik of π ∈ Sn the mappings ψ
(ik)
1 and ψ

(ik)
2 are

involutions and commutate, namely,

ψ
(ik)
1 ◦ ψ

(ik)
1 (π) = ψ

(ik)
2 ◦ ψ

(ik)
2 (π) = π (3.2)

and
ψ
(ik)
2 ◦ ψ

(ik)
1 (π) = ψ

(ik)
1 ◦ ψ

(ik)
2 (π). (3.3)

Let ψ(ik) = ψ
(ik)
2 ◦ ψ

(ik)
1 . Then ψ(ik)(π) and π have the same sequence of antirecord positions.
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Lemma 3.2. For π ∈ Sn with AREC(π) = {i1, . . . , il}. For k = 2, . . . , l the mappings ψ(ik−1)

and ψ(ik) commute, i.e.,
ψ(ik) ◦ ψ(ik−1)(π) = ψ(ik−1) ◦ ψ(ik)(π).

Lemma 3.3. The mapping ψ(i) is an involution such that for π ∈ Sn and r 6= k

( , , )k π = ( , , )k ψ(ik)(π), (3.4a)

( , , )r π = ( , , )r ψ(ik)(π), (3.4b)

( , , )r π = ( , , )r ψ(ik)(π). (3.4c)

where (pattern)k means the number of the patterns between π(ik−1) and π(ik).

Proof of Theorem 1.6. For π ∈ Sn and AREC(π) = (i1, i2, . . . , il), we define the operation
Ψ on π by

Ψ(π) = ψ(il) ◦ · · · ◦ ψ(i2) ◦ ψ(i1)(π). (3.5)

By (3.5) the mapping Ψ is reversible with reverse

Ψ−1(π) = ψ(i1) ◦ ψ(i2) ◦ . . . ◦ ψ(il)(π).

Theorem 1.6 follows from Lemma 3.1, Lemma 3.2 and Lemma 3.3.

An example of the involution Ψ could be found in [9, Example 3.4].
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