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Abstract. Geometric vertex decomposition and liaison are two frameworks that have
been used to produce similar results about similar families of algebraic varieties. We
establish an explicit connection between these approaches. In particular, we show that
each geometrically vertex decomposable ideal is linked by a sequence of elementary
G-biliaisons of height 1 to an ideal of indeterminates and, conversely, that every G-
biliaison of a certain type gives rise to a geometric vertex decomposition.

As a consequence, we can immediately conclude that several well-known families of
ideals are glicci, including Schubert determinantal ideals, defining ideals of varieties of
complexes, and defining ideals of graded lower bound cluster algebras. We also use the
structure of Knutson, Miller, and Yong’s geometric vertex decomposition to provide a
streamlined implementation of Gorla, Nagel, and Migliore’s liaison-theoretic approach
to establishing Gröbner bases.
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1 Introduction

Determinantal ideals and their generalizations have been explored extensively both in
the context of commutative algebra and also in the study of Schubert varieties in flag
varieties. This overlap is to be expected because, for example, each ideal generated by
the k× k minors of a generic matrix is the defining ideal of an open patch of a Schubert
variety in a Grassmannian; each one-sided ladder determinantal ideal is a Schubert
determinantal ideal for a vexillary (i.e., 2143-avoiding) permutation (see eg. [11]); each
two sided mixed ladder determinantal ideal is a type A Kazhdan–Lusztig ideal; each
ideal generated by the k× k minors of a generic symmetric matrix is the defining ideal
of an open patch of a Schubert variety in a Lagrangian Grassmannian; and each defining
ideal of a variety of complexes is a type A Kazhdan–Lusztig ideal, up to some extra
indeterminate generators (see eg. [13, Ch. 17]).

While similar results on the above-mentioned families of ideals appear in the Schu-
bert variety and commutative algebra literatures, it is often different techniques that are
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used to obtain them. For example, in [11], A. Knutson, E. Miller, and A. Yong introduced
geometric vertex decomposition, a degeneration technique, and used this to study Gröbner
geometry of Schubert determinantal ideals for vexillary permutations. Independently,
liaison-theoretic methods were used by E. Gorla in [4] and E. Gorla, J. Migliore, and U.
Nagel in [6] to obtain Gröbner bases for various classes of ladder determinantal ideals
(including one sided ladder determinantal ideals, also known as Schubert determinan-
tal ideals for vexillary permutations). In this extended abstract, we establish an explicit
connection between geometric vertex decomposition and liaison, and we study implications
of this connection. We have three main goals, which we now outline.

Our first goal is to show that it is no coincidence that geometric vertex decomposition
and liaison can be used to obtain similar results. Indeed, we prove the following explicit
connection between the two techniques (see Corollary 3.2 and Theorem 5.1):

Main Theorem. Under mild hypotheses, every geometric vertex decomposition gives rise to an
elementary G-biliason of height 1. Every sufficiently “nice" elementary G-biliaison of height 1
gives rise to a geometric vertex decomposition.

The second motivation for our work comes from a long-standing open question in
liaison theory, which asks whether subschemes of Pn are arithmetically Cohen–Macaulay
if and only if they are in the Gorenstein liaison class of a complete intersection (or glicci). It
is a standard homological argument that every glicci subscheme of Pn is arithmetically
Cohen–Macaulay. Hence, the question may be phrased as follows:

Question 1.1 ([9, Question 1.6]). Is every arithmetically Cohen–Macaulay subscheme of Pn

glicci?

By combining our main theorem with some straightforward consequences of geo-
metric vertex decomposition, we give a corollary (stated precisely as Corollary 4.1) from
which one can quickly deduce that certain well-known classes of varieties are glicci:

Corollary. Let I be a homogenous ideal in a polynomial ring. If the Lex-initial ideal of I is the
Stanley–Reisner ideal of a vertex decomposable simplicial complex and the vertex decomposition
is compatible with the order of the variables, then I is glicci.

We discuss three such classes in Section 4: matrix Schubert varieties, varieties of
complexes, and varieties of graded lower bound cluster algebras. We present this as
evidence in favor of Question 1.1, at least in combinatorially-natural settings. Using the
first half of our main theorem, we recover a result of U. Nagel and T. Römer from [15],
namely that the Stanley–Reisner ideal of a vertex decomposable simplicial complex is
glicci. We show the following (appearing later as Theorem 3.3):

Theorem. Geometrically vertex decomposable ideals are glicci.
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In [6, Lemma 1.12], it is shown that one can use liaison to compare Hilbert func-
tions when the degrees of the isomorphisms of the G-biliaisons involved in an inductive
argument are known. This approach is employed in many of the determinantal cases
treated in the literature ([4, 5, 6]). It is worth noticing that the isomorphisms employed
in these papers all have a similar form. We explain via geometric vertex decomposition
in Theorem 3.1 why this similarity is not a coincidence but, rather, is to be expected.
In that theorem, we associate an explicit isomorphism of degree 1 to a geometric vertex
decomposition.

In addition to the expository work of describing a unifying structure underlying
examples already in the literature, Theorem 3.1 also provides a candidate isomorphism
in the style of G-biliaison that, in good cases, allows one to use the framework of [6] to
prove that a conjectured Gröbner basis is, indeed, a Gröbner basis. This corollary has
been used in the study of diagonal degenerations of matrix Schubert varieties [8]. Some
consequences of Theorem 3.1 on Gröbner bases and degenerations appear in Section 3.

The structure of this extended abstract. In Section 2, we review definitions and key
lemmas from [11] on geometric vertex decomposition in the unmixed case and record
some additional observations about the structure of a geometrically vertex decomposable
ideal. We then briefly review background material on Gorenstein liaison that is necessary
for this work. In Sections 3 and 5, we describe our main theorem (stated above), and
related results and examples. In Section 4, we prove that certain well-known classes of
combinatorially-defined ideals are glicci, via the material in Section 3.

Notational conventions. Throughout the extended abstract, we let κ be a field, which
can be chosen arbitrarily except in Sections 3 and 4, where we require that κ be infinite.

2 Preliminaries

In this section we discuss geometric vertex decomposition, introduced by A. Knutson,
E. Miller, and A. Yong in [11]. We first recall the basics of vertex decomposition of
simplicial complexes and Stanley–Reisner ideals. Next, we move beyond the monomial
ideal case and recall the basics of geometric vertex decomposition from [11]. Then we
define and study geometrically vertex decomposable ideals. Finally, we recall the information
of Gorenstein liaison essential for the purposes of this extended abstract.

Vertex decomposition and Stanley–Reisner ideals. Let ∆ be a simplicial complex on vertex
set [n] = {1, 2, . . . , n} (without an insistence that every v ∈ [n] necessarily be a face of
∆). Given a vertex v ∈ ∆, define the following three subcomplexes: the star of v is the set
star∆(v) := {F ∈ ∆ | F ∪ {v} ∈ ∆}, the link of v is the set lk∆(v) := {F ∈ ∆ | F ∪ {v} ∈
∆, F ∩ {v} = ∅}, and the deletion of v is the set del∆(v) := {F ∈ ∆ | F ∩ {v} = ∅}.
Recall that the cone from v on a simplicial complex ∆ is the smallest simplicial complex
that contains the set {F ∪ {v} | F ∈ ∆}. Then star∆(v) is the cone from v on lk∆(v) and
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∆ = star∆(v)∪ del∆(v). The decomposition of ∆ above is called a vertex decomposition.
A simplicial complex is called pure if all of its facets (i.e., maximal faces) are of the

same dimension. A simplicial complex ∆ is vertex decomposable if it is pure and if
∆ = ∅, or ∆ is a simplex, or there is a vertex v ∈ ∆ such that lk∆(v) and del∆(v) are
vertex decomposable. Given a simplicial complex ∆ on vertex set [n], one defines the
Stanley–Reisner ideal I∆ ⊆ κ[x1, . . . , xn] associated to ∆ as I∆ := 〈xF | F ⊆ [n], F /∈ ∆〉,
where xF := ∏i∈F xi. The association ∆ 7→ I∆ determines a bijection between simplicial
complexes on [n] and squarefree monomial ideals in κ[x1, . . . , xn]. We write ∆(I) for the
simplicial complex associated to a squarefree monomial ideal I.

Notice that if ∆ = ∆1 ∪ ∆2 is a union of simplicial complexes on [n], then F is a
non-face of ∆ if and only if it is a non-face of both ∆1 and ∆2. Thus, I∆ = I∆1 ∩ I∆2 . In
particular, if v is a vertex of ∆, we may decompose ∆ to get I∆ = Istar∆(v) ∩ Idel∆(v).

Lemma 2.1. Let v ∈ [n] be a vertex of ∆. Writing I∆ = 〈xdi
v qi | 1 ≤ i ≤ m〉 where qi is a

squarefree monomial that is not divisible by xv and di = 0 or 1. Then Istar∆(v) = 〈qi | 1 ≤ i ≤
m〉, Ilk∆(v) = Istar∆(v) + 〈xv〉, and Idel∆(v) = 〈qi | di = 0〉+ 〈xv〉.

Geometric vertex decomposition We now discuss geometric vertex decomposition, intro-
duced by A. Knutson, E. Miller, and A. Yong in [11]. Let R = κ[x1, . . . , xn] be a poly-
nomial ring in n indeterminates and let y = xj for some 1 ≤ j ≤ n. Define the initial
y-form iny f of a polynomial f ∈ R to be the sum of all terms of f having the highest
power of y. That is, if f = ∑n

i=0 αiyi, where each αi ∈ κ[x1, . . . , x̂j, . . . xn] and αn 6= 0,
define iny f := αnyn, which is usually not a monomial. Given an ideal I ⊆ R, de-
fine iny I := 〈iny f | f ∈ I〉. We say that a monomial order < on R is y-compatible if
in< f = in<(iny f ) for every f ∈ R, in which case in<(iny I) = in< I for any ideal I ⊆ R.

Let I ⊆ R be an ideal and < a y-compatible monomial order. With respect to <,
let G := {ydi qi + ri | 1 ≤ i ≤ m} be a Gröbner basis of I where y does not divide
any qi and iny(ydi qi + ri) = ydi qi. One easily checks that the ideal iny I is generated by
inyG := {ydi qi | 1 ≤ i ≤ m} ([11, Theorem 2.1(a)]). That is, iny I = 〈ydi qi | 1 ≤ i ≤ m〉.

Definition 2.2 ([11, Section 2.1]). As above, let let G := {ydi qi + ri | 1 ≤ i ≤ m} be
a Gröbner basis of the ideal I with respect to the y-compatible term order <. Define
Cy,I := 〈qi | 1 ≤ i ≤ m〉 and Ny,I = 〈qi | di = 0〉. When iny I = Cy,I ∩ (Ny,I + 〈y〉), this
decomposition is called a geometric vertex decomposition of I with respect to y.

The ideals Cy,I and Ny,I do not depend on the choice of Gröbner basis and, in par-
ticular, do not depend on the choice of y-compatible term order <. This follows from
the facts that Cy,I = (iny I : y∞) by [11, Theorem 2.1(d)] and that Ny,I + 〈y〉 = iny I + 〈y〉
by [11, Theorem 2.1 (a)], together with the observation that y does not appear in the
generators of Ny,I given in its definition.

We say that a geometric vertex decomposition is degenerate if
√

Cy,I =
√

Ny,I or if
Cy,I = 〈1〉 and nondegenerate otherwise. As we will see through Lemma 2.4, if Cy,I =
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〈1〉, then some polynomial whose initial y-form is a unit multiple of y is an element
of I, in which case R/I ∼= R/(Ny,I + 〈y〉). If

√
Cy,I =

√
Ny,I , then

√
iny I =

√
Cy,I ∩√

Ny,I + 〈y〉 =
√

Cy,I , in which case iny I, Cy,I , and Ny,I all determine the same variety.
In both of these cases, we may often prefer to study Ny,I in the smaller polynomial ring
that omits y. This is especially true when I is radical for the following reason:

Proposition 2.3. If I is radical and has a degenerate geometric vertex decomposition iny I =
Cy,I ∩ (Ny,I + 〈y〉) with

√
Ny,I =

√
Cy,I , then the reduced Gröbner basis of I does not involve

y and I = iny I = Cy,I = Ny,I .

If an ideal I ⊆ R has a generating set G in which y2 does not divide any term of
g for any g ∈ G, then we say that I is squarefree in y. It is easy to see (for example,
by considering S-pair reductions) that every ideal that is squarefree in y has a Gröbner
basis, with respect to any y-compatible term order, such that y2 does not divide any term
of any element of the Gröbner basis.

Lemma 2.4. If I ⊆ R possesses a geometric vertex decomposition with respect to a variable
y = xj of R, then I is squarefree in y, and the reduced Gröbner basis of I with respect to any
y-compatible term order has the form {yq1 + r1, . . . , yqk + rk, h1, . . . , h`} where y does not divide
any term of any qi or ri for any 1 ≤ i ≤ k nor any hj for any 1 ≤ j ≤ `.

Geometrically vertex decomposable ideals. A geometric vertex decomposition of an ideal
is analogous to a vertex decomposition of a simplicial complex into a deletion and star.
In this subsection, we extend this analogy by considering geometrically vertex decomposable
ideals, which are analogous to vertex decomposable simplicial complexes. We again let
R = κ[x1, . . . , xn] throughout this subsection. Recall that an ideal P of R is an associated
prime of the ideal I if R/P is isomorphism to a submodule of R/I and that an ideal
I ⊆ R is unmixed if dim(R/P) = dim(R/I) for all associated primes P of I .

Definition 2.5. An ideal I ⊆ R is geometrically vertex decomposable if I is unmixed
and if (1) I = 〈1〉 or I is generated by indeterminates in R, or (2) for some variable y = xj
of R, iny I = Cy,I ∩ (Ny,I + 〈y〉) is a geometric vertex decomposition and the contractions
of Ny,I and Cy,I to κ[x1, . . . , ŷ, . . . , xn] are geometrically vertex decomposable.

We take case (1) to include the zero ideal, whose (empty) generating set vacuously
consists only of indeterminates. We will soon need observations about the relative
heights of the ideals I, Cy,I , and Ny,I in the circumstances of condition (2). The de-
generate cases are clear: if Cy,I = 〈1〉, then ht(I) = ht(Ny,I) + 1 and, if

√
Cy,I =

√
Ny,I ,

then ht(I) = ht(iny I) = ht(Cy,I) = ht(Ny,I). The nondegenerate case is handled by the
lemma below.

Lemma 2.6. If I ⊆ R is an ideal so that R/I is equidimensional and iny I = Cy,I ∩ (Ny,I + 〈y〉)
is a nondegenerate geometric vertex decomposition with respect to some variable y = xj of R,
then ht(Cy,I) = ht(I) = ht(Ny,I) + 1.
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Note that if ∆ be a simplicial complex on vertex set [n], then its Stanley–Reisner ideal
I∆ ⊆ R is geometrically vertex decomposable if and only if ∆ is vertex decomposable. We
next discuss some properties of geometrically vertex decomposable ideals and further
connections to vertex decomposable simplicial complexes.

Proposition 2.7. A geometrically vertex decomposable ideal is radical.

We next consider geometrically vertex decomposable ideals that have a certain com-
patibility with a given lexicographic monomial order. The main result in our discussion
of these ideals is Theorem 2.10, which we will need in Section 4 on applications.

Definition 2.8. Fix a lexicographic monomial order < on R. We say that an ideal
I ⊆ R is <-compatibly geometrically vertex decomposable if I satisfies Definition
2.5 upon replacing item (2) with (2*) for the <-largest variable y in R, iny I = Cy,I ∩
(Ny,I + 〈y〉) is a geometric vertex decomposition and the contractions of Ny,I and Cy,I to
κ[x1, . . . , ŷ, . . . , xn] are <-compatibly geometrically vertex decomposable for the naturally
induced monomial order on κ[x1, . . . , ŷ, . . . , xn] (which we also call <).

Let ∆ be a simplicial complex on a vertex set [n], and let < be a total order on [n]. We
say that a simplicial complex ∆ is <-compatibly vertex decomposable if either ∆ = ∅
or ∆ is a simplex or, for the <-largest vertex v ∈ ∆, del∆(v) and lk∆(v) are <-compatibly
vertex decomposable. The following is an easy consequence of [11, Theorem 2.1].

Lemma 2.9. Suppose that I ⊆ R is squarefree in y = xj, and suppose that < is a y-compatible
monomial order on R. Then in< I = in<Cy,I ∩ (in<Ny,I + 〈y〉).

We now state the main result of this section:

Theorem 2.10. An ideal I ⊆ R is <-compatibly geometrically vertex decomposable for the
lexicographic monomial order x1 > x2 > · · · > xn if and only if in< I is the Stanley–Reisner
ideal of a <-compatibly vertex decomposable simplicial complex on [n] for the vertex order 1 >
2 > · · · > n.

The next example shows that there exist geometrically vertex decomposable ide-
als that are not geometrically vertex decomposable compatible with any lexicographic
monomial order.

Example 2.11. Let I = 〈y(zs− x2), ywr, wr(z2 + zx+wr+ s2)〉 ⊆ κ[x, y, z, w, r, s]. Observe
that I is squarefree in y, and we have a geometric vertex decomposition with Cy,I =
〈zs − x2, wr〉 and Ny,I = 〈(wr)(zx + s2 + z2 + wr)〉. Furthermore, the contractions of
Cy,I and Ny,I to κ[x, z, w, r, s] are geometrically vertex decomposable. (To see this, let
Cc and Nc denote these contracted ideals. Then Cc and Nc are squarefree in s and x,
respectively, and insCc = 〈zs, wr〉 and inxNc = 〈wrzx〉.) Hence I is geometrically vertex
decomposable. Yet one readily checks that I has no squarefree initial ideals, so cannot
be <-compatibly geometrically vertex decomposable for any order < by Theorem 2.10.
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Gorenstein Liaison. Here we review standard definitions and lemmas in Gorenstein
liaison that we will need in this extended abstract. We restrict to an understanding of
Gorenstein liaison as it arises in the context of Gröbner bases and as it is required to
understand Question 1.1 for our study in combinatorial settings. For a more thorough
introduction, see [12]. We follow definitions and some notation from [6], which provides
a careful discussion of how liaison theory can be used to make inferences about Gröbner
bases. Throughout this subsection, we let R = κ[x0, x1, . . . , xn] with the standard grading.

Definition 2.12. Let V1, V2, X ⊆ Pn be subschemes defined by saturated ideals IV1 , IV2 ,
and IX of R, respectively, and assume that X is arithmetically Gorenstein. If IX ⊆ IV1 ∩ IV2

and if [IX : IV1 ] = IV2 and [IX : IV2 ] = IV1 , then V1 and V2 are directly algebraically G-
linked by X, and we write IV1 ∼ IV2 .

One may generate an equivalence relation using these direct links.

Definition 2.13. If there is a sequence of links V1 ∼ · · · ∼ Vk for some k ≥ 2, then we
say that V1 and Vk are in the same G-liaison class (or Gorenstein liaison class) and
that they are G-linked in k− 1 steps. Of particular interest is the case in which Vk is a
complete intersection, in which case we say that V1 is in the Gorenstein liaison class of
a complete intersection (abbreviated glicci).

We will say that a homogeneous, saturated, unmixed ideal of R is glicci if it defines a
glicci subscheme of Pn. It is because liaison was developed to study subschemes of pro-
jective space that the restriction to homogeneous, saturated ideals is natural. Through-
out this extended abstract, we will be interested in G-links coming from elementary G-
biliaisons. Indeed, it is through elementary G-biliaisons that we connect geometric vertex
decomposition to liaison theory. Let S be a ring. If SP is Gorenstein for all prime ideals
P of height 0, then we say that S is G0.

Definition 2.14. Let I and C be homogeneous, saturated, unmixed ideals of R with
ht(I) = ht(C). Suppose there exist ` ∈ Z, a homogeneous Cohen–Macaulay ideal N ⊆
I ∩ C of height ht(I) − 1, and an isomorphism I/N ∼= [C/N](−`) as graded R/N-
modules. If N is G0, then we say that I is obtained from C by an elementary G-biliaison
of height `.

Theorem 2.15 ([7, Theorem 3.5]). Let I and C be homogeneous, saturated, unmixed ideals
defining subschemes VI and VC, respectively, of Pn. If I is obtained from C by an elementary
G-biliaison, then VI is G-linked to VC in two steps.

3 Geometrically vertex decomposable ideals are glicci

Throughout this section, we assume that the field κ is infinite, and we let R denote the
standard graded polynomial ring κ[x1, . . . , xn].
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An elementary G-biliaison arising from a geometric vertex decomposition. Our first result
uses a geometric vertex decomposition to construct an isomorphism that will constitute
an elementary G-biliaison when the setting is appropriate.

Theorem 3.1. Suppose that I ⊆ R is an unmixed ideal possessing a nondegenerate geometric
vertex decomposition with respect to some variable y = xj of R. If Ny,I is unmixed, then there is
an isomorphism I/Ny,I

∼= Cy,I/Ny,I as R/Ny,I-modules. If Ny,I , Cy,I , and I are homogeneous,
then the same map is an isomorphism I/Ny,I

∼= [Cy,I/Ny,I ](−1) in the category of graded
R/Ny,I-modules.

Corollary 3.2. Let I be a homogeneous, saturated, unmixed ideal of R and iny I = Cy,I ∩ (Ny,I +
〈y〉) a nondegenerate geometric vertex decomposition with respect to some variable y = xj of R.
Assume that Ny,I is Cohen–Macaulay and G0 and that Cy,I is also unmixed. Then I is obtained
from Cy,I by an elementary G-biliaison of height 1.

Theorem 3.3. If I = I0 ⊆ R is a homogeneous, geometrically vertex decomposable proper ideal,
then there is a finite sequence of homogeneous, saturated, unmixed ideals I1, . . . , It so that Ij−1 is
obtained from Ij by an elementary G-biliaison of height 1 for every 1 ≤ j ≤ t and It is a complete
intersection. In particular, I is glicci and, hence, Cohen–Macaulay.

Applications to Gröbner bases and degenerations One cannot in general transfer the
Cohen–Macaulay property from an ideal to its initial ideal or from one component of
a variety to the whole variety. However, in the context of geometric vertex decomposi-
tion, we can use the combination of Cohen–Macaulayness of a homogeneous ideal I and
of the component Ny,I + 〈y〉 (equivalently, of Ny,I) to infer the same about iny I.

Corollary 3.4. Suppose that iny I = Cy,I ∩ (Ny,I + 〈y〉) is a nondegenerate geometric vertex
decomposition of the homogeneous ideal I ⊆ R and that both Ny,I and I are Cohen–Macaulay.
Then, Cy,I and iny I are Cohen–Macaulay as well.

We will now describe conditions that allow one to use the map constructed in Theo-
rem 3.1 in order to conclude that a known set of generators for I forms a Gröbner basis
when Gröbner bases for Cy,I and Ny,I are known. The result complements the framework
of [11], in which one begins with a Gröbner basis of I and concludes that the resultant
generating sets of Cy,I and Ny,I are also Gröbner bases. The corollary below gives a way
to implement the approach of [6, Lemma 1.12].

Corollary 3.5. Let I = 〈yq1 + r1, . . . , yqk + rk, h1, . . . , h`〉 be a homogenous ideal of R with
y = xj some variable of R and y not dividing any term of any qi for 1 ≤ i ≤ k nor of any
hj for 1 ≤ j ≤ `. Fix a term order <, and suppose that GC = {q1, . . . , qk, h1, . . . , h`} and
GN = {h1, . . . , h`} are Gröbner bases for the ideals they generate, which we call C and N,
respectively. Assume also that the leading term of each yqi + ri is yqi for all 1 ≤ i ≤ k, that

ht(I), ht(C) > ht(N), and that N is unmixed. Let M =

(
q1 · · · qk
r1 · · · rk

)
. If the ideal of 2-minors

of M is contained in N, then the given generators of I are a Gröbner basis with respect to <.
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Example 3.6 (The Veronese Embedding). Using Corollary 3.5, one can give a concise
inductive proof that the usual set of homogeneous equations defining the image of the
dth Veronese νd : P1 → Pd forms a Gröbner basis for any d ≥ 1. With homogeneous
coordinates [s : t] on P1 and [x0 : · · · : xd] on Pd, recall that the dth Veronese is the

map [s : t] 7→ [sd : sd−1t : · · · : std−1 : td]. Let Md =

(
x0 x1 · · · xd−1
x1 x2 · · · xd

)
, let Gd

denote the set of 2× 2 minors of Md, and let I = 〈Gd〉 be the ideal generated by Gd.
The image of the νd is defined by I, which is to say that there is a ring isomorphism
κ[x0, . . . , xd]

I
→ κ[sd, sd−1t, . . . , std−1, td] ⊆ κ[s, t] given by xi 7→ sd−iti for 0 ≤ i ≤ d. One

may use Corollary 3.5 in an inductive argument to see that Gd is a Gröbner basis of I
with respect to the lexicographic monomial order with xd > xd−1 > . · · · > x1 > x0 by

observing that the ideal generated by the 2× 2 minors of
(

x0 x1 · · · xd−2
x1xd−1 x2xd−1 · · · x2

d−1

)
is equal to xd−1 · N and so is contained in N.

4 Some well-known families of ideals are glicci

Many well-known classes of ideals Gröbner degenerate to Stanley–Reisner ideals of ver-
tex decomposable complexes. In this section, we recall a few of these classes and deduce
that they are glicci, providing evidence for an affirmative answer to the question of
whether every homogeneous Cohen–Macaulay ideal is glicci [9, Question 1.6], at least in
combintorially-natural settings. As in Section 3, we will assume throughout this section
that the field κ is infinite.

The main result we need for our applications is as follows. It is immediately obtained
by combining Theorem 2.10 with Theorem 3.3.

Corollary 4.1. Let I ⊆ κ[x1, . . . , xn] be a homogeneous ideal, and let < denote the lexicographic
order with x1 > x2 > · · · > xn. If in< I is the Stanley–Reisner ideal of a <-compatibly vertex
decomposable simplicial complex on [n] for the vertex order 1 > 2 > · · · > n, then I is glicci.

We now discuss three classes of ideals which satisfy the hypotheses of Corollary 4.1.
We omit many definitions of the ideals in question and instead provide references.

Schubert determinantal ideals. Let X = (xij) be an n × n matrix of variables and let
R = κ[xij] be the polynomial ring in the matrix entries of X. Given a permutation
w ∈ Sn, there is an associated generalized determinantal ideal Iw ⊆ R, called a Schu-
bert determinantal ideal. Schubert determinantal ideals and their corresponding matrix
Schubert varieties were introduced by Fulton in [3].

Fix the lexicographical monomial order < on R defined by xij > xkl if i < k or i = k
and j > l. This monomial order is antidiagonal, that is, the initial term of the determinant
of a submatrix Y of X is the product of the entries along the antidiagonal of Y. For
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this monomial order, in< Iw is the Stanley–Reisner ideal of a simplicial complex, called a
subword complex, which is <-compatibly vertex decomposable (see [10] or [13, Ch. 16.5]).
Corollary 4.1 thus immediately implies:

Proposition 4.2. Schubert determinantal ideals are glicci.

Graded lower bound cluster algebras. Cluster algebras are a class of combinatorially-
defined commutative algebras that were introduced by S. Fomin and A. Zelevinsky at
the turn of the century [2]. Lower bound algebras, introduced in [1] are related objects: each
lower bound algebra is contained in an associated cluster algebra, and this containment
is equality in certain cases (i.e. in the acyclic setting, see [1, Theorem 1.20]).

Each (skew-symmetric) lower bound algebra is defined from a quiver. Indeed, given
a quiver Q, there is an associated polynomial ring RQ = κ[x1, . . . , xn, y1, . . . , yn] and
ideal KQ ⊆ RQ such that the lower bound algebra LQ associated to Q can be expressed
as LQ = RQ/KQ. Fix the lexicographical monomial order with y1 > · · · > yn > x1 >
· · · > xn. By [14, Theorem 1.7] and the proof of [14, Theorem 3.3], in<KQ is the Stanley–
Reisner ideal of a simplicial complex ∆ on vertex set {y1, . . . , yn, x1, . . . , xn}, which has
vertex decomposition compatible with <. Consequently, by Theorem 2.10, we have the
following:

Proposition 4.3. The ideal KQ is geometrically vertex decomposable. When KQ is homogeneous,
it is glicci.

Remark 4.4. It follows from [14, Theorem 1.7] that KQ is homogeneous if and only if Q
has no frozen vertices and Q has exactly two arrows entering each vertex and two arrows
exiting each vertex.

Ideals defining equioriented type A quiver loci. Let d0, d1, . . . , dn be a sequence of positive
integers and consider the product of matrix spaces Mat, and product of general linear
group GL defined as follows:

Hom := ⊕n
i=1Matdi−1×di(κ), GL := ⊕n

i=0GLdi(κ).

The group GL acts on Hom on the right by conjugation: (Mi)
n
i=1 • (gi)

n
i=0 = (g−1

i−1Migi)
n
i=1.

Closures of GL-orbits are called equioriented type A quiver loci. Buchsbaum-Eisenbud
varieties of complexes are special cases of these quiver loci. An introduction to equioriented
type A quiver loci and related combinatorics can be found in [13, Ch. 17].

Proposition 4.5. Equioriented type A quiver loci are glicci. In particular, varieties of complexes
are glicci.

This follows because, up to adding some additional indeterminate generators, the
ideal of such a quiver locus is a type A Kazhdan–Lusztig ideal. As shown in [16], each
Kazhdan–Lusztig ideal Gröbner degenerates to the Stanley–Reisner ideal of a subword
complex, and this degeneration is compatible with the vertex decomposition of the com-
plex.
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5 From G-biliaisons to geometric vertex decompositions

We now state something of a converse to Theorem 3.1.

Theorem 5.1. Let I, C, and N ⊆ I ∩ C be ideals of R, and let < be a y-compatible term order.
Suppose that I is squarefree in y and that no term of any element of the reduced Gröbner basis

of N is divisible by y. Suppose further that there exists an isomorphism φ : C/N
f /g−−→ I/N of

R/N-modules for some f , g ∈ R, and iny( f )/g = y. Then iny I = C∩ (N + 〈y〉) is a geometric
vertex decomposition of I.

Example 5.2. To illustrate this correspondence between elementary G-biliaisons and ge-
ometric vertex decomposition, we consider a classical example. If I is the ideal of

2-minors of the matrix M =

(
x11 x12 x13
x21 x22 x23

)
, C = 〈x11, x12〉, N = 〈x22x11 − x21x12〉,

f = x23x12 − x22x13, and g = x12 in κ[x11, . . . , x23], then the multiplication by f /g map

[C/N](−1)
f /g−−→ I/N gives an elementary G-biliaison. Using any lexicographic order

with x23 largest, we take C = Cx23,I and N = Nx23,I , and then inx23(I) = C ∩ (N + 〈x23〉)
is a geometric vertex decomposition.
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