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Eulerian representations for real reflection groups
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Abstract. The Eulerian idempotents of a real reflection group W generate a family
of W-representations decomposing the regular representation, called the Eulerian rep-
resentations. In Type A, the Eulerian representations are well-studied and have many
elegant but mysterious connections to rings naturally associated with the braid ar-
rangement. Here, we unify these results and show that they hold for any reflection
group of coincidental type—that is, Sn, Bn, H3 or the dihedral group I2(m)—by giv-
ing six characterizations of the Eulerian representations, including as components of
the associated graded Varchenko–Gelfand ring V . As a consequence, we show that
Solomon’s descent algebra contains a commutative subalgebra generated by sums of
elements with the same descent number if and only if W is coincidental. More gener-
ally, when W is any real, finite reflection group, we give a case-free construction of a
family of Eulerian representations described by a flat-decomposition of the ring V .

Keywords: Eulerian idempotents, hyperplane arrangements, Varchenko–Gelfand ring,
configuration spaces, Solomon’s descent algebra, reflection groups

1 Introduction

This abstract studies two related families of orthogonal idempotents within the group
algebra R W of any finite reflection group W, that decompose the regular representation
into W-representations recurring many times in the literature.

Recall that a reflection group is a finite subgroup W of the general linear group GL(V)
for V = Rr, generated by orthogonal reflections through various reflecting hyperplanes H,
each of which is a codimension one linear subspace of V. One then has an associated
reflection hyperplane arrangement1 A = {Hi}i∈I , and its intersection lattice L(A), which is
simply the collection of all intersection subspaces (e.g. flats) X = H1∩ · · · ∩Hm of subsets
of the hyperplanes. Work of Saliola [23, 24, 25] associates to each such intersection X an
idempotent eX in the face (Tits) algebra of A, and {eX}X∈L(A) turn out to give a complete
family of orthogonal idempotents for this algebra; we call these flat idempotents2 of A.

*braun622@umn.edu. S.B. is supported by the NSF Graduate Research Fellowship (DMS-0007404).
1We will write A(W) when we wish to specify W and A when W is clear from context.
2The family of idempotents depends on a choice of (homogeneous) section map. The technical defini-

tions will not play a role in the statement of our results; for this reason, we omit them. The curious reader
should consult [2] for an in-depth discussion.
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We group the eX further into two coarser, complete families of orthogonal idempotents.
Letting

[X] := {Y = wX : w ∈W} ⊂ L(A)
denote the W-orbit of the intersection space X, we will consider the idempotents

e[X] := ∑
Y∈[X]

eY (1.1)

as [X] runs through the W-orbits L(A)/W on L(A), which we call flat-orbit idempotents3.
The e[X] can be realized as idempotents in R W via a result of Bidigare [9], and in this
case they correspond to idempotents introduced by F. Bergeron, N. Bergeron, Howlett
and Taylor in [6]. There are even coarser idempotents

ek := ∑
Y∈L(A)

dimV(Y)=k

eY (1.2)

for k = 0, 1, . . . , r. This last family will be called the Eulerian idempotents for W and can
also be realized in R W.

Our goal in this abstract (based upon the paper [10]) is to analyze two families of
representations. First, the Eulerian representations {R Wek}0≤k≤r when W is a reflection
group of coincidental type4; that is, a finite, irreducible real reflection group of rank r
whose exponents (equivalently, degrees) can be expressed in terms of an exponent gap g:

1, 1 + g, 1 + 2g, . . . , 1 + (r− 1)g.

These are exactly reflection groups of Types A and B, H3, and the dihedral group I2(m).
Second, we study the family of flat-orbit idempotents {R We[X]}[X]∈L(A)/W for any real
finite reflection group W. In both cases, we will give a description of these representa-
tions in terms of well-known topological spaces naturally associated with A.

Outline

The remainder of the abstract proceeds as follows. Section 2 provides motivation for
our results by reviewing previous work on the Type A and B Eulerian representa-
tions. Section 3 then discusses our methods and defines key constructions, including
the Varchenko–Gelfand ring and its associated graded. In Section 4, we turn to the case
that W is a coincidental reflection group. We show that R W contains a subalgebra gen-
erated by elements with the same number of descents if and only if W is coincidental
(Theorem 4.3), and give six characterizations of the Eulerian representations in this set-
ting (Theorem 4.5). Finally, in Section 5 we give a case-free construction of the family of
representations {R We[X]}[X]∈L(A)/W for any real, finite reflection group (Theorem 5.3).

3The flat-orbit idempotents are sometimes also referred to as Eulerian idempotents in the literature.
4These groups are called good reflection groups by Aguiar–Mahajan in [2].
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2 Previous work on the Eulerian representations

2.1 Motivating story: Type A

The Eulerian idempotents ek described in (1.2) generalize the Type A Eulerian idempo-
tents, which have been studied extensively beginning in the late 1980s, when they were
discovered independently by both Reutenauer in [21] and Gerstenhaber–Schack in [15].

Reutenauer introduced a family of idempotents {ek}0≤k≤n−1 in R Sn as part of his
work on the Campbell–Baker–Hausdorff formula. In [14], Garsia and Reutenauer showed
that these idempotents can be defined via the generating function

n−1

∑
k=0

tk+1ek = ∑
w∈Sn

(
t− 1 + n− des(w)

n

)
w, (2.1)

where one defines the Coxeter descent set for any Coxeter system (W, S),

Des(w) := {s ∈ S : `(w) > `(ws)}

and the descent number
des(w) = |Des(w)|.

By contrast, Gerstenhaber and Schack were interested in giving a Hodge-type decom-
position of Hochschild homology, a homology theory for associative algebras. Earlier in
[4], Barr had defined a “shuffle product” S(Sn) (Barr’s element), which can be phrased in
the language of descents as5

S(Sn) := ∑
s∈S

∑
w∈Sn

Des(w)⊂{s}

w.

Gerstenhaber and Schack built upon Barr’s work, proving that S(Sn) 1) acts semisimply
on R Sn with eigenvalues σk = 2k+1 − 2 for 0 ≤ k ≤ n − 1 and 2) commutes with

5Barr’s element was originally defined by tensoring S(Sn) as defined above with the sign representa-
tion.
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the Hochschild boundary operator. Using Lagrange interpolation6, they constructed a
family of idempotents that are polynomials in S(Sn) and for each k, project onto the σk-
eigenspace of S(Sn). While it is not obvious that these viewpoints yield the same result,
Loday showed in [18] that the σk-eigenspace projectors are precisely the ek in (2.1).

Example 2.2. When n = 3, one has S(S3) = 2 + (12) + (23) + (123) + (132) and

e0 =
1
6
(
2− (12)− (23)− (123)− (132) + 2(13)

)
,

e1 =
1
2
(
1− (13)

)
,

e2 =
1
6
(
1 + (12) + (23) + (13) + (123) + (132)

)
.

From our perspective, perhaps the most interesting aspect of the Type A Eulerian
idempotents are the properties of the Sn-representations R Snek they generate. In the
k = 0 case, R Sne0 ⊗ sgnSn

is isomorphic to the top homology of the partition lattice
Πn (see Barcelo [3], Joyal [17], Wachs [29]), and R Sne0 is isomorphic to the multilinear
component of the free Lie algebra on n generators (see Garsia [13], Reutenauer [22]).

Even more surprising is the following “folklore” fact:

R Snek
∼=Sn H(n−1−k)d(Confn(R

d); R)

when d ≥ 3 and odd, where Confn(R
d) is the space of n distinct labeled points in

Rd. This can be deduced by comparing a result of Sundaram and Welker for subspace
arrangements [27, Thm 4.4(iii)] with descriptions of the characters of R Snek by Hanlon
[16]; see Sundaram [26, Sec. 2: Thm. 2.2, Eq. 23] for history, or Early–Reiner [12, Eq.
1.1]. The space H∗ Confn(R

d) is well-studied and connects the ek to other rings associated
with the braid arrangement (to be discussed in Section 3). These Type A properties are
the inspiration for our results.

2.3 Hint at a more general phenomenon: Type B

As in Type A, the Eulerian idempotents in (1.2) generalize earlier work by F. Bergeron
and N. Bergeron in [5] for Type B. Like Garsia and Reutenauer, Bergeron and Bergeron
define the Type B Eulerian idempotents as elements in R Bn using the generating function7

n

∑
k=0

tkek = ∑
w∈Bn

( t−1
2 + n− des(w)

n

)
w. (2.2)

6Anytime an element x of an algebra A acts semisimply on A, one can produce a family of idempotents
that project onto each eigenspace of x via the Lagrange interpolation formula. This will be important in
Sections 4 and 5; idempotents constructed in this way will be called the eigenspace projectors of x.

7The idempotents that Bergeron and Bergeron define are actually obtained by tensoring the ek in (2.2)
with the sign representation.
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Like Gerstenhaber and Schack, they show that the ek give a Hodge-type decomposition
of Hochschild homology for a commutative hyperoctahedral algebra8, although they do
not use a Barr-like element to do so.

In [7], N. Bergeron gave a description of the Bn representation R Bne0 ⊗ sgnBn
as the

top homology of the intersection lattice L(A) for the Type B hyperplane arrangement—
thus hinting that the features of the Eulerian representations in Type A might hold more
generally. We will show this to be true.

3 Methods and Key Constructions

We aim to describe the Eulerian representations in terms of three closely related spaces:

1. The associated graded Varchenko–Gelfand ring V(A), to be defined and discussed in
Section 3.1 below. Intuitively, V(A) can be thought of as a commutative version of
the (better studied) Orlik–Solomon algebra;

2. The cohomology9 of a “d-dimensionally thickened” hyperplane complement

Md
A := V ⊗Rd−

( ⋃
Hi∈A

Hi ⊗Rd
)

; and

3. The homology of open intervals (V, X) in L(A): for each X in L(A), the set-wise
W-stabilizer subgroup NX acts on the order complex ∆(V, X) and on its homology
H∗(V, X), which is nonvanishing only in degree codim(X)− 2. We will abbreviate
the name of this NX-representation10 as

WHX := Hcodim(X)−2(V, X)

and define from it an induced W-representation

WH[X] := IndW
NX

WHX ⊗detV/X,

where detV/X(w) is the determinant of w ∈ NX acting on V/X.

The relationship between the associated graded Varchenko–Gelfand ring and the Orlik–
Solomon algebra is best understood through Md

A. In the d = 2 case, M2
A is the com-

plexification of the hyperplane complement M1
A, and H∗(M2

A) is (W-equivariantly)
isomorphic to the Orlik–Solomon algebra. A recent result of Moseley in [19] shows that
when d ≥ 3 and odd, H∗(Md

A) (W-equivariantly) describes V(A) as a graded ring.

8A hyperoctahedral algebra is an algebra with an involutive automorphism.
9Henceforth, all cohomology and homology groups are assumed to have coefficients in R.

10The notation here refers to the fact that WHX is a summand of Whitney Homology.
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In the case of the Braid arrangement,Md
A(Sn)

= Confn(R
d) and there is a description

of the cohomology due to F. Cohen [11] for d of any parity. Similarly, in Type B,Md
A(Bn)

is ConfZ2
n (Rd), the Z2 orbit configuration space with cohomology presentation given by

Xicotencatl [30] for any d.
Our contribution will be to connect all of these spaces—which already have well-

known relationships to each other—to the Eulerian idempotents (in all of their guises).
In doing so, we will avoid any character computations and rather tie together vari-
ous equivariant versions of results in the literature, such as work by Aguiar–Mahajan
[2], Reiner–Saliola–Welker [20], and Sundaram–Welker [27]. The main novelties in our
methods are 1) to define generalizations and extensions of Barr’s element and study
their action on R W and 2) to further analyze the associated graded Varchenko–Gelfand
ring in order to use it as a stepping-stone between other spaces.

3.1 The Varchenko–Gelfand ring

Every real hyperplane H in a vector space V partitions V \ H into two disjoint half-
spaces, denoted H+ and H−. For a arrangementA = {Hi}i∈I , the ring of locally constant
functions onM1

A is precisely H0(M1
A), and has a filtration by Heaviside functions, where

for each i ∈ I, the Heaviside function xi ∈ H0(M1
A) is given by

xi(v) :=

{
1 v ∈ H+

i

0 v ∈ H−i .

In [28], Varchenko and Gelfand use these Heaviside functions to describe H0(M1
A),

which we now review11. Define E(A) := R[ei]Hi∈A, and for a k-tuple of hyperplanes

M = (H1, . . . , Hk), write eM = e1e2 . . . ek. The set M is dependent if codimV

(⋂
Hi∈M Hi

)
<

|M| and independent otherwise. If M is minimally dependent—that is, for any Hj ∈ M,
one has M \ Hj independent—M is called a circuit. Any circuit C of A can be uniquely
partitioned into two sets, C+ and C− such that⋂

Hi∈C+

H+
i ∩

⋂
Hj∈C−

H−j = ∅.

Theorem 3.2 (Varchenko–Gelfand [28, Thm. 4.5]). The ring morphism defined by

Ψ : E(A) −→ H0(M1
A)

ei 7−→ xi

induces a ring isomorphism H0(M1
A)
∼= E(A)/J , with J = ker(Ψ) generated by:

11For simplicity, we will assume that A is a central arrangement, although Varchenko and Gelfand also
give a presentation of H0(M1

A) for non-central arrangements in [28].
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1. e2
i − ei for Hi ∈ A,

2. For every circuit C in A,

∏
Hi∈C+

ei ∏
Hj∈C−

(ej − 1)− ∏
Hi∈C+

(ei − 1) ∏
Hj∈C−

ej.

The ring E(A)/J is the Varchenko–Gelfand ring. The map Ψ imposes an ascending
filtration on H0(M1

A) obtained from the natural degree grading on E(A): the mth layer
in the filtration is the span of monomials in the variables xi having degree at most m.
We will call the associated graded ring with respect to this filtration the associated graded
Varchenko–Gelfand ring, which has the following presentation:

Definition 3.3 (Associated graded Varchenko–Gelfand ring). For a central hyperplane
arrangement A, let V(A) := E(A)/I be the associated graded Varchenko–Gelfand ring,
where I is generated by:

1. e2
i for each Hi ∈ A;

2. For every circuit C in A
∂̃(eC) := ∑

Hi∈C
c(i)eC\Hi

,

where

c(i) =

{
1 if Hi ∈ C−,
−1 if Hi ∈ C+.

Let V k(A) be the k-th graded piece of V(A) spanned by degree k polynomials in the ei.

Remark 3.4. There is a finer decomposition of V(A) by flats X ∈ L(A). Define for each

X ∈ L(A) the R-subspace EX(A) := R{eM :
(⋂

Hi∈M Hi

)
= X}. Note that E(A) has

a vector space decomposition E(A) = ⊕
X∈L(A) EX(A). We show in [10, Thm. 5.5] that

this decomposition holds for V(A) as well:

V(A) =
⊕

X∈L(A)
VX(A),

where VX(A) := EX(A)/ I ∩EX(A).
Example 3.5 (Braid Arrangement). Let W = Sn. The braid arrangement has hyperplanes
of the form Hij := {xi − xj = 0}. One can show that the circuits needed to generate I
are C+ = {Hij, Hjk}, C− = {Hik} for 1 ≤ i < j < k ≤ n. Thus I is generated by

1. e2
ij for every Hij ∈ A

2. eijejk − eijeik − ejkeik for every Hij, Hjk, Hik ∈ A.

This recovers F. Cohen’s presentation of H∗ Confn(R
d) when d ≥ 3 is odd [11].

The ring V(A) will play an essential role in Sections 4 and 5.
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4 Results for coincidental reflection groups

We first turn to the case where W is a coincidental reflection group of rank r with Coxeter
generators S. Recall that because W is coincidental, the exponents (equivalently, degrees)
of W can be expressed in terms of the exponent gap g as 1, 1 + g, 1 + 2g, . . . , 1 + (r− 1)g.

Below are the ranks r, exponent gaps g, and exponents for the coincidental groups:

W r g exponents
Sn n− 1 1 1, 2, · · · , n− 1
Bn n 2 1, 3, · · · , 2n− 1
H3 3 4 1, 5, 9

I2(m) 2 m− 2 1, m− 1

One might wonder why we focus on coincidental reflection groups. For our purposes,
it is because this class of group is well-behaved with respect to the restriction arrangement
AX := {H ∩ X : H ∈ A, X 6⊂ H} (see Figure 1 for an example). In particular, using a
result of Abramenko [1, Prop 5.], Aguiar–Mahajan [2, Thm. 5.28] show the following.

Theorem 4.1 (Abramenko, Aguiar–Mahajan). LetA be an irreducible reflection arrangement.
Then for any X ∈ L(A), the restriction arrangement AX is also a reflection arrangement (not
necessarily irreducible) if and only if W is of coincidental type. In this case, the combinatorics of
AX depends only on the dimension of X.

A =

H12

H13

H23 AH12 =

H12

Figure 1: The rank-two braid arrangement (left) and its restriction at H12 (right).

Our primary tool will be a generalization of Barr’s element in R W. Define

S(W) := ∑
s∈S

∑
w∈W

Des(w)⊂{s}

w.

Proposition 4.2. The element S(W) acts semisimply on R W. When W is coincidental, S(W)
has eigenvalues σ0 < σ1 < · · · < σr in Z≥0, where σk counts the number of rays (i.e. halfspaces
for lines) lying in AX for any k-dimensional flat X ∈ L(A). Furthermore, in the coincidental
case, the eigenspace projectors of S(W) are precisely the Eulerian idempotents in (1.2).

As a consequence, we are able to determine when the Eulerian subspace

E(W) :=
{

∑
w∈W

cww : cw = cw′ ∈ R if des(w) = des(w′)
}
⊂ R W
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is a commutative subalgebra, as it is known to be in Types A and B (see [14] and [5].)

Theorem 4.3. The Eulerian subspace E(W) is a subalgebra if and only if W is coincidental.
Moreover, when the Eulerian subalgebra exists, it is always commutative.

Proof idea. Write E(W) = E and S(W) = S . The Eulerian subspace E always has di-
mension r + 1 and contains S . If E is a subalgebra, it will contain the subalgebra RS
generated by S . Since S acts semisimply on R W, the algebra RS will be commutative
and have dimension equal to the number of distinct eigenvalues of S . In the coincidental
case, S has r + 1 eigenvalues by Proposition 4.2, so RS = E . In the non-coincidental
case, one can show that S always has more than r + 1 eigenvalues and so RS 6⊆ E .

4.4 Main Results

We will now develop a unified theory of Eulerian representations for coincidental reflec-
tion groups. Recall that (t)k := (t)(t + 1) . . . (t + k− 1) is the rising factorial. Let

βW,k(t) :=

(
t+g−1

g − k
)

k

(
t+1

g

)
r−k(

2
g

)
r

,

where g is the exponent gap of W. Our main theorem is a description of the Eulerian
representations, which follows from Theorem 4.1 and Proposition 4.2 in conjunction with
results from Aguiar–Mahajan [2], Bidigare [9], Bidigare–Hanlon–Rockmore [8], Moseley
[19], Reiner–Saliola–Welker [20] and Sundaram–Welker [27].

Theorem 4.5. When W is a coincidental reflection group of rank r, for each 0 ≤ k ≤ r, the
following are equivalent as W-representations:

1. The k-th graded piece of the associated graded Varchenko–Gelfand ring, V k(A);

2. Hk(d−1)(Md
A) for d ≥ 3 and odd;

3.
⊕

[X] WH[X], where the direct sum is over all [X] ∈ L(A)/W with codimV(X) = k;

4. The σr−k eigenspace of S(W) in R W;

5. The left R W-module R Wer−k, where er−k is an Eulerian idempotent as in (1.2);

6. The left R W-module R WEr−k, where {Ek} ⊂ E(W) are idempotents defined by
r

∑
k=0

tkEk := ∑
w∈W

βW,des(w)(t) · w.

Theorem 4.5 recovers all known descriptions of the Type A and B Eulerian represen-
tations and also implies that the Type B Eulerian representations are isomorphic to the
non-trivial pieces of the Z2-orbit configuration space H∗ ConfZ2

n (Rd) when d ≥ 3 and
odd. See Table 1 for an example of the Eulerian representations in Type A.



10 Sarah Brauner

Configuration space Irreducible
Eulerian representation cohomology decomposition

R S3e2 = σ2-eigenspace V0(A) = H0 Conf3(R
d)

R S3e1 = σ1-eigenspace V1(A) = H1(d−1) Conf3(R
d) ⊕

R S3e0 = σ0-eigenspace V2(A) = H2(d−1) Conf3(R
d)

Table 1: The Eulerian representations for S3 when d ≥ 3 and odd.

5 Results for arbitrary reflection groups

We now turn to the case that W is an arbitrary finite Coxeter group with reflection ar-
rangement A. For our purposes, the key differences in this setting are 1) in general AX is
not necessarily a reflection arrangement, and 2) if dim(X) = dim(Y) for X, Y ∈ L(A), it
is not necessarily true that L(AX) ∼= L(AY). Hence the methods used in the coincidental
case are not applicable. To combat this problem, we do two new things. First, we utilize
the flat grading V(A) = ⊕X∈L(A) VX(A) discussed in Remark 3.4. Second, we introduce
an element T ∈ R W whose eigenspaces will be indexed by flat orbits [X] ∈ L(A)/W.

Definition 5.1. Let
T := ∑

T⊂S
∑

w∈W
Des(w)⊂T

cTw

where the coefficients {cT}T⊂S ⊂ R are positive and algebraically independent over Q.

Proposition 5.2. The element T acts semisimply on R W with eigenvalues τ[X] for [X] ∈
L(A)/W, such that τ[X] = τ[Y] if and only if [X] = [Y]. Furthermore, the eigenspace pro-
jectors of τ recover a family of flat-orbit idempotents as in (1.1).

We can thus use properties of T to give a case-free proof of the following result.

Theorem 5.3. For each [X] ∈ L(A)/W, the following are isomorphic as W-representations:

1. The direct summand IndW
NX
VX(A), where NX is the set-wise stabilizer of X;

2. The representation WH[X] = IndW
NX

WHX ⊗ detV/X;

3. The τ[X]-eigenspace of T in R W and

4. The representation R We[X] generated by a flat-orbit idempotent e[X] as in (1.1).
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