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Abstract. Let α = (a, b, . . .) be a composition. Consider the associated poset F(α),
called a fence, whose covering relations are

x1 C x2 C . . . C xa+1 B xa+2 B . . . B xa+b+1 C xa+b+2 C . . . .

We study the associated distributive lattice L(α) consisting of all lower order ideals
of F(α). These lattices are important in the theory of cluster algebras and their rank
generating functions can be used to define q-analogues of rational numbers. In par-
ticular, we make progress on a recent conjecture of Morier-Genoud and Ovsienko that
L(α) is rank unimodal. We show that if one of the parts of α is greater than the sum
of the others, then the conjecture is true. We conjecture that L(α) enjoys the stronger
properties of having a nested chain decomposition and having a rank sequence which
is either top or bottom interlacing, the latter being a recently defined property of se-
quences. We verify that these properties hold for compositions with at most three parts
and for what we call d-divided posets, generalizing work of Claussen and simplifying
a construction of Gansner.

Résumé. Soit α = (a, b, . . .) une composition. Considérons l’ensemble partiellement
ordonné associé F(α), appelé une clôture, dont les rélations de couverture sont

x1 C x2 C . . . C xa+1 B xa+2 B . . . B xa+b+1 C xa+b+2 C . . . .

Nous étudions le treillis distributif associé L(α) composé de tous les idéaux inférieurs
de F(α). Ces treillis sont importants en la théorie d’algèbres ammassées et leurs fonc-
tions génératrices de rang peuvent être utilisées pour définir des q-analogues des nom-
bres rationnels. En particulier, nous progressons sur une conjecture récente de Morier-
Genoud et Ovsienko que L(α) est rang unimodal. Nous vérifions la conjecture quand
une des parties de la composition est plus grande que la somme des autres. Nous
conjecturons que L(α) a les propriétés plus puissantes d’avoir une décompoisition en
chaînes imbriquées et d’avoir une séquence de rangs qui entrelace soit en haut soit en
bas, ce dernier étant une propriété récemment définie. Nous vérifions que ces pro-
priétés tiennent pour les compositions avec au plus trois parties en généralisant le
travail de Claussen.

Keywords: heaviness, interlacing, distributive lattice, fence, nested chain decomposi-
tion, rank unimodal



2 T. McConville, B. Sagan, C. Smyth

x1

x2

x3

x4

x5

x6

x7

Figure 1: The fence F(2, 3, 1)

1 Basic definitions and background

This extended abstract is a summary of the results in the paper of the same name and
with the same authors [12].

We will be studying the conjectured rank unimodality of certain distributive lattices.
We begin by defining the posets from which they arise. Our terminology for partially
ordered sets and other structures will follow Sagan’s combinatorics text [16]. Let α =
(α1, α2, . . . , αs) be a composition of n− 1, that is, a sequence of positive integers summing
to n− 1. To simplify notation we will sometimes write α = (a, b, c, . . .). For each α we
have a corresponding fence poset, F = F(α), with elements x1, x2, . . . , xn and covering
relations

x1 C x2 C . . .C xa+1 B xa+2 B . . .B xa+b+1 C xa+b+2 C . . .C xa+b+c+1 B xa+b+c+2 B . . . (1.1)

where E is the order relation in F. The Hasse diagram of the fence F(2, 3, 1) is shown in
Figure 1. We will call the maximal chains of F segments so that the ith part of α is equal
to the length of the ith segment of F. Because of this convention, the sum of the parts of
α is one less than #F, the cardinality of F.

Given any poset P, its set of (lower) order ideals forms a distributive lattice L(P).
We will shorten L(F(α)) to L(α) and use similar abbreviations with other notation. The
complement of an order ideal of P is an order ideal of P∗, the poset dual of P. And
if α = (α1, . . . , αs) has an odd number of segments then F(αr) ∼= F(α)∗ where αr =
(αs, . . . , α2, α1) is the reversal of α and ∼= is a poset isomorphism. Combining these two
observations and translating to the corresponding lattices we have the following result
which we record for future use.

Lemma 1.1. For any α = (α1, . . . , αs) with s odd we have

L(α) ∼= L(αr)∗.

The lattices L(α) will be our principal objects of study. They are important objects
in the theory of cluster algebras. In particular, one can view F(α) as a quiver formed
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from the Dynkin diagram of type A by replacing each cover x C y with an arrow from x
to y. Then L(α) can be used to compute a mutation in a corresponding cluster algebra
on a surface. In fact, there are (at least) six different descriptions of L(α) or its dual
which are useful for this computation. These are in terms of perfect matchings on snake
graphs [15], perfect matchings of angles [23, 24], T-paths [19, 18, 20], lattice paths on
snake graphs [15], lattice paths of angles [8], or S-paths [8].

In order to introduce the conjecture on which we will focus, we need some defini-
tions related to sequences and their generating functions. We say that a sequence of
nonnegative real numbers a0, a1, . . . , an is unimodal if there is some index m such that

a0 ≤ a1 ≤ . . . ≤ am ≥ am+1 ≥ . . . ≥ an.

Unimodal sequences arise frequently in combinatorics, algebra, and geometry; see the
survey articles of Stanley [22], Brenti [7] or Brändén [5]. We will say that the generating
function f (q) = ∑k akqk has a property such as unimodality if its coefficient sequence
does.

Now suppose that P is a finite poset. We call P ranked if, for all x ∈ P, the length of
any saturated chain from a minimal element to x is invariant. This length is called the
rank of x and denoted rk x. We also define the rank of P, rk P, to be the maximum of rk x
over all x ∈ P. The kth rank of P is the set

Rj(P) = {x ∈ P | rk x = j}

and we let rj(P) = #Rj(P). Any finite distributive lattice is ranked by the cardinality of
each element viewed as an order ideal of the corresponding poset of join irreducibles.
We say that P is rank unimodal if the sequence r0(P), r1(P), . . . , rn(P) is unimodal where
n = rk P. We will similarly prepend “rank" to other properties of sequences when
applied to the rank sequence of a poset. Our main object of study is the following
conjecture of Morier-Genoud and Ovsienko.

Conjecture 1.2 ([13]). For any α, the lattice L(α) is rank unimodal.

We note that Morier-Genoud and Ovsienko used the rank generating functions for
the L(α) to define q-analogues for rational numbers. Interestingly, special cases of this
conjecture had already been proven even before it was stated because the problem is so
natural in its own right. Gansner [9] proved Conjecture 1.2 for certain dual fences which
we call d-divided. Munarini and Zagaglia [14] gave a different proof of the conjecture for
2-divided fences which are those with α = (1, 1, . . . , 1). Since the conjecture was posed,
Claussen [8] has shown that it is true for all fences with at most four segments. One of
our main results is that Conjecture 1.2 holds if one of the segments is sufficiently long.

Theorem 1.3. Suppose α = (α1, . . . , αs) and there is an index t such that

αt > ∑
i 6=t

αi.
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Then L(α) is rank unimodal.

We will also be interested in various strengthenings of Conjecture 1.2. To state them,
we will need to define other properties of sequences and posets. Say that the sequence
a0, a1, . . . , an is symmetric if ak = an−k for k < n/2. Symmetric unimodal sequences are
common, for example a row of Pascal’s triangle or the coefficients of a q-binomial coef-
ficient. Even when one does not have symmetry, there may be some relation between ak
and an−k. Call the sequence top heavy (respectively, bottom heavy) if ak ≤ an−k (respec-
tively, ak ≥ an−k) for k < n/2. As an illustration, a special case of a result of Björner and
Ekedahl [4] states that the rank sequence for Bruhat order on a crystallographic Coxeter
group is top heavy. More recently, a new property of sequences has been identified
which implies both unimodality and heaviness. Call the sequence top interlacing if

a0 ≤ an ≤ a1 ≤ an−1 ≤ . . . ≤ adn/2e (1.2)

where d·e is the ceiling function. Similarly, the sequence is bottom interlacing if

an ≤ a0 ≤ an−1 ≤ a1 ≤ . . . ≤ abn/2c

with b·c being the floor function. See [1, 2, 3, 6, 17, 21] for research related to this concept.
We note that in the literature (1.2) has been called “alternately increasing”. However, we
prefer our terminology both because “alternating” usually refers to a sequence satisfying
a0 < a1 > a2 < a3 > . . ., and since (1.2) implies that the first half of the sequence and
the reverse of the second half interlace in the usual sense of the term. We propose the
following strengthening of Conjecture 1.2. In it, we refer to the rank sequence

r(α) = (r0(α), r1(α), . . . , rn(α)) (1.3)

where rj(α) = rj(L(α)) and n = #F(α).

Conjecture 1.4. Suppose α = (α1, . . . , αs).

(a) If s = 1 then r(α) = (1, 1, . . . , 1) is symmetric.

(b) If s is even, then r(α) is bottom interlacing.

(c) Suppose s ≥ 3 is odd and let α′ = (α2, . . . , αs−1).

(i) If α1 > αs then r(α) is bottom interlacing.

(ii) If α1 < αs then r(α) is top interlacing.

(iii) If α1 = αs then r(α) is symmetric, bottom interlacing, or top interlacing depending
on whether r(α′) is symmetric, top interlacing, or bottom interlacing, respectively.
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Statement (a) in this conjecture is trivial, but is needed as a base case. We have
verified this conjecture by computer for up to 5 segments of lengths at most 10, and
for 6 segments having lengths at most 5. We have been able to prove the conjecture for
various fences, including those with at most three segments and the d-divided posets,
by showing that the corresponding lattices satisfy an even stronger condition which we
now describe.

Let P be a ranked poset with rk P = n. Also, let C be a saturated x–y chain in P. The
center and interval of C are the rational number

cen C =
rk x + rk y

2

and interval of integers
[C] = [rk x, rk y],

respectively. A chain decomposition or CD of P is a set partition of P into saturated chains.
In a symmetric chain decomposition or SCD, every chain C in the partition must satisfy
cen C = n/2. Equivalently, if C is an x–y chain of the partition then rk y = n− rk x. If P
admits an SCD then its rank sequence is symmetric and unimodal. In fact, P even enjoys
the strong Sperner property which says that, for all k ≥ 1, the maximum cardinality
of a union of k antichains is just the sum of the k largest ranks. See the survey article
of Greene and Kleitman [11] for more information about chain decompositions and the
Sperner property.

To deal with the case when the rank sequence is not symmetric, consider a nested
chain composition, NCD, which is a CD where any two of its chains C, D satisfy either
[C] ⊆ [D] or [D] ⊆ [C]. If P admits an NCD then it is rank unimodal and still has
the strong Sperner property. We will be particularly concerned with a special type of
NCD. Call a CD top centered if every chain C in the partition satisfies cen C = n/2 or
cen C = (n + 1)/2. It follows easily that this is an NCD and the rank sequence of P
is top interlacing. Similarly, a CD is bottom centered if its chains satisfy cen C = n/2 or
(n− 1)/2. Again, this is an NCD and the rank sequence is now bottom interlacing. Note
also that if a poset has an NCD and its rank sequence is top or bottom interlacing then
the NCD must be top or bottom centered, respectively. This can be proven inductively
using the observation that an NCD must contain a chain from a minimum rank element
to a maximum rank element. This leads to the strongest of our conjectures so far.

Conjecture 1.5. For any α, the lattice L(α) admits a CD which is either symmetric, top centered,
or bottom centered consistent with Conjecture 1.4.

We sketch proofs of a number of special cases of this conjecture in the sequel. In
particular, when the fence has at most three segments we have the following refinement
of Claussen’s result on the rank unimodality of the L(α).

Theorem 1.6. If α has at most three parts then Conjecture 1.5 is true.
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The rest of this abstract is structured as follows. In the next section we will sketch a
proof of Theorem 1.3 in the case that the long segment is the first or the last. We will
do this using a recursion which will also permit us to replace the strict inequality with
a weak one for these particular segments. In Section 3 we indicate how to complete the
proof of Theorem 1.3. We will also describe an inductive procedure for proving Con-
jecture 1.5 when a long segment exists, given that it holds for an appropriate base case.
The following section will be devoted to giving a construction to prove Theorem 1.6.

2 Long initial or final segments

In this section we outline a proof of a stronger version of Theorem 1.3 where the long
segment is either the first or the last. This will be based on a recursion for the rank
generating function

r(q; α) = ∑
j≥0

rj(α)qj

where the rj(α) are given by (1.3). The method of proof involves considering the ideals of
F(α) which do or do not contain an element x, which we will call toggling on x. Also, for
the recursions to make sense, we must permit compositions (α1, . . . , αs) where αs = 0.
But in this case we just define

F(α1, . . . , αs−1, 0) = F(α1, . . . , αs−1).

Lemma 2.1. Let α = (α1, α2, . . . , αs). Then for s odd

r(q; α) = r(q; α1, . . . , αs−1, αs − 1) + qαs+1 · r(q; α1, . . . , αs−2, αs−1 − 1)

and for s even

r(q; α) = r(q; α1, . . . , αs−2, αs−1 − 1) + q · r(q; α1, . . . , αs−1, αs − 1).

In order to make use of this lemma, we will have to consider the indices where the
coefficients of a polynomial achieve their maximum. Given f = ∑k akqk we define the set
of maxima indices as

mi( f ) = {k | ak = m}
where m is the maximum value of a coefficient of f . Note that if f is unimodal then
mi( f ) will be an interval of integers. The next result is easy to prove.

Lemma 2.2. Let f , g be unimodal polynomials and suppose that mi( f ) ∩mi(g) 6= ∅. Then
f + g is unimodal and mi( f + g) = mi( f ) ∩mi(g).

The two preceding results can be used to prove a stronger version of Theorem 1.3 for
the first segment.
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Theorem 2.3. If α = (α1, α2, . . . , αs) satisfies

α1 ≥ α2 + α3 + · · ·+ αs

then r(q; α) is unimodal with

mi(r(q; α)) = [α2 + α3 + · · ·+ αs, α1].

We have the same result for the last segment.

Theorem 2.4. If α = (α1, α2, . . . , αs) satisfies

αs ≥ α1 + α2 + · · ·+ αs−1

then r(q; α) is unimodal.

3 Arbitrary long segments

Theorem 1 can be proved by using induction on the length of the long segment and the
following lemma which locates the ranks of maximum size in the lattice coming from a
poset with a long segment.

Lemma 3.1. Let α = (α1, . . . , αs) and n = #F(α). Suppose that for some t we have

αt > ∑
i 6=t

αi. (3.1)

Then the maximum size of a rank of L = L(α) is ` = #L(F′) where F′ is the poset obtained by
removing the elements of segment t from F = F(α). And this maximum occurs at ranks m + 1
through n−m− 1 where m = #F′.

We now give an inductive method for proving that Conjecture 1.5 holds. To do so,
we must first investigate the finer structure of L(α) where α has a long segment. For any
ranked poset P, let

Pk = {x ∈ P | rk x ≤ k}

and
Pk = {x ∈ P | rk x ≥ k}.

Lemma 3.2. Let α = (α1, . . . , αs), F = F(α), and L = L(α). Also let n = #F and m = #F′

where F′ is as in Lemma 3.1. Suppose that for some t we have

αt > ∑
i 6=t

αi.
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Let G = F(β) and M = L(β) where

β = (α1, . . . , αt−1, αt + 1, αt+1, . . . , αs).

Then we have isomorphisms

Ln−m−1
∼= Mn−m−1 and Ln−m ∼= Mn−m+1.

We now have everything in place to state our inductive criterion for checking whether
a poset with a long segment satisfies Conjecture 1.5.

Theorem 3.3. Assume the hypotheses and notation of Lemma 3.2. If L has an NCD then so does
M. Furthermore, if the NCD of L is symmetric, top centered, or bottom centered then the NCD
of M has the same property.

Using the previous lemma and induction on the length of the long segment, we
immediately get the following result. Note that showing one lattice has an NCD of
a certain form immediately gives an infinite family of lattices with NCDs of the same
form.

Corollary 3.4. Let α = (α1, . . . , αs) where

αt = 1 + ∑
i 6=t

αi (3.2)

for some t. If L = L(α) has an NCD then so does M = L(β) where

β = (α1, . . . , αt−1, αt + a, αt+1, . . . , αs)

for any a ≥ 0. Furthermore, if the NCD of L is symmetric, top centered, or bottom centered then
the NCD of M has the same property.

Now one can use a computer to verify the following.

Corollary 3.5. Let F = F(α1, . . . , αs) where

αt > ∑
i 6=t

αi

where
∑
i 6=t

αi ≤ 5.

Then L = L(α) satisfies Conjecture 1.5.
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4 At most three segments

This section is devoted to sketching a proof of Theorem 1.6. The result is trivial if the
fence F(α) has one segment and fairly easy if it has two. But for three, we will have to
use a modified version of the famous Greene–Kleitman symmetric chain decomposition
of the Boolean algebra of all subsets of a finite set [10].

In particular, we will use the idea of a Greene–Kleitman core. To define this object,
let w = w1w2 . . . wn be a sequence (or word) of zeros and ones. The Greene–Kleitman (GK)
core of w, GK(w), is a set of pairs of indices formed as follows. If wi = 0 and wi+1 = 1
then (i, i + 1) ∈ GK(w). We continue to add pairs (i, j) to GK(w) as long as wi = 0 and
wj = 1, where i < j and all the elements between wi and wj are already in pairs of the
core. For example, if

w = 110001011000111

then
GK(w) = ∗ ∗ ∗ 0̂0̂10̂11 ∗ 0̂0̂11 ∗

where elements not in the GK core have been replaced by stars, and pairs in the core are
indicated by the hats. Writing out the pairs themselves gives

GK(w) = {(4, 9), (5, 6), (7, 8), (11, 14), (12, 13)}.

We will refer to the elements in the pairs of GK(w) as matched.
To apply this idea to fences, we will have to modify the GK core. And to do that it

will be convenient to think of a fence F as a partial order on [n] = {1, 2, . . . , n} where,
as usual, n = #F. When doing this, it will be important to distinguish i ≤ j which is
the usual total order on the integers and i E j which will be an order relation in F. So
consider F = F(a, b, c) as the fence with covering relations

b + c + 1C b + c + 2C . . .C a + b + c + 1B bB b− 1B . . .B 1C b + 1C b + 2C . . .C b + c.

In other words label the second segment except for its maximum element with the el-
ements of the interval [1, b] from bottom to top. Then label the elements of the third
segment (except its minimum which has already been labeled) bottom to top with
[b + 1, b + c]. Finally label the complete first segment with [b + c + 1, a + b + c + 1] again
from bottom to top. Note that this labeling is a linear extension of F. This labeling for
the fence F(2, 3, 1) is showing in Figure 2.

Now associate with any subset S ⊆ F a word w = wS = w1 . . . wn where wi is one or
zero depending on whether i ∈ S or i 6∈ S, respectively, and n = #F. Suppose I ⊆ F is
an ideal and w = wI . Since specifying I and specifying w are equivalent, we will often
go back and forth without mention.

Given an ideal, I, call an element f ∈ F frozen if it is unmatched in GK(w) and there
exists (i, j) ∈ GK(w) with f B i or f C j. Note that since (i, j) is in the GK core we must
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Figure 2: The labeling of F(2, 3, 1)

have i 6∈ I and j ∈ I. So f B i implies f 6∈ I, since I is an ideal, and w f = 0. Similarly,
if f C j then f ∈ I and w f = 1. Whether an element is frozen or not depends upon the
ideal under consideration, but we will make sure I is clear from context. Finally, define
the core of w = wI by

core w = GK(w) ∪ { f ∈ F | f is frozen}.

We say that elements of F not in core w are free. For example, suppose F = F(2, 3, 1) and
I = {1, 4, 5}. Then we first compute the GK core as indicated by the hats in

w = 10̂0̂1100.

Since (3, 4) ∈ GK(w) and 1 C 4 we have that 1 is frozen in w. Similarly, (3, 4) ∈ GK(w)
and 7 B 3 implies that 7 is frozen. One can also check that 6 is free so that

core w = 10̂0̂11 ∗ 0

or
core w = {1, (2, 5), (3, 4), 7}.

We now complete the proof of Theorem 1.6 by forming, for each possible κ = core wI
for some ideal I, a saturated chain containing I as follows. We start with w which is the
word with every element not in core w equal to zero. We then turn the zeros in w to 1s
one at a time from left to right until all free positions equal 1 to form a saturated chain
Cκ. In our running example, the chain would be

Cκ = {1001100, 1001110}.

One can prove that in a fence F(a, b, c) with a > c that these form a bottom centered CD.
The case a = c is dealt with similarly, and the case a < c by Lemma 1.1.
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