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The Hurwitz action in complex reflection groups
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Abstract. We study the reflection factorizations of an arbitrary element in the complex
reflection groups G(m, p, n) under the Hurwitz action. Using combinatorial and graph
theoretical techniques, we present an if-and-only-if statement of when two factoriza-
tions are Hurwitz equivalent. Then we prove a formula that counts the number of
Hurwitz orbits of an arbitrary element.

Keywords: reflection factorizations, complex reflection groups, Hurwitz action

1 Introduction

Given a group G with a generating set T closed under conjugacy, the Hurwitz action is a
natural action of the n-strand braid group Bn on Tn. This action was introduced in the
late 19th century by Hurwitz in the case that G = Sn is the symmetric group and T is the
set of transpositions in G, as part of his study [6] of covering surfaces of the sphere with
given monodromy. More recently, the Hurwitz action played an important role in Bessis’
proof [5] of the K(π, 1) property for complements of complex reflection arrangements,
this time in the case that G is a complex reflection group and T is its subset of reflections;
in this setting, the transitivity of the Hurwitz action on certain tuples of reflections is a
key part of the Coxeter–Catalan combinatorics associated to the reflection group G (see,
e.g., [13]).

In the recent paper [2], the authors characterized those elements w in a real reflection
group W (i.e., a finite Coxeter group) for which the Hurwitz action is transitive when
restricted to minimum-length reflection factorizations of w. In particular, they showed
that these elements are precisely the quasi-Coxeter elements for certain special subgroups,
that is, the elements whose factorizations all generate the subgroup in question.

In the present paper, we extend the work of [2] to the complex realm. Our main
result (Theorem 3.2) gives an explicit formula for the number of Hurwitz orbits of
minimum-length factorizations of an arbitrary element g in the complex reflection group
G = G(m, p, n). As a consequence, we characterize the elements for which the action is
transitive (Cor. 3.3). As a second consequence, we give an elegant “inverse” result: we
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show that two minimum-length reflection factorizations of an element g ∈ G belong to
the same Hurwitz orbit if and only if they generate the same subgroup of G (Cor. 3.4).

Our approach is combinatorial, taking advantage of the natural graph-theoretic struc-
ture of reflections in G(m, p, n), and building on earlier work of Kluitmann [8] and Ben-
Itzhak–Teicher [3] in the symmetric group.
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2 Background and notation

2.1 Conventions

Throughout this abstract, m, p, and n will represent positive integers with p | m. Since
p divides m, the cyclic group Z/mZ, whose elements are equivalence classes of integers
modulo m, has a unique subgroup pZ/mZ ∼= Z/(m/p)Z of order m/p: it consists
of those equivalence classes whose elements are divisible by p. We may write k ≡ 0
(mod p) to indicate that an element k in Z/mZ belongs to this subgroup, and k ≡ 0
(mod m) to indicate that k is the identity in Z/mZ. As in the previous sentence, we do
not distinguish notationally between the integer k and its equivalence class modulo m;
this should cause no confusion in practice.

Given a collection of k1, k2, . . . , kn of elements of Z/mZ, there is some minimal sub-
group kZ/mZ that contains all of them. If we take k1, . . . , kn to be any representa-
tives of their equivalence classes, then the smallest positive representative k of kZ is
k = gcd(m, k1, . . . , kn). All greatest common divisors that appear in this paper (particu-
larly, as in Definition 3.1) will be meant in this sense.

2.2 Complex reflection groups

Given a finite-dimensional complex vector space V, a complex reflection is a linear trans-
formation t : V → V whose fixed space ker(t− 1) is a hyperplane (i.e., has codimension
1), and a finite subgroup G of GL(V) is called a complex reflection group if G is generated by
its subset R of complex reflections. Complex reflection groups were classified by Shep-
hard and Todd [11]: every complex reflection group is a direct product of irreducibles,
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and every irreducible is either of the form

G(m, p, n) =

{
n× n monomial matrices whose nonzero entries are
mth roots of unity with product a m

p th root of unity

}

for positive integers m, p, n with p | m or is one of 34 exceptional examples.
For every m, p, n, there is a natural projection map π : G(m, p, n) � G(1, 1, n) = Sn

defined as follows: for g ∈ G(m, p, n), the matrix π(g) is the result of replacing every
root of unity in the matrix of g with 1. The resulting permutation is called the underlying
permutation of g. It will be convenient to use the following, more compact, notation for
elements of G(m, p, n): one writes g = [u; (a1, . . . , an)] where u = π(g) and aj ∈ Z/mZ is
the exponent of exp(2πi/m) in the nonzero entry of the jth column of g. This notation
reveals that G(m, 1, n) has the structure of a wreath product G(m, 1, n) ∼= (Z/mZ) oSn, with
multiplication given by [u; (a1, . . . , an)] · [v; (b1, . . . , bn)] =

[
uv; (av(1) + b1, . . . , av(n) + bn)

]
.

Given an element g = [u; (a1, . . . , an)] of G(m, p, n), the value aj is called the weight
of j. Further, for any subset S ⊂ {1, . . . , n}, we define ∑j∈S aj to be the weight of S.
This notion will be particularly relevant when S is the set of entries of a cycle of g, or
when S = {1, . . . , n} and a1 + . . . + an is the weight of g. In this language, an element of
G(m, 1, n) belongs to G(m, p, n) if and only if its weight is a multiple of p.

When p < m, the group G(m, p, n) contains two types of complex reflections: for
a ∈ {0, 1, . . . , m− 1}, the transposition-like reflections

[(i j); a] def== [(i j); (0, . . . , 0, a, 0, . . . , 0,−a, 0, . . . , 0)] (2.1)

(with i having weight a and j having weight −a) of weight 0 and order 2, and for
b ∈ {p, 2p, . . . , m − p} the diagonal reflections [id; (0, . . . , 0, b, 0, . . . , 0)] of weight b and
various orders; the group G(m, m, n) contains only the transposition-like reflections.

2.3 Shi’s formula for reflection length

Fix a complex reflection group G with reflections R. Since G is a reflection group, every
element g of G can be written as a product of reflections. If f = (t1, . . . , t`) is a tuple of
reflections such that g = t1 · · · t`, we say that f is a (reflection) factorization of g. We say
that a reflection factorization F of g is shortest, minimum, or of minimum length if there is
no reflection factorization of g using fewer reflections, and we define the reflection length
`R(g) of g to be the length

`R(g) = min{` : g = t1t1 · · · t` for some ti ∈ R}

of the shortest factorizations. Throughout the paper, we use the word “factorizations”
as a shorthand for “reflection factorizations of minimum length”.
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In [12], Shi gave a combinatorial formula for reflection length in the group G(m, p, n)
that we now describe. For an element g ∈ G(m, p, n), let cyc(g) be the number of cycles
in π(g). A cycle partition Π of g is a set partition of the set {C1, C2, . . . , Ccyc(g)} of cycles
of g such that for every part in Π, the corresponding cycle weights sum to 0 (mod p).
(Such partitions always exist because the weight of g is 0 (mod p).) For example, the
element g = [id; (2, 2, 2, 2)] ∈ G(4, 4, 4) has four cycle partitions:

Par(g) =
{

[[(1)(2) | (3)(4)]], [[(1)(3) | (2)(4)]], [[(1)(4) | (2)(3)]], [[(1)(2)(3)(4)]]
}

.

Observe that the set of cycle partitions depends on the choice of the group containing g:
if we view this element g as an element of G(4, 2, 4) then Par(g) consists of all fifteen set
partitions of the four cycles.

Given a partition Π of an element g ∈ G(m, p, n), let |Π| denote the number of parts
of Π and let vm(Π) denote the number of parts of Π of weight 0 (mod m) (not just 0
(mod p)). Shi defines the value v(Π) of a cycle partition Π to be v(Π) = |Π| + vm(Π). A
partition is maximum if its value is the largest among the values of all possible cycle par-
titions of g (relative to the given m, p), and we denote by Parmax(g) the set of maximum
cycle partitions of g. For example, with g = [id; (2, 2, 2, 2)] ∈ G(4, 4, 4) as above, the three
partitions into two parts have value 4, while the partition in one part has value 2, and so
Parmax(g) =

{
[[(1)(2) | (3)(4)]], [[(1)(3) | (2)(4)]], [[(1)(4) | (2)(3)]]

}
.

Theorem 2.1 (Shi [12]). Given an element g ∈ G(m, p, n) with reflections R, we have

`R(g) = n + cyc(g)− v(Π)

where cyc(g) is the number of cycles of g and Π ∈ Parmax(g) is a maximum cycle partition of g.

Using Shi’s formula, we see that the element g = [id; (2, 2, 2, 2)] ∈ G(4, 4, 4) has reflec-
tion length `R(g) = 4 + 4− (2 + 2) = 4. In general, computing Parmax(g) is computationally
challenging: there is a standard reduction from the SubsetSum problem, so it is NP-hard.

2.4 The Hurwitz action

The Hurwitz move σi on a tuple (t1, . . . , tn) of elements of a group G is the operation
σi(. . . , ti, ti+1, . . .) = (. . . , ti+1, t−1

i+1titi+1, . . .). It is easy to check that σ1, . . . , σn−1 satisfy the
braid relations, and consequently give rise to the Hurwitz action of the braid group on
n strands. This action was first studied by Hurwitz [6] in the context of the symmetric
group Sn. The question of its orbit structure on reflection factorizations in Coxeter
groups and complex reflection groups has been an area of substantial interest in the past
two decades, especially in cases when the action is transitive, i.e., when there is a single
Hurwitz orbit (see, e.g., [1, 2, 3, 5, 7, 10, 14]). The following result of Kluitmann [8] on
the symmetric group will be of particular use for us.
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Theorem 2.2 (Kluitmann [8]). The set of all transposition factorizations (t1, t2, . . . , tk) of an
element w ∈ Sn such that 〈t1, t2, . . . , tk〉 = Sn forms a single orbit under the Hurwitz action.

3 The Main Theorem

To state our main results, we need one further piece of terminology. (The reader may
wish to recall our convention for greatest common divisors from Section 2.1.)

Definition 3.1. Let g ∈ G(m, p, n), let Π be a cycle partition of g, and let B be a block in
Π. Suppose that the weights of the cycles in B are (k1, k2, . . . , k|B|). Define

r(B) = gcd(m, k1, k2, . . . , k|B|−1, k|B|).

Theorem 3.2. Given an element g ∈ G(m, p, n), the number of Hurwitz orbits of its shortest
factorizations is given by

∑
Π∈Parmax(g)

∏
B∈Π

(r(B))|B|−1.

For example, the element g = [id; (2, 2, 2, 2)] ∈ G(4, 4, 4) discussed above has 12 Hur-
witz orbits of shortest reflection factorizations, including 4 = 22−1 × 22−1 from each of
its three maximum cycle partitions.

Corollary 3.3. Let g ∈ G(m, p, n). The shortest factorizations of g form a single orbit under the
Hurwitz action if and only if |Parmax(g)| = 1 and either |B| = 1 or r(B) = 1 for every block B
in Π ∈ Parmax(g). In particular, if g has a single cycle, then g is Hurwitz transitive. Further,
when p = 1, g is Hurwitz transitive if and only if no two cycles of g have nonzero weights that
sum to 0 (mod m).

Corollary 3.4. Two shortest factorizations f1 and f2 of an element g in G = G(m, p, n) are
Hurwitz-equivalent if and only if they generate the same subgroup of G.

The remainder of this extended abstract is devoted to the proof of these results. We
begin by defining a standard form for factorizations, and show that every factorization
is Hurwitz-equivalent to a factorization in standard form.

3.1 Standard forms

In this section, we define a standard form for factorizations in G(m, p, n) and show that
every shortest factorization is Hurwitz-equivalent to a factorization in standard form.
It is easiest to describe the standard forms in terms of a graph object associated to a
factorization.
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Definition 3.5. Given a factorization f = (t1, t2, . . . , t`) of an element g = t1 · · · t` ∈
G(m, p, n), the factorization graph of f is the graph Γ f = (V, E) on (labeled) vertex set V =
{1, . . . , n} with (labeled) edges E = {e1, . . . , e`} defined as follows: if tk has underlying
permutation (i j) then ek joins vertices i and j, while if tk is diagonal with nonzero weight
in position i then ek is a loop at vertex i.

Fix an element g in G(m, p, n) and a factorization f = (t1, . . . , t`) of g. The connected
components of the graph Γ f form a set partition of {1, . . . , n}. In fact, this set partition
corresponds to a cycle partition of g. We denote by Π f the cycle partition induced in this
way by the factorization f . If B is a part in Π f , we denote by |B| the number of cycles in
B and by Γ f |B the connected component of Γ f that corresponds to B.

We are now prepared for the key definition of this section.

Definition 3.6. Given a shortest factorization f of an element g ∈ G(m, p, n), with fac-
torization graph Γ f and cycle partition Π f . Let B1, B2, . . . , B|Π f | be the parts of Π f ,
and for each part Bi ∈ Π f , say that Ci,1, . . . , Ci,|Bi| are the cycles of g contained in Bi,
and that for each j, vi,j is the smallest element of {1, . . . , n} permuted by Ci,j. Without
loss of generality, assume that the indices of the Bi and Ci,j have been chosen so that
vi,1 < vi,2 < . . . < vi,|Bi| and v1,1 < v2,1 < . . . < v|Π f |,1. We say that f is in standard
form if the following conditions are met: (1) if i′ < i then every edge in Γ f |Bi′

has smaller
label than all edges in Γ f |Bi ; (2) for each i, the first 2|Bi|−2 factors t1, . . . , t2|Bi|−2 in f that
correspond to edges in Γ f |Bi have underlying transpositions π(t1) = π(t2) = (vi,1 vi,2),
π(t3) = π(t4) = (vi,2 vi,3), . . . , π(t2|Bi|−3) = π(t2|Bi|−2) = (vi,|Bi|−1vi,|Bi|); and (3) for each i, if
there is a loop in Γ f |Bi then it is the edge labeled 2|Bi|−1 and acts on vertex vi,|Bi|.

For example, the factorization [(13); 0] · [(13); 1] · [(35); 1] · [(35); 3] · [(12); 0] · [(46); 0] ·
[(46); 4] · [id; (0, 0, 0, 0, 0, 3, 0, 0, 0)] · [(49); 1] · [(67); 2] · [(89); 3] of the element

[(12)(3)(498)(5)(67); (0, 1, 1, 1, 7, 2, 6, 6, 6)] ∈ G(9, 3, 9)

is in standard form, with factorization graph

12 3 5 8 9 4 6 7
5

1

2

3

4

6

7

11 9 10

8

.

Lemma 3.7. For any g ∈ G(m, p, n) and any minimum-length factorization f of g, there is a
standard form factorization of g that is Hurwitz-equivalent to f .

Proof sketch. The factorization f induces a cycle partition Π f . It is straightforward to
write down a standard form factorization f ′ of g such that Π f ′ = Π f . One can check
using Shi’s formula (Theorem 2.1) that every connected component in Γ f must have the
same number of edges as the corresponding component in Γ f ′ . By Kluitmann’s theorem
(Theorem 2.2), the projected factorizations π( f ) and π( f ′) are Hurwitz-equivalent, i.e.,
there is some braid β such that β(π( f )) = π( f ′). Then β( f ) is the desired factorization.
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3.2 Hurwitz paths between standard form factorizations

In this section, we construct explicit sequences of Hurwitz moves connecting certain
standard form factorizations to each other. The main result of the section is Lemma 3.12.

Definition 3.8. For n ≥ 1, we say that a factorization in G(m, p, n) is a doubled path if it is
of the form(

[(12); a1], [(12); b1], [(23); a2], [(23); b2], . . . , [(n− 1 n); an−1], [(n− 1 n); bn−1]
)

or (
[(12); a1], [(12); b1], . . . , [(n− 1 n); an−1], [(n− 1 n); bn−1], [id; (0, . . . , 0, d)]

)
.

By multiplying out, it’s easy to see that every doubled path in G(m, p, n) is a factor-
ization of a diagonal element g = [id; (k1, . . . , kn)] ∈ G(m, p, n) of weight 0 (if no diagonal
element is present) or d, and that for each i one has bi = ai + k1 + k2 + . . . + ki. Conse-
quently, given the product g, the ai determine the entire factorization. This suggests the
following definition.

Definition 3.9. Let f =
(

[(12); a1], [(12); b1], [(23); a2], [(23); b2], . . .
)

be a doubled path,
factoring an element g = [id; (k1, . . . , kn)] ∈ G(m, p, n). Define the pair weight of the i-th
pair of factors (i.e., with underlying transposition (i i + 1)) to be ai and the corresponding

pair difference to be the difference di
def== bi − ai = k1 + · · · + ki.

The next result gives a sufficient condition for two doubled paths to belong to the
same Hurwitz orbit.

Proposition 3.10. Suppose f1 =
(

[(12); a1], [(12); b1], . . .
)

and f2 =
(

[(12); a′1], [(12); b′1], . . .
)

are two doubled paths factoring the same element g of weight d in G(m, p, n). If there exists an
n× (n− 1) Z-matrix M = (mij) such that mij = mji for i, j ≤ n− 1 and(

a1 · · · an−1
)

+
(
d1 · · · dn−1 d

)
·M ≡

(
a′1 · · · a′n−1

)
(mod m) (3.1)

(with congruence taken coordinate-wise), then there exists a Hurwitz path from f1 to f2.

Proof sketch. We define two families of operations that can be applied to doubled paths:
For any pair of indices i, j with 1 ≤ i < j ≤ n− 1, define τi, j to be the following sequence
of Hurwitz moves:

τi, j
def== σ2j−2σ2j−1σ−1

2j−3σ−1
2j−2 · · · σ2i+2σ2i+3σ−1

2i+1σ−1
2i+2 ◦ σ−1

2i σ−1
2i+1σ−1

2i−1σ−1
2i ◦

σ−1
2i σ−1

2i+1σ−1
2i−1σ−1

2i ◦ σ2i+2σ2i+1σ−1
2i+3σ−1

2i+2 · · · σ2j−2σ2j−3σ−1
2j−1σ−1

2j−2,
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Figure 1: The braids corresponding to the operations τ1,3 and γ1 in the case n = 4.

and for any index i ∈ {1, . . . , n− 1}, define γi to be the following sequence of Hurwitz
moves:

γi
def== σ2n−2σ−1

2n−3σ2n−4σ−1
2n−5 · · · σ2i+2σ−1

2i+1 ◦ σ2iσ2i−1σ2i−1σ2i ◦
σ2i+1σ−1

2i+2 · · · σ2n−5σ−1
2n−4σ2n−3σ−1

2n−2.

The associated braids are illustrated in Figure 1.
By an inductive computation, one shows that if f is a doubled path in G(m, p, n) with

pair weights (a1, . . . , an−1) and pair differences (d1, . . . , dn−1), then τi,j( f ) is a doubled
path with the same pair weights and pair differences as f , except that the ith pair weight
of τi,j( f ) is ai + dj and the jth pair weight of τi,j( f ) is aj + di. Similarly, if f includes a
diagonal factor of weight d, then γi( f ) is again a doubled path, and γi( f ) has the same
pair weights and pair differences as f , except that the i-th pair weight of γi( f ) is ai + d.
Finally, it is easy to check that (under the same hypotheses) σ2i−1( f ) is a doubled path,
with the same pair differences and pair weights as f , except that the i-th pair weight of
σ2i−1( f ) is ai + di.

Consequently, if (3.1) holds, applying the operations σ
mii
2i−1 for 1 ≤ i ≤ n − 1, τ

mij
i,j

for 1 ≤ i < j ≤ n − 1, and γ
mnj
i for 1 ≤ j ≤ n − 1, to f1 in any order produces f2, as

needed.

By a moderately complicated argument in elementary number theory, it is possible
to rephrase the previous proposition as follows.

Corollary 3.11. Follow the notation of Proposition 3.10 and define r(B) as in Definition 3.1. If
ai ≡ a′i (mod r(B)) for i = 1, . . . , n− 1, then there exists a matrix M as in Proposition 3.10.

By definition, every connected component Γ f |B in the factorization graph of a stan-
dard form factorization f includes a doubled path of length 2|B|−1 or 2|B|−2. This
allows us to restate the previous result in terms of standard form factorizations.
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Lemma 3.12. Suppose that f1 and f2 are two standard form factorizations of the element g ∈
G(m, p, n) and that they induce the same cycle partition Π of g. Suppose furthermore that for
each block B of Π, the pair weights (a1, . . . , a|B|−1) and (a′1, . . . , a′|B|−1) in the doubled paths
in f1|B and f2|B satisfy ai ≡ a′i (mod r(B)) for all i ∈ {1, . . . , |B|−1}. Then f1 and f2 are
Hurwitz-equivalent.

Proof sketch. We use Kluitmann’s theorem (Theorem 2.2) to choose a braid β1 such that
Γβ1( f1) = Γ f2 without changing the factors in the doubled paths. For each connected
component, Corollary 3.11 gives a second braid β2 so that the weights of the doubled
paths in β2β1( f1)|B are the same as those in f2|B. The weights of the other factors in the
component are determined by g. Applying this to each connected component gives a
Hurwitz path from f1 to f2.

3.3 When are two standard form factorizations not equivalent?

The main result of this section is Lemma 3.17, which is the converse of Lemma 3.12. As
our main tool, we construct an invariant that distinguishes different Hurwitz orbits.

Definition 3.13. Given a factorization f of an element in G(m, n, p), denote by G f the
subgroup of G(m, n, p) generated by the factors in f .

It is easy to see that G f is preserved by Hurwitz moves. Our first result is completely
straightforward.

Proposition 3.14. If f is a shortest factorization with induced cycle partition Π f , we have that
G f is the direct product of the restrictions G f |B to individual blocks B of Π f .

Thus, in what follows, it suffices to consider factorizations f for which the factor-
ization graph Γ f is connected. Also, by Lemma 3.7, it suffices to consider the case of
factorizations in standard form.

Proposition 3.15. Let f be a connected standard form factorization of an element g ∈ G(m, p, n),
and let d be the weight of g. Then G f

∼= G
(

m
r , gcd(m,d)

r , n
)

. More concretely, there is a diagonal

element δ ∈ G(m, 1, n) such that the conjugation map φδ defined by φδ(g) = δgδ−1 restricts to
an isomorphism φδ : G f → G

(
m
r , gcd(m,d)

r , n
)

.

Proof sketch. First, consider the following set of factors of f : for each pair of factors in the
doubled path with same underlying transposition, include the first corresponding edge,
and also include all edges not in the doubled path. These edges form a spanning tree
of Γ f . By iteratively choosing entries of δ to fix one edge of the tree at a time, we can
choose δ that simultaneously conjugates each of these edges to a transposition (i.e., to a
reflection [(i j); 0] of weight 0). We claim this is the desired element.
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It is straightforward to check that, after conjugation, every weight in every factor in
δ f δ−1 is a multiple of r, or equivalently every root of unity appearing in their matrices
is an m

r -th root of unity. Moreover, after conjugation, the diagonal factor will still have

weight d. It follows immediately that φδ(G f ) ⊆ G
(

m
r , gcd(m,d)

r , n
)

.
For the reverse inclusion, we can use the maps τi,j and γi from Section 3.2 to explicitly

construct a set of reflections in φδ(G f ) that generate G
(

m
r , gcd(m,d)

r , n
)

.

Since conjugation by a diagonal element fixes diagonal elements, the following con-
sequence is immediate.

Corollary 3.16. If f1 and f2 are two connected standard form factorizations of the same element
g, then the diagonal subgroups of G f1 and G f2 are equal (not just isomorphic), and are equal to

the diagonal subgroup of G
(

m
r , gcd(m,d)

r , n
)

.

Lemma 3.17. Suppose that f1 and f2 are two Hurwitz-equivalent standard form factorizations of
the element g ∈ G(m, p, n). Then Π f1 = Π f2 and for every connected component B, the respective
pair weights (a1, . . . , a|B|−1) and (a′1, . . . , a′|B|−1) of the doubled paths in f1|B and f2|B satisfy the
condition that ai ≡ a′i (mod r(B)) for every i ∈ [|B|−1].

Proof sketch. We prove the contrapositive: suppose there is a block B for which the pair
weights in the two factorizations are not equivalent mod r. Then G f1 contains the cycle

c1
def== [(v1 v2); a1] · · · [(v|B|−1 v|B|); a|B|−1] (the product of half of the edges in the doubled

path) and G f2 contains the cycle c2
def== [(v1 v2); a′1] · · · [(v|B|−1 v|B|); a′|B|−1]. By multiplying

out, using the fact that ai 6≡ a′i (mod r) for some i, one sees that c1c−1
2 is a diagonal

element whose weights are not all multiples of r. Such an element does not belong to
G
(m

r , 1, n
)

and so by Corollary 3.16 does not belong to either G f1 or G f2 . Consequently
G f1 6= G f2 , and so f1 and f2 are not Hurwitz-equivalent.

3.4 Proof of main results

Proof of Theorem 3.2. By Lemma 3.7, it suffices to study the standard form factorizations
of g. Every standard form factorization f may be constructed by first choosing a maxi-
mum cycle partition Π, and then for every part B ∈ Π choosing the pair weights {ai}

|B|−1
i=1

of f |B. By Lemmas 3.12 and 3.17, choosing an orbit amounts to independently choosing
for each ai one of the r(B) equivalence classes modulo r(B), and independently repeating
this for each part B; this gives ∏B∈Π(r(B))|B|−1 orbits corresponding to the partition Π.
Summing over all possible maximum cycle partitions Π ∈ Parmax of g gives the total
number of Hurwitz orbits.

Corollary 3.3 is an immediate consequence of Theorem 3.2.
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Proof of Corollary 3.4. By Lemma 3.7, it suffices to show that the result is true for standard
form factorizations. It follows from the proof of Lemma 3.17 that two standard form
factorizations of g generate the same subgroup if and only if they induce the same
partition Π and have the same pair weights modulo r(B) for each block B ∈ Π. By
Lemmas 3.12 and 3.17, this is equivalent to the condition that they generate the same
subgroup of G.

Remark 3.18. There is another natural invariant of the Hurwitz action, namely, the mul-
tiset of conjugacy classes (with respect to G, but also (stronger) with respect to the sub-
group H that they generate) of the factors. Thus, a surprise consequence of Corollary 3.4
is that among the shortest factorizations of an element g in G(m, p, n), those that generate
the subgroup H all have the same multiset of H-conjugacy classes of the factors.

Remark 3.19. We are grateful to Theodosius Douvropoulos for the following example,
which shows that Remark 3.18 does not hold in every complex reflection group. The
exceptional group G = G16 is generated by two reflections a, b subject to the relations
a5 = b5 = 1, aba = bab. Both generators have non-unit eigenvalue exp(2πi/5). The

element g def== a2b3 is not a reflection (e.g., because it has determinant 1) and so f1 =
(a2, b3) is a shortest reflection factorization of g that generates G. It is slightly more
work to check that f2 = (a−1ba, b−2a−1b2) is another shortest reflection factorization of
g that also generates G. However, the factorizations f1 and f2 cannot lie in the same
Hurwitz orbit because their factors have different conjugacy classes: the reflections in
f1 have determinants exp(4πi/5) and exp(6πi/5), while those in f2 have determinants
exp(2πi/5) and exp(8πi/5).

Remark 3.20. In [4], Berger showed that the three invariants

(product g, generated subgroup H, multiset of H-conjugacy classes)

distinguish Hurwitz orbits of reflection factorizations of arbitrary lengths in the dihedral
group G(m, m, 2). That is, two tuples of reflections in a dihedral group belong to the same
Hurwitz orbit if and only if they have the same product, generate the same subgroup,
and have the same orbits under conjugacy by the subgroup.

The corresponding result can be shown in the symmetric group essentially by com-
bining the work of Kluitmann [8] and Ben-Itzhak and Teicher [3]. The corresponding
result has also been established in some of the small exceptional complex reflection
groups (G4, G5, G6, and G7) in unpublished work of Minnick–Pirillo–Racile–Wang (pri-
vate communication).

In [9, §5] it was conjectured that the corresponding statement is valid in any complex
reflection group. Corollary 3.4 may be viewed as further evidence for this conjecture.
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