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Abstract. We introduce the friends-and-strangers graph FS(X, Y) associated with
graphs X and Y whose vertex sets V(X) and V(Y) have the same cardinality. This
is the graph whose vertex set consists of all bijections σ : V(X) → V(Y), where two
bijections σ and σ′ are adjacent if they agree everywhere except for two adjacent ver-
tices a, b ∈ V(X) such that σ(a) and σ(b) are adjacent in Y. This setup, which has a
natural interpretation in terms of friends and strangers walking on graphs, provides a
common generalization of Cayley graphs of symmetric groups generated by transpo-
sitions, the famous 15-puzzle, generalizations of the 15-puzzle as studied by Wilson,
and work of Stanley related to flag h-vectors. The most fundamental questions that one
can ask about these friends-and-strangers graphs concern their connected components
and, in particular, when there is only a single connected component.

When X is a path graph, we show that the connected components of FS(X, Y) corre-
spond to the acyclic orientations of the complement of Y. When X is a cycle, we obtain
a full description of the connected components of FS(X, Y) in terms of toric acyclic
orientations of the complement of Y. In a more probabilistic vein, we address the case
of “typical” X and Y by proving that if X and Y are independent Erdős-Rényi random
graphs with n vertices and edge probability p, then the threshold probability guaran-
teeing the connectedness of FS(X, Y) with high probability is p = n−1/2+o(1). We also
study the case of “extremal” X and Y by proving that the smallest minimum degree of
the n-vertex graphs X and Y that guarantees the connectedness of FS(X, Y) is between
3n/5 + O(1) and 9n/14 + O(1). Furthermore, we obtain bipartite analogues of the
latter two results.
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1 Introduction

Given simple graphs X and Y on n vertices, we define the friends-and-strangers graph of X
and Y, denoted FS(X, Y), as follows. The vertex set of FS(X, Y) is the set of all bijections
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σ : V(X) → V(Y) from the vertex set of X to the vertex set of Y; two bijections σ and σ′

are connected by an edge if and only if X contains an edge {a, b} such that {σ(a), σ(b)}
is an edge in Y, σ(a) = σ′(b), σ(b) = σ′(a), and σ(c) = σ′(c) for all c ∈ V(X) \ {a, b}.
In other words, we connect σ and σ′ if they differ only at a pair of adjacent vertices such
that the images of these vertices under σ are adjacent in Y. In this case, the operation
that transforms σ into σ′ is called an (X, Y)-friendly swap.

The friends-and-strangers graph FS(X, Y) has the following non-technical interpre-
tation. Identify n different people with the vertices of Y. Say that two such people are
friends with each other if they are adjacent in Y, and say that they are strangers oth-
erwise. Now, suppose that these people are standing on the vertices of X so that each
vertex has exactly one person standing on it. At each point in time, two friends standing
on adjacent vertices of X may swap places, but two strangers may not. It is natural to
ask how various configurations can be reached from other configurations when we allow
multiple such swaps, and this is precisely the information that is encoded in FS(X, Y). In
particular, the connected components of FS(X, Y) correspond to the equivalence classes
of mutually-reachable configurations.

It is sometimes convenient to assume that V(X) and V(Y) are both the set [n] :=
{1, . . . , n}. In this case, the vertices of FS(X, Y) are the elements of the symmetric group
Sn, which consists of all permutations of the numbers 1, . . . , n. For i, j ∈ [n], let (i j) be
the transposition in Sn that swaps the numbers i and j. If σ ∈ Sn is such that {i, j} is
an edge in X and {σ(i), σ(j)} is an edge in Y, then we can perform an (X, Y)-friendly
swap across {i, j} to change σ into the permutation σ ◦ (i j). If we write the permutation
σ in one-line notation as σ = σ(1) · · · σ(n), then an (X, Y)-friendly swap transposes two
entries of the permutation such that the positions of the entries are adjacent in X and
the entries themselves are adjacent in Y.

Example 1.1. If X = Y = 1 2 3 , then FS(X, Y) =
213 123 132

312 321 231

.

This framework is quite general, and several special cases have received attention in
the past in other contexts. For instance, Stanley [7] studied the connected components
of FS(Pathn,Pathn); the graph FS(Kn, Y) is the Cayley graph of Sn generated by the
transpositions corresponding to edges of Y; the famous 15-puzzle can be interpreted
in terms of FS(X, Y) where X is the star graph on 16 vertices and Y is the 4× 4 grid
graph; and Wilson [8], generalizing the 15-puzzle, characterized the graphs Y such that
FS(X, Y) is connected when X is a star graph.

This extended abstract is based on the articles [5] and [1]: the first establishes sev-
eral general properties of friends-and-strangers graphs and characterizes the connected
components of FS(Pathn, Y) and FS(Cyclen, Y) for arbitrary graphs Y; the second stud-
ies the behavior of FS(X, Y) for random graphs X and Y and addresses a few extremal
questions related to the connectivity of FS(X, Y).
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We will explain how the connected components of FS(Pathn, Y) are parameterized
by the acyclic orientations of the complement of Y; this result is essentially equivalent
to the well-known fact that the Coxeter elements of a Coxeter system correspond to
the acyclic orientations of the Coxeter graph. We will also explain how the connected
components of FS(Cyclen, Y) are closely related to toric acyclic orientations (also called
toric partial orders), which have appeared in many contexts and were formalized in [6].
The connected components of FS(Cyclen, Y) can be understood via a new equivalence
relation on acyclic orientations of the complement of Y that we call double-flip equiva-
lence; this new notion could be of independent interest. It turns out that our analysis of
the graphs FS(Cyclen, Y) not only requires an understanding of double-flip equivalence
classes but also reciprocally yields interesting structural information about the double-
flip equivalence classes. We will see that each toric acyclic orientation of the complement
of Y corresponds to ν isomorphic connected components of FS(Cyclen, Y), where ν is the
greatest common divisor of the sizes of the connected components of the complement
of Y. One corollary is that FS(Cyclen, Y) is connected if and only if the complement of
Y is a forest whose trees have coprime sizes. We will also briefly mention some results
concerning when FS(X, Y) is connected for some other specific choices of X.

It is natural to ask about the connected components of FS(X, Y) when X and Y are
Erdős-Rényi random edge-subgraphs of the complete graph Kn with edge probability
p. We find that p = n−1/2+o(1) is the threshold at which FS(X, Y) changes from dis-
connected with high probability to connected with high probability. We also obtain an
analogous (but less tight) result for random bipartite graphs X and Y; in this case, a
simple parity obstruction prevents FS(X, Y) from being connected, so we examine when
FS(X, Y) has exactly 2 connected components.

Next, from a more extremal point of view, we find that the smallest minimum degree
of the n-vertex graphs X and Y that guarantees the connectedness of FS(X, Y) is between
3n/5 + O(1) and 9n/14 + O(1). In the analogous bipartite setting where X and Y are
edge-subgraphs of the complete bipartite graph Kr,r, we find that the cutoff minimum
degree for having exactly 2 connected components is either d(3r + 1)/4e or d(3r + 2)/4e.

Because the study of friends-and-strangers graphs is quite young, there remain many
promising open questions; we raise a few at the end of this extended abstract.

1.1 Notation and terminology

In what follows, let V(G) and E(G) denote the vertex set and edge set (respectively) of
a graph G. Some specific graphs with vertex set [n] that will play a large role for us are:
the path graph Pathn, which has edge set E(Pathn) = {{i, i + 1} : i ∈ [n − 1]}; and the
cycle graph Cyclen, which has edge set E(Cyclen) = {{i, i + 1} : i ∈ [n− 1]} ∪ {{n, 1}}.

The complement of a graph G, denoted G, is the graph with vertex set V(G) = V(G)
such that for all a, b ∈ V(G) with a 6= b, we have {a, b} ∈ E(G) if and only if {a, b} 6∈
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E(G). Also, the disjoint union of two graphs G1, G2, denoted G1⊕ G2, is the graph whose
vertex set is the disjoint union V(G1) t V(G2) and whose edge set is the disjoint union
E(G1)t E(G2). This definition readily extends to the disjoint union of a family of graphs
Gi for i in an index set I; we denote the resulting disjoint union by

⊕
i∈I Gi.

We obtain an orientation of a graph G by choosing a direction for each of its edges.
An orientation is acyclic if it does not contain a directed cycle. Let Acyc(G) denote the
set of acyclic orientations of G. If V(G) = [n], then we obtain from each α ∈ Acyc(G)
a poset ([n],≤α) by declaring that i ≤α j if and only if the directed graph α contains a
directed path starting at the vertex i and ending at the vertex j. (When i = j, we can
use the 1-vertex path with no edges.) We write L(α) for the set of linear extensions of
([n],≤α), where a linear extension of the poset ([n],≤P) is a permutation σ ∈ Sn such
that σ−1(a) ≤ σ−1(b) whenever a ≤P b. For each permutation σ ∈ Sn, there is a unique
acyclic orientation αG(σ) ∈ Acyc(G) such that σ ∈ L(αG(σ)). Indeed, αG(σ) is obtained
by directing each edge {i, j} of G from i to j if and only if σ−1(i) < σ−1(j).

2 Paths

The main purpose of this section is to discuss the following theorem, which states that
the connected components of FS(Pathn, Y) correspond to the acyclic orientations of Y
and that the vertices within each connected component are the linear extensions of the
corresponding acyclic orientation.

Theorem 2.1 ([5]). Let Y be a graph with vertex set [n]. For each α ∈ Acyc(Y), choose a linear
extension σα ∈ L(α), and let Hα be the connected component of FS(Pathn, Y) containing σα.
The connected component Hα depends only on α (not on the specific choice of σα), and its vertex
set is L(α). Moreover,

FS(Pathn, Y) =
⊕

α∈Acyc(Y)
Hα.

Recall that a Coxeter system is a pair (W, S), where W is a group with generating set
S = {s1, . . . , sn} and presentation W = 〈S : (sisj)

mi,j = 1〉. Here, the exponents mi,j are
elements of {1, 2, 3 . . .} ∪ {∞} such that mii = 1 for all i ∈ [n] and mi,j ≥ 2 whenever
i 6= j. Note that the elements si and sj commute if and only if mi,j ≤ 2. The Coxeter graph
associated to the Coxeter system (W, S) is the simple graph with vertex set S in which
vertices si and sj are adjacent if and only if mi,j ≥ 3 (i.e., sisj 6= sjsi). A Coxeter element of
(W, S) is an element of W of the form sσ(1) · · · sσ(n), where σ ∈ Sn.

Now let Y be a graph with vertex set [n]. There exists a Coxeter system (W, S) whose
Coxeter graph is Y, where we identify the vertex i ∈ [n] = V(Y) with the element si ∈ S.
With this identification, every permutation σ ∈ Sn gives rise to a word sσ(1) · · · sσ(n),
which in turn represents a Coxeter element of (W, S). Two such words represent the
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same element of W if and only if one can be obtained from the other by repeatedly
applying the commutation relations sisj = sjsi, which hold when i and j are adjacent in
Y. Applying such a commutation relation to a word sσ(1) · · · sσ(n) means that we swap
the factors sσ(i) and sσ(i+1) for some i ∈ [n− 1] such that {σ(i), σ(i + 1)} is an edge in
Y. This corresponds precisely to applying a (Pathn, Y)-friendly swap to the permutation
σ. Hence, the Coxeter elements sσ(1) · · · sσ(n) and sσ′(1) · · · sσ′(n) are equal if and only if σ

and σ′ are in the same connected component of FS(Pathn, Y). It follows that Theorem 2.1
is equivalent to the following standard theorem about Coxeter elements.

Theorem 2.2 ([4, 6]). Let (W, S) be a Coxeter system with Coxeter graph G, and write S =
{s1, . . . , sn}. Identify each vertex si of G with the element i of [n]. For each acyclic orientation α ∈
Acyc(G), choose a linear extension σα of ([n],≤α). The Coxeter element sσα(1) · · · sσα(n) depends
only on α, not on the specific linear extension σα. Furthermore, the map α 7→ sσα(1) · · · sσα(n) is
a bijection from Acyc(G) to the set of Coxeter elements of (W, S).

It is well known that the number of acyclic orientations of a graph G is equal to the
evaluation TG(2, 0) of the Tutte polynomial of G. Furthermore, a graph with at least 1
edge has at least 2 acyclic orientations. Hence, we have the following corollary.

Corollary 2.3 ([5]). Let Y be a graph with vertex set [n]. The number of connected components
of FS(Pathn, Y) is TY(2, 0). In particular, FS(Pathn, Y) is connected if and only if Y = Kn.

3 Cycles

In this section, we describe the structure of FS(Cyclen, Y). The interpretation of people
standing on the vertices of a graph is especially natural in this case: the vertices of Y
represent people, the edges of Y represent friendships, the people stand around in a cir-
cle, and two friends are allowed to swap places if they are standing next to each other in
the circle. As a specific corollary of our results in this section (Corollary 3.4), we will see
that we can get from any configuration of people standing around the circle to any other
configuration if and only if Y is a forest whose trees are of relatively prime sizes. Many
of the results in this section are similar in form to those in the previous section, with
acyclic orientations and posets replaced by their appropriate toric analogues. However,
the proofs (which we omit in this extended abstract) are much more involved.

Let G be a graph with vertex set [n]. A source of an acyclic orientation α of G is a
vertex of in-degree 0 in α; a sink of α is a vertex of out-degree 0. If v is a source or a
sink of α, then we can obtain a new acyclic orientation of G by reversing the directions
of all of the edges incident to v. We call this operation a flip. Two acyclic orientations
α, α′ ∈ Acyc(G) are torically equivalent, denoted α ∼ α′, if α′ can be obtained from α via a
sequence of flips (and this is easily seen to be an equivalence relation). The equivalence
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classes in Acyc(G)/ ∼ are called toric acyclic orientations (or sometimes toric partial orders).
We denote the toric acyclic orientation containing the acyclic orientation α by [α]∼.

Toric acyclic orientations have been studied in many different forms (see [6] and
other references in [5]); the article [6] formalizes a systematic framework for their in-
vestigation. One of the reasons for the use of the word “toric” stems from a connection
with hyperplane arrangements. Indeed, there is a natural one-to-one correspondence
between the connected components of (Rn/Zn) \ π(A(G)) and the toric acyclic orien-
tations of G, where A(G) is the graphical hyperplane arrangement of the graph G and
π : Rn → Rn/Zn is the natural projection.

Another (related) motivation for the term “toric” comes from observing that flips
encode what happens to the acyclic orientation associated to a permutation when we
cyclically shift the permutation. To make this more precise, we let ϕ : [n] → [n] be the
cyclic permutation given by ϕ(i) = i + 1 (mod n) and consider the map ϕ∗ : Sn → Sn
defined by ϕ∗(σ) = σ ◦ ϕ. It is not hard to show that the acyclic orientation αG(ϕ∗(σ)) is
obtained from αG(σ) by flipping the vertex σ(1) from a source into a sink. Consequently,
the acyclic orientations αG((ϕ∗)k(σ)) for 0 ≤ k ≤ n− 1 are all torically equivalent.

We define a linear extension1 of [α]∼ to be a permutation σ such that there exists an
acyclic orientation α̂ ∈ [α]∼ with σ ∈ L(α̂). Letting L([α]∼) denote the set of linear
extensions of [α]∼, we have

L([α]∼) =
⋃

α̂∈[α]∼

L(α̂).

For every permutation σ, the unique toric acyclic orientation of G that has σ as a linear
extension is [αG(σ)]∼.

We will also need a new equivalence relation on acyclic orientations of a graph. We
can perform a double flip to an acyclic orientation α by choosing a source u and a sink v in
α that are not adjacent to each other and then simultaneously flipping both of them. We
say two acyclic orientations α, α′ ∈ Acyc(G) are double-flip equivalent, denoted α ≈ α′, if
α′ can be obtained from α via a sequence of double flips (and this, too, is an equivalence
relation). Let [α]≈ denote the equivalence class in Acyc(G)/ ≈ that contains α. Note that
every equivalence class in Acyc/ ∼ is a union of equivalence classes in Acyc/ ≈. A linear
extension of a double-flip equivalence class [α]≈ is a permutation σ such that σ ∈ L(α̂)
for some α̂ ∈ [α]≈. Letting L([α]≈) denote the set of linear extensions of [α]≈, we have

L([α]≈) =
⋃

α̂∈[α]≈

L(α̂).

The following theorem states that the connected components of FS(Cyclen, Y) are
parameterized by the double-flip equivalence classes of acyclic orientations of Y and that

1Note that our notion of a linear extension of a toric acyclic orientation differs from the definition of a
“toric total order” in [6]. Indeed, that article defines a toric total order of [α]∼ to be a cyclic equivalence
class {(ϕ∗)k(σ) : 0 ≤ k ≤ n− 1} such that σ is (using our definition) a linear extension of [α]∼.
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Figure 1: Each red box encompasses a toric acyclic orientation. Each blue box encom-
passes a double-flip equivalence class. As predicted by Theorem 3.3, each toric acyclic
orientation is a union of 4 double-flip equivalence classes.

the vertices within a specific connected component are given by the linear extensions of
the corresponding double-flip equivalence class. (Compare with Theorem 2.1.)

Theorem 3.1 ([5]). Let Y be a graph with vertex set [n]. For each [α]≈ ∈ Acyc(Y)/≈, choose
a linear extension σ[α]≈ ∈ L([α]≈), and let H[α]≈ be the connected component of FS(Cyclen, Y)
containing σ[α]≈ . The connected component H[α]≈ depends only on [α]≈ (not on the specific choice
of σ[α]≈), and its vertex set is L([α]≈). Moreover,

FS(Cyclen, Y) =
⊕

[α]≈∈Acyc(Y)/≈
H[α]≈ .

The proof of Theorem 3.1 in [5] builds on the characterization of FS(Pathn, Y) from
Theorem 2.1. Since Cyclen is obtained from Pathn by adding the edge {n, 1}, we see that
the vertex set of each connected component of FS(Cyclen, Y) is a union of the vertex sets
of some connected components of FS(Pathn, Y). Heuristically, two connected compo-
nents of FS(Pathn, Y) “merge” in FS(Cyclen, Y) if they contain bijections that are related
by a friendly swap across the edge {n, 1}. On the level of acyclic orientations, this added
flexibility is precisely what the double-flip equivalence relation encodes.

Theorem 3.1 describes the connected components of FS(Cyclen, Y), but it is possible to
say even more. Namely, we will obtain a description of these connected components that
relies on only the flip equivalence relation ∼, not the double-flip equivalence relation ≈.
The strategy of the proof is to begin with the special case in which Y is connected;
here, each toric acyclic orientation of Y corresponds to n pairwise isomorphic connected
components of FS(Cyclen, Y). For the general case where Y is not necessarily connected,
we look at the local behavior for the connected components of Y separately and then
stitch this information together using appropriate cyclic actions (whence the gcd). In
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what follows, if C is a subgraph of a friends-and-strangers graph FS(Cyclen, Y), we let
ϕ∗(C) denote the induced subgraph of FS(Cyclen, Y) on the vertex set ϕ∗(V(C)).

Theorem 3.2 ([5]). Let Y be a graph on the vertex set [n]. Let n1, . . . , nr denote the sizes of
the connected components of Y, and let ν = gcd(n1, . . . , nr). For each toric acyclic orientation
[α]∼ ∈ Acyc(Y)/ ∼, choose a linear extension σ[α]∼ of [α]∼, and let J[α]∼ be the connected
component of FS(Cyclen, Y) containing σ[α]∼ . The graphs J[α]∼ , ϕ∗(J[α]∼), . . . , (ϕ∗)ν−1(J[α]∼)
are distinct, pairwise isomorphic connected components of FS(Cyclen, Y). Moreover,

FS(Cyclen, Y) =
⊕

[α]∼∈Acyc(Y)/∼

ν−1⊕
k=0

(ϕ∗)k(J[α]∼).

The following result, which is of independent interest and not obvious a priori, pro-
vides a relationship between the double-flip equivalence classes of acyclic orientations
of a graph G and the toric acyclic orientations of G. It is surprising that the proof of this
fact passes through the analysis of the graph FS(Cyclen, Y) with Y = G.

Theorem 3.3 ([5]). Let G be a graph with connected components of sizes n1, . . . , nr, and let
ν = gcd(n1, . . . , nr). Each toric acyclic orientation of G is the union of ν double-flip equivalence
classes of Acyc(G).

It is known that the number of toric acyclic orientations of a graph G is TG(1, 0),
where TG is the Tutte polynomial of G [6]. Thus, Theorems 3.1 and 3.3 tell us that if
Y is a graph on n ≥ 3 vertices such that the connected components of Y have sizes
n1, . . . , nr, then FS(Cyclen, Y) has exactly TY(1, 0)ν connected components, where ν =
gcd(n1, . . . , nr). In particular, this enumeration yields a complete characterization of the
graphs Y for which FS(Cyclen, Y) is connected.

Corollary 3.4 ([5]). Let Y be a graph with n ≥ 3 vertices. Then FS(Cyclen, Y) is connected if
and only if Y is a forest consisting of trees T1, . . . , Tr such that gcd(|V(T1)|, . . . , |V(Tr)|) = 1.

4 General conditions for connectivity

The article [5] develops some necessary conditions and some sufficient conditions for
the graph FS(X, Y) to be connected.

It will be helpful to have a notion that captures the idea of extending a Hamiltonian
path of a graph X and then adding additional edges. Thus, if X is a graph with a
Hamiltonian path, then we define a prolongation of X to be a graph X̃ such that:

• X̃ contains a (not necessarily induced) subgraph X̂ that is isomorphic to X;

• X̃ contains a Hamiltonian path that itself contains a Hamiltonian path of X̂.
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We obtain a sufficient condition for FS(X, Y) to be connected in the case where X is
a prolongation of a known small graph. Recall that a hereditary class is a collection of
(isomorphism types of) graphs that is closed under taking induced subgraphs.

Theorem 4.1 ([5]). Let H be a hereditary class. Let X be a graph on n0 vertices with a Hamil-
tonian path, and suppose that FS(X, Y) is connected for every Y ∈ H on n0 vertices. If X̃ is a
prolongation of X with n vertices, then FS(X̃, Ỹ) is connected for every Ỹ ∈ H on n vertices.

We now mention a fairly general necessary condition for FS(X, Y) to be connected.

Theorem 4.2 ([5]). Let X and Y be graphs on n vertices. Suppose x1 · · · xd (d ≥ 1) is a path in
X, where x1 and xd are cut vertices and each of x2, . . . , xd−1 has degree exactly 2. If the minimum
degree of Y is smaller than or equal to d, then FS(X, Y) is disconnected.

These two theorems have several applications to understanding FS(X, Y) for partic-
ular choices of X, some of which are stated in [5]. One example is the lollipop graph
Lollipop3,n−3, which is obtained from Pathn by adding the edge {n− 2, n}; in this case, we
have that FS(Lollipopn−3,3, Y) is connected if and only if the minimum degree of Y is at
least n− 2. It turns out that the same characterization holds when X = Dn is the Dynkin
diagram of type Dn, which is obtained from Pathn−1 by adding the additional vertex n
and the additional edge {n− 2, n}; here, we find that FS(Dn, Y) is connected if and only
if the minimum degree of Y is at least n− 2.

5 Typical and extremal aspects

We next turn to the question of connectivity for FS(X, Y) when X and Y are random
graphs. Our main result is the following. Recall that an event occurs with high probability
if its probability of occurring tends to 1 as the sizes of the graphs involved tend to ∞.

Theorem 5.1 ([1]). Fix ε > 0. Let X and Y be independently-chosen Erdős-Rényi random
graphs on n vertices with edge probability p = p(n). If p ≤ (2−1/2− ε)n−1/2, then FS(X, Y) is
disconnected with high probability. If p ≥ (exp(2(log n)2/3))n−1/2, then FS(X, Y) is connected
with high probability.

We remark that the first statement in this theorem follows from a well-known result
about edge-disjoint packings of graphs, which in this case correspond to isolated vertices
in FS(X, Y); it seems that, as in the usual case of a binomial random graph, this local
obstruction to connectedness tells essentially the whole story.

The proof of the second statement relies on the notion of an exchangeable pair of
vertices, which generalizes the notion of an (X, Y)-friendly swap. Let X and Y be n-
vertex graphs, and fix a bijection σ ∈ V(FS(X, Y)). Let u and v be distinct vertices of
Y, and write u′ = σ−1(u) and v′ = σ−1(v). Let σ ◦ (u′ v′) be the bijection that sends
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u′ to v, sends v′ to u, and sends x to x for all x ∈ V(X) \ {u′, v′}. We say that u and v
are (X, Y)-exchangeable from σ if σ and σ ◦ (u′ v′) are in the same connected component
of FS(X, Y). In other words, u and v are exchangeable from σ if there is a sequence of
(X, Y)-friendly swaps that, when applied to σ, has the overall effect of swapping u and
v (even if this swap is not itself (X, Y)-friendly). It turns out that having u and v be
exchangeable for many bijections σ can be worth as much as having the edge {u, v} in
Y, as is illustrated by the following straightforward lemma.

Lemma 5.2 ([1]). Let X and Y be n-vertex graphs, and suppose that X is connected. Suppose that
for all distinct vertices u, v ∈ V(Y) and every bijection σ satisfying {σ−1(u), σ−1(v)} ∈ E(X),
the vertices u and v are (X, Y)-exchangeable from σ. Then FS(X, Y) is connected.

The other important idea in the proof of Theorem 5.1 concerns embedding small
graphs in large random graphs. Let m be a positive integer, and let G and H be two
graphs on the vertex set [m]. Let X and Y be n-vertex graphs, and let σ : V(X) → V(Y)
be a bijection. Let V1, . . . , Vm be a list of m pairwise disjoint sets of vertices of Y. We say
that the pair of graphs (G, H) is embeddable in (X, Y) with respect to the sets V1, . . . , Vm and
the bijection σ if there exist vertices vi ∈ Vi for all i ∈ [m] such that for all i, j ∈ [m], we
have

{i, j} ∈ E(H) =⇒ {vi, vj} ∈ E(Y) and {i, j} ∈ E(G) =⇒ {σ−1(vi), σ−1(vj)} ∈ E(X).

It is desirable to know if (G, H) is embeddable in (X, Y) with respect to the sets V1, . . . , Vm
and the bijection σ for all choices of σ and all reasonably large disjoint subsets V1, . . . , Vm.
A technical argument using Janson’s Inequalities shows that when X and Y are large ran-
dom graphs and G and H are fixed small graphs, this is the case with high probability.
(See [1] for a precise statement.)

The proof of the second statement in Theorem 5.1 proceeds by combining these two
main ideas. We first find embeddings for particular specially-constructed pairs of sparse
graphs (G, H) for which we know that certain pairs of vertices are exchangeable (and
|V(G)| = |V(H)| ≈ (log n)2/3 grows slowly with n). By choosing our embeddings care-
fully, we show that with high probability any two vertices u and v in Y are exchange-
able; the argument involves lifting u and v to (G, H), finding a sequence of swaps that
exchanges them there, and then bringing this sequence back down to (X, Y). Finally, we
use Lemma 5.2 to conclude that FS(X, Y) is connected.

We also mention an analogous result for the case where X and Y are random edge-
subgraphs of the complete bipartite graph Kr,r. It is not hard to show that if X and
Y are both bipartite graphs on n ≥ 3 vertices, then FS(X, Y) has multiple connected
components. Hence, it makes sense to investigate when FS(X, Y) has the minimum
possible number of connected components, namely, 2.

Theorem 5.3 ([1]). Fix ε > 0. Let X and Y be independently-chosen Erdős-Rényi random edge-
subgraphs of Kr,r with edge probability p = p(r). If p ≤ (1− ε)r−1/2, then FS(X, Y) has more
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than 2 connected components with high probability. If p ≥ (5(log r)1/10)r−3/10, then FS(X, Y)
has exactly 2 connected components with high probability.

Finally, we address the question of determining minimum degree conditions on X
and Y that guarantee the connectedness of FS(X, Y).

Theorem 5.4 ([1]). For each n ≥ 1, let dn denote the smallest nonnegative integer such that
whenever X and Y are n-vertex graphs each with minimum degree at least dn, the graph FS(X, Y)
is connected. We have dn ≥ 3n/5− 2. If n ≥ 16, then dn ≤ 9n/14 + 2.

We also establish a bipartite analogue which, in this case, is very nearly exact.

Theorem 5.5 ([1]). For each r ≥ 2, let dr,r be the smallest nonnegative integer such that when-
ever X and Y are edge-subgraphs of Kr,r each with minimum degree at least dr,r, the graph
FS(X, Y) has exactly 2 connected components. We have d(3r + 1)/4e ≤ dr,r ≤ d(3r + 2)/4e.

For each theorem, the lower bound comes from an explicit construction (see [1] for
more details), and the upper bound relies on delicate technical arguments in which lack
of structure in some part of (X, Y) forces more rigid structure elsewhere. The notion of
exchangeability again plays a central role.

6 Conclusion and future directions

The articles [1] and [5] contain several conjectures and open problems. Some have al-
ready been resolved, and we hope that others will lead to further developments in the
study of friends-and-strangers graphs. We list a few of these questions here.

In Sections 2 and 3, we analyzed the connected components of FS(X, Y) where X is
a path or a cycle, and Wilson [8] has analyzed the case where X is a star; other choices
may also be fruitful for future inquiry.

Problem 6.1. Characterize the connected components of FS(X, Y) for more fixed choices of X.

It is easy to see that FS(Kn, Y) is connected if and only if Y is connected, but the
bipartite setting seems to introduce more subtleties.

Problem 6.2. Characterize the edge-subgraphs Y of Kr,r such that FS(Kr,r, Y) has exactly 2
connected components.

The following conjecture, about determining the graphs X such that FS(X, Y) is con-
nected for all “reasonable” choices of Y, has recently been proven by Ryan Jeong (per-
sonal communication).

Conjecture 6.3 ([5]). Let X be a graph on n ≥ 3 vertices. If FS(X,Cyclen) is connected, then
FS(X, Y) is connected for every biconnected graph Y.
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The following conjecture pertains to the bounds in Section 5.

Conjecture 6.4 ([1]). There is an absolute constant C > 0 such that if X and Y are inde-
pendently chosen Erdős-Rényi random graphs on n vertices (respectively, Erdős-Rényi random
edge-subgraphs of Kr,r) with edge probability p ≥ Cn−1/2, then FS(X, Y) is connected (respec-
tively, has exactly 2 connected components) with high probability.

In an exciting recent development, Bangachev [2] has studied asymmetric minimum
degree conditions on X and Y that guarantee the connectedness of FS(X, Y). One conse-
quence of his results is the following improvement of our Theorem 5.4.

Theorem 6.5 ([2]). We have (in the notation of Theorem 5.4) that dn ≤ d3n/5e.
Besides the number of connected components, another natural parameter of friends-

and-strangers graphs that could be worth considering is the diameter.

Question 6.6 ([1]). Does there exist an absolute constant C > 0 such that for all n-vertex graphs
X and Y, every connected component of FS(X, Y) has diameter at most nC?

Finally, we mention that it could be fruitful to study random walks on friends-and-
strangers graphs; indeed, this corresponds to friends and strangers randomly walking
on graphs. Random walks on FS(X, Kn) correspond to the interchange process on X as
discussed, for example, in [3].
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