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Abstract. We give a combinatorial Chevalley formula for an arbitrary weight, in the
torus-equivariant K-group of semi-infinite flag manifolds, which is expressed in terms
of the quantum alcove model. As an application, we prove the Chevalley formula
for anti-dominant fundamental weights in the (small) torus-equivariant quantum K-
theory QKT(G/B) of the flag manifold G/B; this has been a longstanding conjecture.
We also discuss the Chevalley formula for partial flag manifolds G/P. Moreover, in
type An−1, we prove that the so-called quantum Grothendieck polynomials indeed
represent Schubert classes in the (non-equivariant) quantum K-theory QK(SLn/B).

Résumé. Nous donnons une formule combinatoire de Chevalley pour un poids arbi-
traire, dans la K-théorie équivariante des variétés de drapeau semi-infinies, exprimée
en termes du modèle des alcôves quantique. En tant qu’application, nous prouvons la
formule de Chevalley pour les poids fondamentaux anti-dominantes dans la (petite)
K-théorie quantique équivariante QKT(G/B) des variétés de drapeau G/B; c’était une
conjecture depuis longtemps. Nous discutons également de la formule plus générale
de Chevalley pour les variétés de drapeau partielles G/P. De plus, dans le type An−1,
nous montrons que les polynômes de Grothendieck quantiques représentent bien les
classes de Schubert dans la K-théorie quantique (non-équivariante) QK(SLn/B).

Keywords: semi-infinite flag manifold, Chevalley formula, quantum Bruhat graph,
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1 Introduction

This paper is concerned with a geometric application of the combinatorial model known
as the quantum alcove model, introduced in [9]. Its precursor, the alcove model of the
∗clenart@albany.edu. C. Lenart was partially supported by the NSF grants DMS-1362627 and DMS-

1855592.
†naito@math.titech.ac.jp. S. Naito was partially supported by JSPS Grant-in-Aid for Scientific Research

(B) 16H03920.
‡sagaki@math.tsukuba.ac.jp. D. Sagaki was partially supported by JSPS Grant-in-Aid for Scientific

Research (C) 15K04803 and 19K03415.

mailto:clenart@albany.edu
mailto:naito@math.titech.ac.jp
mailto:sagaki@math.tsukuba.ac.jp


2 Cristian Lenart, Satoshi Naito, and Daisuke Sagaki

first author and Postnikov, was used to uniformly describe the Chevalley formula in the
equivariant K-theory of flag manifolds G/B [13]. Also, the quantum alcove model was
used to uniformly describe certain crystals of affine Lie algebras (single-column Kirillov–
Reshetikhin crystals) and Macdonald polynomials specialized at t = 0 [12]. The objects of
the quantum alcove model (indexing the crystal vertices and the terms of Macdonald
polynomials) are paths in the quantum Bruhat graph on the Weyl group, introduced by
Brenti-Fomin-Postnikov. In this paper we complete the above picture, by extending to
the quantum alcove model the geometric application of the alcove model, namely the
K-theory Chevalley formula.

To achieve our goal, we need to consider the so-called semi-infinite flag manifold QG.
We give a Chevalley formula for an arbitrary weight in the T ×C∗-equivariant K-group
KT×C∗(QG) of QG, which is described in terms of the quantum alcove model. In [6]
and [14], the Chevalley formulas for KT×C∗(QG) were originally given in terms of the
quantum LS path model in the case of a dominant and an anti-dominant weight, respec-
tively. For a general (not dominant nor anti-dominant) weight, there is no quantum LS
path model, but there is a quantum alcove model. Hence, in order to obtain a Cheval-
ley formula for an arbitrary weight, we first need to translate the formulas above to the
quantum alcove model by using the weight-preserving bijection between the two mod-
els given by Proposition 7. Based on these translated formulas (Theorems 8 and 9), we
obtain a Chevalley formula (Theorem 10) for an arbitrary weight.

The study of the equivariant K-group of semi-infinite flag manifolds was started
in [6]. A breakthrough in this study is [4] (see also [5]), in which Kato established a Z[P]-
module isomorphism from the (small) T-equivariant quantum K-theory QKT(G/B) of
the finite-dimensional flag manifold G/B onto (a version of) the T-equivariant K-group
K′T(QG) of QG; here P is the weight lattice generated by the fundamental weights vi,
i ∈ I. Here we should mention that in [4], he also established a Z[P]-module embed-
ding of (a certain localization of) the T-equivariant K-group of the affine Grassmannian
into the T-equivariant K-group of the full semi-infinite flag manifold Qrat

G , which is a
certain inductive limit of copies of KT(QG), thus verifying a conjectural K-theoretic gen-
eralization of Peterson’s isomorphism proposed by Lam-Li-Mihalcea-Shimozono ([7]).
The isomorphism above sends each (opposite) Schubert class in QKT(G/B) to the cor-
responding semi-infinite Schubert class in K′T(QG); moreover, it respects the quantum
multiplication in QKT(G/B) with the class of the line bundle associated to an anti-
dominant fundamental weight and the tensor product in K′T(QG) with the class of the
line bundle associated to the corresponding anti-dominant fundamental weight. Based
on this result, a longstanding conjecture on the multiplicative structure of QKT(G/B),
i.e., the Chevalley formula (Theorem 12) for anti-dominant fundamental weights −vk,
k ∈ I, for QKT(G/B) is proved by our Chevalley formula for KT×C∗(QG) specialized to
q = 1. In Section 5, we also discuss the quantum K-theory Chevalley formula for partial
flag manifolds G/P.
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As an application of our quantum K-theory Chevalley formula, we prove an impor-
tant conjecture for the non-equivariant quantum K-theory QK(SLn/B) of the type An−1
flag manifold (Theorem 13): the quantum Grothendieck polynomials, introduced in [10],
represent Schubert classes in QK(SLn/B). Thus, we generalize the results of [3], where
the quantum Schubert polynomials are constructed as representatives for Schubert classes
in the quantum cohomology of SLn/B. Therefore, we can use quantum Grothendieck
polynomials to compute any structure constant in QK(SLn/B) (with respect to the Schu-
bert basis); indeed, we just need to expand their products in the basis they form, which
is done by [10, Algorithm 3.28], see [10, Example 7.4]. This is important, since computing
even simple products in quantum K-theory is notoriously difficult.

2 Background on the combinatorial models

2.1 Root systems

Let g be a complex simple Lie algebra, and h a Cartan subalgebra. Let Φ ⊂ h∗ be the
corresponding irreducible root system, h∗R the real span of the roots, and Φ+ ⊂ Φ the set
of positive roots. Given α ∈ Φ, we let sgn(α) be 1 or −1 depending on α being positive
or negative, and |α| := sgn(α)α. Let ρ := 1

2(∑α∈Φ+ α). Let θ be the highest root, and
αi ∈ Φ+ the simple roots, for i in an indexing set I. We denote 〈·, ·〉 the nondegenerate
scalar product on h∗R induced by the Killing form. Given α ∈ Φ, we consider the coroot
α∨ and reflection sα. The root and coroot lattices are denoted by Q and Q∨, as usual,
while the positive part of the coroot lattice is denoted by Q∨,+. The weight lattice P is
generated by the fundamental weights vi, for i ∈ I. Let P+ be the set of dominant weights.

Let W be the Weyl group, with length function `(·) and longest element w◦. The
Bruhat order on W is defined by its covers wlwsα, for `(wsα) = `(w) + 1, where α ∈ Φ+.

Given α ∈ Φ and k ∈ Z, we denote by sα,k the reflection in the affine hyperplane
Hα,k := {λ ∈ h∗R | 〈λ, α∨〉 = k}. These reflections generate the affine Weyl group Waf =
W n Q∨ for the dual root system Φ∨. The hyperplanes Hα,k divide the vector space h∗R
into open regions, called alcoves. The fundamental alcove is denoted by A◦.

The quantum Bruhat graph QB(W) on W is defined by adding downward (quantum)
edges, denoted w / wsα, to the covers of the Bruhat order, i.e., the edges of QB(W) are:

w α−→ wsα if w l wsα or `(wsα) = `(w)− 2〈ρ, α∨〉+ 1 , where α ∈ Φ+ .

We define the weight of an edge w α−→ wsα to be either α∨ or 0, depending on whether
it is a quantum edge or not, respectively. Then the weight of a directed path is the sum
of the weights of its edges. It turns out that the weight of a shortest directed path from v
to w is independent of the mentioned path, so we will denote it by wt(w⇒ v); see [12].
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For the remainder of this section, we fix λ ∈ P+. Let WJ be the stabilizer of λ, as
a parabolic subgroup with J ⊂ I and root system ΦJ . We denote the set of minimum-
length coset representatives for W/WJ by W J , and the minimum-length coset represen-
tative of wWJ by bwc. We consider the parabolic quantum Bruhat graph on W J , denoted by
QB(W J); this generalizes QB(W), see [11]. Its directed edges are labeled by α ∈ Φ+ \Φ+

J .
The upward edges are the covers of the Bruhat order on W J , while the downward (quan-
tum) edges w α−→ bwsαc are given by the condition `(bwsαc) = `(w)− 2〈ρ− ρJ , α∨〉+ 1.
Given a rational number b, we define QBbλ(W J) to be the subgraph of QB(W J) with the
same vertex set but having only the edges with labels α satisfying b〈λ, α∨〉 ∈ Z.

We now recall the quantum Bruhat graph analogue of a certain lift from W/WJ to
W which was previously defined by Deodhar. Let `(w ⇒ x) denote the length of the
shortest path from w to x in QB(W). It was shown in [11] that, given v, w ∈ W, there
exists a unique element x ∈ vWJ such that `(w ⇒ x) attains its minimum value as a
function of x ∈ vWJ . For reasons explained in [11], we denote the unique element by
min(vWJ ,�w), and call it a quantum Deodhar lift.

2.2 Quantum LS paths

Definition 1 ([12]). A quantum LS path η ∈ QLS(λ), for λ ∈ P+, is given by two sequences

(0 = b1 < b2 < b3 < · · · < bt < bt+1 = 1) ; (φ(η) = σ1, σ2, . . . , σt = ι(η)) , (2.1)

where bk ∈ Q, σk ∈ W J , and there is a directed path in QBbkλ(W J) from σk−1 to σk, for each
k = 2, . . . , t. The elements σk are called the directions of η, while ι(η) and φ(η) are the initial
and final directions, respectively.

This data encodes the sequence of vectors vt := (bt+1 − bt)σtλ, . . . , v2 := (b3 −
b2)σ2λ, v1 := (b2 − b1)σ1λ. We can view η ∈ QLS(λ) as a piecewise-linear path given
by the sequence of points 0, vt, vt−1 + vt, . . . , v1 + · · · + vt. The endpoint of the path,
also called its weight, is wt(η) := η(1) = v1 + · · · + vt. Given w ∈ W, we define the
initial direction of η with respect to w as ι(η, w) := wt ∈ W, where the sequence (wk) is
calculated by the following recursive formula: w0 := w, wk := min(σkWJ ,�wk−1) for
k = 1, . . . , t. Also, we set ξ(η, w) := ∑t

k=1 wt(wk−1 ⇒ wk) and degw(η) := −∑t
k=1(1−

bk)〈λ, wt(wk−1 ⇒ wk)〉.

2.3 The quantum alcove model

We say that two alcoves are adjacent if they are distinct and have a common wall. Given

a pair of adjacent alcoves A and B, we write A
β−→ B for β ∈ Φ if the common wall is

orthogonal to β and β points in the direction from A to B.
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Definition 2 ([13]). An alcove path is a sequence of alcoves (A0, A1, . . . , Am) such that Aj−1
and Aj are adjacent, for j = 1, . . . , m. We say that (A0, A1, . . . , Am) is reduced if it has minimal
length among all alcove paths from A0 to Am.

Let λ ∈ P be any weight, although dominant and anti-dominant λ will play a special
role. Let Aλ = A◦ + λ be the translation of the fundamental alcove A◦ by λ.

Definition 3 ([13]). The sequence of roots Γ(λ) = (β1, β2, . . . , βm) is called a λ-chain if

A0 = A◦
−β1−−→ A1

−β2−−→ · · · −βm−−→ Am = A−λ

is a reduced alcove path.

A reduced alcove path (A0 = A◦, A1, . . . , Am = A−λ) can be identified with the
corresponding total order on the hyperplanes, to be called λ-hyperplanes, which separate
A◦ from A−λ. This total order is given by the sequence Hβi,−li for i = 1, . . . , m, where
Hβi,−li contains the common wall of Ai−1 and Ai. Note that 〈λ, β∨i 〉 ≥ 0, and that the
integers li, called heights, have the following ranges:

0 ≤ li ≤ 〈λ, β∨i 〉 − 1 if βi ∈ Φ+ , and 1 ≤ li ≤ 〈λ, β∨i 〉 if βi ∈ Φ− . (2.2)

Note also that a λ-chain (β1, . . . , βm) determines the corresponding reduced alcove path,
so we can identify them as well.

Remark 4. A reduced alcove path corresponds to the choice of a reduced word for the
affine Weyl group element sending A◦ to A−λ [13, Lemma 5.3].

For dominant λ, we have a particular choice of a λ-chain, denoted by Γlex(λ), which
we call the lexicographic (lex) λ-chain (see [13, Prposition 6.7]). For a λ-hyperplane Hβ,−l,
the rational number l/〈λ, β∨〉 is called the relative height; by definition, the sequence of
relative heights in the lex λ-chain is weakly increasing.

The objects of the quantum alcove model are defined next; for examples, we refer
to [9, 12]. Compared with the original construction in [9], here we consider a general-
ization of this model, by letting λ be any weight, as opposed to only a dominant weight;
another aspect of the generalization is making the model depend on a fixed element
w ∈W, such that the initial model corresponds to w being the identity. In addition to w,
we fix an arbitrary λ-chain Γ(λ) = (β1, . . . , βm), and let ri := sβi , r̂i := sβi,−li .

Definition 5 ([9]). A subset A = {j1 < · · · < js} of [m] := {1, . . . , m} (possibly empty) is a
w-admissible subset if we have the following directed path in QB(W):

Π(w, A) : w
|β j1
|

−−→ wrj1

|β j2 |−−→ wrj1rj2

|β j3 |−−→ · · ·
|β js |−−→ wrj1rj2 · · · rjs =: end(w, A) . (2.3)

We let A(w, Γ(λ)) be the collection of all w-admissible subsets of [m].
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We now associate several parameters with the pair (w, A). The weight of (w, A) is

wt(w, A) := −wr̂j1 · · · r̂js(−λ) . (2.4)

Given the height sequence (l1, . . . , lm) above, we define the complementary height
sequence (l̃1, . . . , l̃m) by l̃i := 〈λ, β∨i 〉 − li. Given A = {j1 < · · · < js} ∈ A(w, Γ(λ)), let

A− :=
{

ji ∈ A | wrj1 · · · rji−1 > wrj1 · · · rji−1rji
}

;

in other words, we record the quantum steps in the path Π(w, A) defined in (2.3). Let

down(w, A) := ∑
j∈A−
|β j|∨ ∈ Q∨,+ , height(w, A) := ∑

j∈A−
sgn(β j)l̃j . (2.5)

3 Chevalley formulas for the semi-infinite flag manifold

Consider a simply-connected simple algebraic group G over C, with Borel subgroup
B = TN, maximal torus T, and unipotent radical N. The full semi-infinite flag manifold
Qrat

G is the reduced (ind-)scheme associated to G(C((z)))/(T · N(C((z)))); in this paper,
we concentrate on its semi-infinite Schubert subvariety QG := QG(e) ⊂ Qrat

G correspond-
ing to the identity element e ∈ Waf, which we also call the semi-infinite flag manifold.
The T×C∗-equivariant K-group KT×C∗(QG) of QG has a (topological) Z[q, q−1][P]-basis
of semi-infinite Schubert classes, and its multiplicative structure is determined by a Cheval-
ley formula, which expresses the tensor product of a semi-infinite Schubert class with the
class of a line bundle. In [6] and [14], the Chevalley formulas were given in the cases of a
dominant and an anti-dominant weight λ, respectively. These formulas were expressed
in terms of the quantum LS path model. We will express them in terms of the quan-
tum alcove model based on the lexicographic λ-chain. The goal is to generalize these
formulas for an arbitrary weight λ, and we will also see that an arbitrary λ-chain can be
used. Throughout this section, WJ is the stabilizer of λ, and we use freely the notation
in Section 2.

The T × C∗-equivariant K-group KT×C∗(QG) is the Z[q, q−1][P]-submodule of the
(Iwahori-) equivariant K-group KIoC∗(Qrat

G ) of Qrat
G , introduced in [6], consisting of all

(possibly infinite) linear combinations of the classes [OQG(x)] of the structure sheaves
of the semi-infinite Schubert varieties QG(x)(⊂ QG) with coefficients ax ∈ Z[q, q−1][P]
for x ∈ W≥0

af = W × Q∨,+ such that the sum ∑x∈W≥0
af
|ax| of the absolute values |ax|

lies in Z≥0((q−1))[P]. Here C∗ acts on QG by loop rotation, and Z[P] is the group al-
gebra of P, spanned by formal exponentials eµ, for µ ∈ P, with eµeν = eµ+ν; note that
Z[P] is identified with the representation ring of T. We also consider the Z[q, q−1][P]-
submodule K′T×C∗(QG) of KT×C∗(QG) consisting of all finite linear combinations of the
classes [OQG(x)] with coefficients in Z[q, q−1][P] for x ∈ W≥0

af . The T-equivariant K-
groups of QG, denoted by KT(QG) and K′T(QG), are obtained from the KT×C∗(QG) and
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K′T×C∗(QG) above, respectively, by the specialization q = 1. Hence the Chevalley for-
mulas in KT(QG) (for arbitrary weights) and K′T(QG) (for anti-dominant weights) are
obtained from the corresponding one in KT×C∗(QG) by setting q = 1. Note that KT(QG)
turns out to be the Z[P]-module consisting of all (possibly infinite) linear combinations
of the classes [OQG(x)], x ∈ W≥0

af , with coefficients in Z[P]; also K′T(QG) is the Z[P]-
submodule of KT(QG) consisting of all finite linear combinations of the classes [OQG(x)],
x ∈W≥0

af , with coefficients in Z[P].

3.1 Chevalley formulas for dominant and anti-dominant weights

We start with the Chevalley formula for dominant weights, which was derived in terms
of semi-infinite LS paths in [6], and then restated in [14, Corollary C.3] in terms of
quantum LS paths.

Let λ = ∑i∈I λivi be a dominant weight. We denote by Par(λ) the set of I-tuples of
partitions χ = (χ(i))i∈I such that χ(i) is a partition of length at most λi for all i ∈ I. For
χ = (χ(i))i∈I ∈ Par(λ), we set |χ| := ∑i∈I |χ(i)|, with |χ(i)| the size of the partition χ(i).
Also set ι(χ) := ∑i∈I χ

(i)
1 α∨i ∈ Q∨,+, with χ

(i)
1 the first part of the partition χ(i).

Theorem 6 ([6, 14]). Let x = wtξ ∈W≥0
af = W ×Q∨,+. Then, in KT×C∗(QG), we have

[OQG(−w◦λ)] · [OQG(x)] =

= ∑
η∈QLS(λ)

∑
χ∈Par(λ)

qdegw(η)−〈λ,ξ〉−|χ|ewt(η)[OQG(ι(η,w)tξ+ξ(η,w)+ι(χ))
] .

We now translate this formula in terms of the quantum alcove model for the lex
λ-chain Γlex(λ). To this end, given w ∈ W, we construct a bijection A 7→ η between
A(w, Γlex(λ)) and QLS(λ), for which several properties are then proved.

In order to construct the forward map, let A = {j1 < · · · < js} be in A(w, Γlex(λ)).
The corresponding heights are within the first range in (2.2). Consider the weakly in-
creasing sequence of relative heights hi := lji /〈λ, β∨ji 〉 ∈ [0, 1) ∩Q for i = 1, . . . , s. Let
0 < b2 < · · · < bt < 1 be the distinct nonzero values in the set {h1, . . . , hs}, and let
b1 := 0, bt+1 := 1. For k = 1, . . . , t, let Ik := {1 ≤ i ≤ s | hi = bk}.

Recall the path Π(w, A) in QB(W) defined in (2.3). We divide this path into subpaths
corresponding to the sets Ik, and record the last element in each subpath; more precisely,
for k = 0, . . . , t, we define the sequence of Weyl group elements

wk := w
−→
∏

i∈I1∪···∪Ik

rji ,

where the non-commutative product is taken in the increasing order of the indices i, and
w0 := w. For k = 1, . . . , t, let σk := bwkc ∈W J . We can now define the forward map as

(w, A) 7→ η := ((b1, b2, . . . , bt, bt+1); (σ1, . . . , σt)) .
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We will verify below that the image is in QLS(λ).
The inverse map is constructed using the quantum Deodhar lift and the related shella-

bility property of the quantum Bruhat graph, due to Brenti-Fomin-Postnikov.

Proposition 7. The map A 7→ η constructed above is a bijection between A(w, Γlex(λ)) and
QLS(λ). It maps the corresponding parameters in the following way:

wt(w, A) = wt(η), end(w, A) = ι(η, w),
down(w, A) = ξ(η, w), −height(w, A) = degw(η).

We translate the formula in Theorem 6 to the quantum alcove model via Proposi-
tion 7.

Theorem 8. Let λ be a dominant weight, Γlex(λ) the lex λ-chain, and let x = wtξ ∈ W≥0
af .

Then, in KT×C∗(QG), we have

[OQG(−w◦λ)] · [OQG(x)] =

∑
A∈A(w,Γlex(λ))

∑
χ∈Par(λ)

q−height(w,A)−〈λ,ξ〉−|χ|ewt(w,A)[OQG(end(w,A)tξ+down(w,A)+ι(χ))
] .

A similar Chevalley formula for an anti-dominant weight λ was derived in [14, The-
orem 1], also in terms of quantum LS paths. Using a similar procedure to the one above,
we translate it to the quantum alcove model, as stated in Theorem 9. We work with the
lex λ-chain Γlex(λ), defined as the reverse of the lex (−λ)-chain; note that the alcove path
corresponding to the former (ending at A◦ − λ) is the translation by −λ of the alcove
path corresponding to the latter (ending at A◦ + λ).

Theorem 9. Let λ be an anti-dominant weight, Γlex(λ) the lex λ-chain, and let x = wtξ ∈W≥0
af .

Then, in K′T×C∗(QG) ⊂ KT×C∗(QG), we have

[OQG(−w◦λ)] · [OQG(x)] =

∑
A∈A(w,Γlex(λ))

(−1)|A|q−height(w,A)−〈λ,ξ〉ewt(w,A)[OQG(end(w,A)tξ+down(w,A))
] .

3.2 The Chevalley formula for an arbitrary weight

We now exhibit the Chevalley formula for an arbitrary weight λ = ∑i∈I λivi. To state
the formula, let Par(λ) denote the set of I-tuples of partitions χ = (χ(i))i∈I such that χ(i)

is a partition of length at most max(λi, 0).
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Theorem 10. Let λ be an arbitrary weight, Γ(λ) an arbitrary λ-chain, and let x = wtξ ∈W≥0
af .

Then, in KT×C∗(QG), we have

[OQG(−w◦λ)] · [OQG(x)] =

∑
A∈A(w,Γ(λ))

∑
χ∈Par(λ)

(−1)n(A)q−height(w,A)−〈λ,ξ〉−|χ|ewt(w,A)[OQG(end(w,A)tξ+down(w,A)+ι(χ))
] ,

where n(A), for A = {j1 < · · · < js}, is the number of negative roots in {β j1 , . . . , β js}.

Example 11. Assume that g is of type A2, and λ = v1 − v2. Then, Γ(λ) := (α1, −α2) is
a λ-chain of roots. Assume that w = s1 = sα1 . In this case, we see that A(s1, Γ(λ)) ={

∅, {1}, {2}, {1, 2}
}

, and we have the following table.

A n(A) height(s1, A) wt(s1, A) end(s1, A) down(s1, A)

∅ 0 0 s1λ s1 0
{1} 0 1 λ e α∨1
{2} 1 0 s1λ s1s2 0
{1, 2} 1 1 λ s2 α∨1

Also, we can identify Par(λ) with Z≥0. Therefore, we obtain

[OQG(−w◦λ)] · [OQG(s1tξ)
] =

∑
m∈Z≥0

q−〈λ,ξ〉−m
{

es1λ[OQG(s1tξ+mα∨1
)]︸ ︷︷ ︸

A=∅

+ q−1eλ[OQG(tξ+α∨1 +mα∨1
)]︸ ︷︷ ︸

A={1}

+ (−1)es1λ[OQG(s1s2tξ+mα∨1
)]︸ ︷︷ ︸

A={2}

+ (−1)q−1eλ[OQG(s2tξ+α∨1 +mα∨1
)]︸ ︷︷ ︸

A={1,2}

}
.

4 The quantum K-theory of flag manifolds

Y.-P. Lee defined the (small) quantum K-theory of a smooth projective variety X, denoted
by QK(X) [8]. This is a deformation of the ordinary K-ring of X, analogous to the relation
between quantum cohomology and ordinary cohomology. The deformed product is
defined in terms of certain generalizations of Gromov-Witten invariants (i.e., the structure
constants in quantum cohomology), called quantum K-invariants of Gromov-Witten type.

In order to describe the (small) T-equivariant quantum K-algebra QKT(G/B), for
the finite-dimensional flag manifold G/B, we associate a variable Qk to each simple
coroot α∨k , and let Z[Q] := Z[Q1, . . . , Qr]. Given ξ = d1α∨1 + · · · + drα∨r in Q∨,+, let
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Qξ := Qd1
1 · · ·Q

dr
r . Let Z[P][Q] := Z[P]⊗Z Z[Q], where the group algebra Z[P] of P was

defined at the beginning of Section 3. By the finiteness theorem of Anderson-Chen-Tseng
([1]), we can define QKT(G/B) to be the Z[P][Q]-module KT(G/B) ⊗Z[P] Z[P][Q] ⊂
KT(G/B) ⊗Z[P] Z[P][[Q]], where Z[P][[Q]] := Z[P] ⊗Z Z[[Q]]. The algebra QKT(G/B)
has a Z[P][Q]-basis given by the classes [Ow] of the structure sheaves of the (opposite)
Schubert varieties Xw ⊂ G/B of codimension `(w), for w ∈W.

It is proved in [4] (see also [5]) that there exists a Z[P]-module isomorphism from
QKT(G/B) onto K′T(QG) that respects the quantum multiplication in QKT(G/B) and
the tensor product in K′T(QG); in particular, it respects the quantum multiplication with
the class of the line bundle [OG/B(−vk)] and the tensor product with the class of the line
bundle [OQG(w◦vk)], for k ∈ I. Here we remark that in order to translate the Cheval-
ley formula in KT(QG) for fundamental weights into the one in the quantum K-theory
of G/B, we need to consider KT(G/B) ⊗Z[P] Z[P][[Q]]; for example, in type An−1, the
tensor product in KT(QG) with the class [OQG(−w◦εk)] for 1 ≤ k ≤ n corresponds to
the quantum multiplication with the class 1

1−Qk
[OG/B(εk)], where εk := vk −vk−1, with

v0 := 0, vn := 0, and Qn := 0. Also, note that the above isomorphism sends each (oppo-
site) Schubert class eµ[Ow]Qξ in QKT(G/B) to the corresponding semi-infinite Schubert
class e−µ[OQG(wtξ)

] in K′T(QG) for w ∈ W, ξ ∈ Q∨,+, and µ ∈ P. These results and the
formula in Theorem 9 imply an important conjecture in [13]: the Chevalley formula for
QKT(G/B); we also use the equality [Osk ] = 1− e−vk [OG/B(−vk)] in KT(G/B).

Theorem 12. Let k ∈ I, and fix a (−vk)-chain of roots Γ(−vk). Then, in QKT(G/B), we have

[Osk ] · [Ow] =

(1− ew(vk)−vk)[Ow] + ∑
A∈A(w,Γ(−vk))\{∅}

(−1)|A|−1 Qdown(w,A)e−vk−wt(w,A)[Oend(w,A)].

Let us now turn to the type An−1 flag manifold Fln = SLn/B and its (non-equivariant)
quantum K-theory QK(Fln). In [10], the first author and Maeno defined the so-called
quantum Grothendieck polynomials. According to [10, Theorem 6.4], whose proof is based
on intricate combinatorics, the mentioned polynomials multiply precisely as stated by
the above Chevalley formula; note that in the (non-equivariant) K-theory K(G/B), the
(opposite) Schubert class [Ow] is identical to the class of the structure sheaf of the Schu-
bert variety Xw◦w ⊂ G/B of codimension `(w) for w ∈ W. As this formula determines
the multiplicative structure of QK(Fln) [2], we derive the following result, settling the
main conjecture in [10].

Theorem 13. The quantum Grothendieck polynomials represent Schubert classes in QK(Fln).

Given a degree d = (d1, . . . , dn−1), let Nv,d
sk,w be the coefficient of Qd1

1 · · ·Q
dn−1
n−1 [Ov] in

the expansion of [Osk ] · [Ow] in QK(Fln) for k ∈ I = {1, . . . , n− 1}. Based on Theorem 12
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and results on a charge statistic due to the first author, we proved the following theorem,
which completely determines the Chevalley coefficients Nv,d

sk,w.

Theorem 14. For every k, v and parabolic coset σWI\{k} not containing v, there are unique d
and w ∈ σWI\{k} (they can be constructed explicitly), such that Nv,d

sk,w = ±1 (the sign is as in
Theorem 12). All the other coefficients Nv,d

sk,w are 0. Moreover, in the expansion of [Osk ] · [Ow]
there is a minimum and a maximum degree (with respect to the componentwise order), which are
constructed explicitly.

5 The quantum K-theory of partial flag manifolds

As an application of Theorem 12, we give a Chevalley formula for partial flag manifolds
corresponding to minuscule weights in types A, B, D, and E; also, in type C, we give a
Chevalley formula for partial flag manifolds corresponding to all fundamental weights.

Let k ∈ I be such that vk is a minuscule fundamental weight in types A, B, D, and
E; also, let k ∈ I be arbitrary in type C. Let PJ ⊃ B be the maximal (standard) parabolic
subgroup of G associated to the subset J := I \ {k}. The T-equivariant quantum K-theory
QKT(G/PJ) of the partial flag manifold G/PJ is defined as KT(G/PJ) ⊗Z[P] Z[P][Qk],
where KT(G/PJ) is the T-equivariant K-theory of G/PJ , and Z[Qk] is the polynomial
ring in the single (Novikov) variable Qk = Qα∨k corresponding to the simple coroot α∨k .
The (opposite) Schubert classes [Oy

J ], for y ∈ W J , form a Z[P][Qk]-basis. It is proved
in [5] that there exists a Z[P]-module surjection ΦJ from QKT(G/B) to QKT(G/PJ) such

that ΦJ([Ow]) = [ObwcJ ] for each w ∈ W, and ΦJ(Qξ) = Q[ξ]J for each ξ ∈ Q∨,+, where
[ξ]J := ckα∨k for ξ = ∑i∈I ciα

∨
i ∈ Q∨,+. Also, it is proved in [5] that ΦJ([OG/B(−vk)]) =

[OG/PJ (−vk)]. As is shown in [2], the quantum multiplication in QKT(G/PJ) is uniquely
determined by its Z[P]-module structure and the quantum multiplication with the class
of the line bundle [OG/PJ (−vk)]. Therefore, the Z[P]-module surjection ΦJ respects the
quantum multiplications in QKT(G/B) and QKT(G/PJ).

Based on the facts above, we obtain a formula for the quantum multiplication with
[OG/PJ (−vk)] in QKT(G/PJ) from Theorem 12 in QKT(G/B) by applying ΦJ ; this argu-
ment works for an arbitrary fundamental weight vk of G of any type. However, upon
applying ΦJ , there are many terms to be cancelled in the corresponding formula in
QKT(G/PJ). For a minuscule fundamental weight vk of G of type A, B, D, or E, and
for an arbitrary fundamental weight vk of G of type C, we cancel out all these terms via
a sign-reversing involution, and obtain a cancellation-free formula. Below we give such
a formula in type C, which is not included in [2]. For each k ∈ I, consider a specific
(−vk)-chain Γ(k) whose initial segment Γ1(k) is of the following form:

ε1 + ε2; ε1 + ε3, ε2 + ε3; . . . ; ε1 + εk, ε2 + εk, . . . , εk−1 + εk.

For a w-admissible subset A ∈ A(w, Γ(k)), with w ∈W J , we set A1 := A ∩ Γ1(k).
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Theorem 15. Let G be of type Cr, and k ∈ I arbitrary. Then, for a given w ∈ W J , we have
the following cancellation-free formula in QKT(G/PJ), where Al(w, Γ(k)) consists of all the
w-admissible subsets A with Π(w, A) a saturated chain in Bruhat order:

[Ow
J ] · [OG/PJ (−vk)] = ∑

A∈Al(w,Γ(k))
(−1)|A|ewt(w,A)[Oend(w,A)

J ]

−Qk ∑
A∈Al(w,Γ(k))

end(w,A1)≥bsθc

(−1)|A|ewt(w,A)[O
bend(w,A)s2εk

c
J ] .
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