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Bijection between trees
in Stanley character formula
and factorizations of a cycle
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Abstract. Stanley and Féray gave a formula for the irreducible character of the sym-
metric group related to a multi-rectangular Young diagram. This formula shows that the
character is a polynomial in the multi-rectangular coordinates and gives an explicit
combinatorial interpretation for its coefficients in terms of counting certain decorated
maps (i.e., graphs drawn on surfaces). In the current paper we concentrate on the
coefficients of the top-degree monomials in the Stanley character polynomial which
corresponds to counting certain decorated plane trees. We give an explicit bijection
between such trees and minimal factorizations of a cycle.
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1 Motivations

1.1 Normalized characters and Stanley polynomials

For a Young diagram λ with N = |λ| boxes and a partition π ` k we denote by

Chπ(λ) =

N(N − 1)(N − 2) · · · (N − k + 1)
χλ(π∪1N−k)

χλ(1N)
for k ≤ N,

0 otherwise

the normalized irreducible character of the symmetric group, where χλ(ρ) denotes the value
of the usual irreducible character of the symmetric group which corresponds to the
Young diagram λ, evaluated on any permutation with the cycle decomposition given by
the partition ρ. One of the goals of asymptotic representation theory is to understand the
behavior of such normalized characters in the scaling when the partition π is fixed and
the number of the boxes of the Young diagram λ tends to infinity.
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Figure 1: Multi-rectangular Young diagram p× q = (2, 3, 1)× (5, 4, 2).

For a pair of sequences of non-negative integers p = (p1, . . . , p`) and q = (q1, . . . , q`)
such that q1 ≥ · · · ≥ q` we consider the multi-rectangular Young diagram p × q, see
Figure 1. Stanley [7, 8] initiated investigation of the normalized characters evaluated on
such multi-rectangular Young diagrams and proved that

(p, q) 7→ Chπ

(
p× q

)
(1.1)

is a polynomial (called now the Stanley character polynomial) in the variables p1, . . . , p`
and q1, . . . , q`. He also gave a conjectural formula (proved later by Féray [3]) which
gives a combinatorial interpretation to the coefficients of this polynomial in terms of
certain maps (i.e., graphs drawn on surfaces). Stanley also explained how investigation
of its coefficients might shed some light on the Kerov positivity conjecture, see [6] for more
context.

Despite recent progress in this field (for the proof of the Kerov positivity conjecture
see [2, 1]) there are several other positivity conjectures related to the normalized char-
acters Chπ that remain open (see [4, Conjecture 2.4] and [5]) and which suggest the
existence of some additional hidden combinatorial structures behind such characters.
We expect that such positivity problems are more amenable to bijective methods and the
current article is the first step in this direction.

We will concentrate on the special case when π = (k) consists of a single part. In
this case the degree of the Stanley polynomial (1.1) turns out to be equal to k + 1. We
will also concentrate on the combinatorial interpretation of the coefficients of the Stanley
polynomial (1.1) standing at monomials of this maximal degree k + 1 which turns out to
be related to maps of genus zero, i.e., plane trees. Nevertheless, the methods which we
present in the current paper for this special case are applicable in much bigger generality
and in a forthcoming full version of this paper [9] we discuss the applications to maps
with higher genera.
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Figure 2: An example of a Stanley tree of type (3, 5, 3). The circled numbers indicate
the labels of the black verices. The black numbers indicate the labels of the edges. The
colors (blue for 1, red for 2, green for 3) indicate the values of the function f on white
vertices.

1.2 Stanley trees

Let T be a bicolored plane tree, i.e., a plane tree with each vertex painted black or white
and with edges connecting the vertices of opposite colors. We assume that the tree has
k edges labelled with the numbers 1, . . . , k. We also assume that it has n black vertices
labelled with the numbers 1, . . . , n. We define the function f which to each white vertex
associates the maximum of the labels of its black neighbors. We will say that T is a
Stanley tree of type (∣∣ f−1(1)

∣∣, . . . ,
∣∣ f−1(n)

∣∣),

i.e., the type gives the information about the number of the white vertices for which the
function f takes a specified value. Figure 2 gives an example of a Stanley tree of type
(3, 5, 3). By Tb1,...,bn we denote the set of Stanley trees of type (b1, . . . , bn).

1.3 Coefficients of top-degree p-squarefree monomials

It turns out that in the analysis of Stanley polynomials it is enough to restrict attention
to p-squarefree monomials, i.e., the monomials of the form p1 · · · pnqb1

1 · · · q
bn
n , see [1].

Lemma 1.1. For all integers b1, . . . , bn ≥ 0 such that b1 + · · ·+ bn + n = k+ 1 the p-squarefree
coefficient of the Stanley character polynomial is given by[

p1 · · · pnqb1
1 · · · q

bn
n

]
Chk

(
p× q

)
= ± 1

(k− 1)!

∣∣Tb1,...,bn

∣∣ .

In order to be concise we will not discuss the sign on the right-hand side. The above
lemma is a special case of a general formula conjectured by Stanley [8] and proved by
Féray [3] and therefore we refer to it as Stanley–Féray character formula.
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1.4 Minimal factorizations of long cycles

We fix an integer k ≥ 1 and denote by Sk the corresponding symmetric group. We say
that a permutation π ∈ Sk is a cycle of length ` if it is of the form π = (a1, . . . , a`).

Let a1, . . . , an ≥ 2 be integers. We say that a tuple (σ1, . . . , σn) is a factorization of a
long cycle of type (a1, . . . , an) if σ1, . . . , σn ∈ Sk are such that the product σ1 · · · σn is a
cycle of length k and σi is a cycle of length ai for each choice of i ∈ {1, . . . , n}. In the
current paper we concentrate on minimal factorizations which correspond to the special
case when

n

∑
i=1

(ai − 1) = k− 1.

By Ca1,...,an we denote the set of such minimal factorizations of a long cycle of type
(a1, . . . , an).

2 The main result: bijection between Stanley trees and
minimal factorizations of long cycles

Theorem 2.1. Let n ≥ 2 and b1, . . . , bn ≥ 1 be integers. We define the integers a1, . . . , an by

ai =

{
bi + 1 if i ∈ {1, n},
bi + 2 otherwise.

Then the algorithm presented below gives a bijection between the set Ca1,...,an and the set Tb1,...,bn .

2.1 The first step: from a factorization to a tree with repeated edge
labels

In the first step of our algorithm to a given minimal factorization (σ1, . . . , σn) ∈ Ca1,...,an

we will associate a bicolored plane tree T1 with labelled black vertices and labelled edges.
The remaining part of the current section is devoted to the details of this construction.

2.1.1 The tree T0

We start by creating a tree T0 with n black vertices labelled 1, . . . , n and with k white
vertices labelled 1, . . . , k. Each black vertex i corresponds to the cycle σi = (σi,1, . . . , σi,ai)
and so we connect the black vertex i with the white vertices σi,1, . . . , σi,ai .

In order to give this tree the structure of a plane tree we need to specify the cyclic
order of the edges around each vertex. We declare that going clockwise around the
black vertex i the cyclic order of the labels of the white neighbours should correspond to
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Figure 3: (a) The output T0 of the first step of the algorithm applied to the minimal
factorization (2.1). The spine is drawn in red. (b) The tree T1 which is the starting point
of the second step of our algorithm.

the cyclic order σi,1, . . . , σi,ai . The cyclic order around the white vertices is more involved
and we present it in the following.

The path between the two black vertices with the labels 1 and n will be called the
spine; on Figure 3a it is drawn in red. There will be two separate rules which determine
the cyclic order of the edges around a given white vertex, depending whether the vertex
belongs to the spine or not.

For each white vertex which is not on the spine we declare that going counterclock-
wise around it, the labels of its black neighbors should be arranged in the increasing
way (for example, the neighbors of the white vertex 6 on Figure 3a listed in the counter-
clockwise order are 3, 4, 6).

For each white vertex v which belongs to the spine there are exactly two black neigh-
bors which belong to the spine; we denote their labels by x1 and x2 with x1 < x2. Going
counterclockwise around v, all non-spine edges should be inserted after x1 and before x2.
Their order is determined by the requirement that—after neglecting the vertex x2—the
cyclic counterclockwise order of the remaining vertices should be increasing. For exam-
ple, for the white vertex 1 on Figure 3a we have x1 = 7, x2 = 11 and the counterclockwise
cyclic order of the non-x2 black neighbors is 4, 7, 13.

For example, Figure 3a gives the tree T0 which corresponds to the minimal factoriza-
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tion (σ1, . . . , σ14) ∈ C2,312,2 with

σ1 = (2, 3), σ2 = (13, 14, 15), σ3 = (6, 10, 9), σ4 = (1, 26, 6), σ5 = (11, 12, 15),
σ6 = (6, 7, 8), σ7 = (1, 15, 16) σ8 = (21, 24, 27), σ9 = (22, 25, 23), σ10 = (16, 18, 19),

σ11 = (2, 1, 20), σ12 = (20, 21, 22), σ13 = (1, 4, 5), σ14 = (16, 17). (2.1)

The product σ = σ1 . . . σ14 is a cycle of length 27 and

σ = (11, 12, 13, 14, 15, 16, 17, 18, 19, 26, 10, 9, 6, 7, 8, 1, 4, 5, 20, 24, 27, 21, 25, 23, 22, 3, 2).
(2.2)

2.1.2 Information about the initial tree T0

In the current section we will define certain sets and functions which describe the shape
of the initial tree T0. In the language of programmers: we will create variables Bx, px,
SB, SE which will not change their values during the execution of the algorithm.

For each white vertex label x ∈ {1, . . . , k} we denote by Bx ⊆ {1, . . . , n} the set of
labels of its black neighbors. We can orient the non-spine edges of the tree so that the
arrows point towards the spine. For a white non-spine vertex label x ∈ {1, . . . , k} we
denote by px ∈ {1, . . . , n} the label of the black neighbor of the white vertex x which is
in the direction of the spine. By SB ⊆ {1, . . . , n} we denote the set of the labels of black
spine vertices. By SE ⊆ {1, . . . , k} we denote the set of labels of white spine vertices.

For the example from Figure 3a we have:

B1 = {4, 7, 11, 13}, B2 = {1, 11}, B6 = {3, 4, 6}, B16 = {7, 14, 10},
B15 = {2, 5, 7}, B20 = {11, 12}, B22 = {9, 12}, B21 = {8, 12},

p6 = 4, p15 = 7, p20 = 11, p22 = 12, p21 = 12,
SB = {1, 7, 11, 14}, SE = {1, 2, 16}. (2.3)

Let L be the sequence of labels of the vertices which are white, non-spine, and non-
leaf, arranged in the following order. We start from the unique edge connecting the
black vertex labelled 1 with a white spine vertex from the set SE. Then we traverse the
tree holding it with the right hand and order the vertices in L according to the time of
the first visit (“depth-first search”). For example, for the tree T0 shown on Figure 3a we
have L = (6, 15, 20, 21, 22).

We denote by T1 the tree T0 in which each edge is labelled by its white endpoint and
then all labels of the white vertices are removed, see Figure 3b. The tree T1 is the output
of the first step of the algorithm.
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Figure 4: (a) The initial configuration of the tree. (b) The output of Jx,y.

2.2 The second step: from a tree with repeated edge labels to a tree
with unique edge labels

The starting point of the second step of our algorithm is the bicolored plane tree T1 with
black vertices labelled 1, . . . , n and with edges labelled with the numbers 1, . . . , k; note
that the edge labels are repeated. Our goal in this second step of the algorithm is to
transform the tree so that the edge labels are not repeated. As an auxiliary tool we will
use two operations, called jump and exchange.

2.2.1 The building blocks of the second step: jump Jx,y

The input of Jx,y. The operation Jx,y takes as an input a bicolored tree T together with
a choice of two of black vertices x, y which are assumed to be at the distance 2, see
Figure 4a. We denote their common white neightbor by v1.

We denote by j the black neighbor of v1 which—going clockwise around the vertex
v1—is immediately after y (note that it might happen that j = x). We also assume that
the two edges which form the path between y and j are labelled by the same symbol
denoted by E1, see Figure 4a.

We also assume that the black vertex y has degree at least 3; we denote the edges
around the vertex y by E1, . . . , Ed (going clockwise, starting from the edge E1) with
d ≥ 3. We denote the white endpoint of the edge Ei by vi.

The output of Jx,y is defined as follows. We remove the three edges connecting y
with v1, v2, v3. We create a new white vertex denoted w and we connect it to the vertex j
by a new edge which we label E2. More specifically, going clockwise around j the newly
created edge E2 is immediately after the edge E1.
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Figure 5: (a) The initial configuration of the tree. (b) The output of Ex,y.

We also connect the vertex w to the vertex y by a new edge which we label E3. The
position of the edge E3 in the vertex y replaces the three edges which were removed
from y.

We merge the vertices v2 and v3 to the vertex w. More specifically, the clockwise
cyclic order of the edges around the vertex w is as follows: the edge E2, then the edges
from the vertex V3 (listed in the clockwise order starting from the removed edge E3;
on Figure 4 these edges are marked red), the edge E3, then the edges from the vertex
v2 (listed in the clockwise order starting from the removed edge E2; on Figure 4 these
edges are marked blue), see Figure 4b.

2.2.2 The building blocks of the second step: exchange Ex,y

The input of Ex,y. The operation Ex,y takes as an input a bicolored tree T together
with a choice of two of black vertices x, y which are assumed to be at the distance 2,
see Figure 5a. We denote their common white neighbor by v1. We also assume that
the black vertex y has degree at least 2; we denote the edges around the vertex y by
E1, . . . , Ed (going clockwise, starting from the edge E1) with d ≥ 2. We denote the white
endpoint of the edge Ei by vi.

The output of Ex,y is defined as follows. We remove the edge between y and v2. The
label of the edge between v1 and y is changed to E2. Then we merge the vertex v2 with
the vertex v1 in such a way that going clockwise around v1 the newly attached edges are
immediately before the edge E2 (these edges are marked blue on Figure 5).
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Figure 6: (a) The output of E1,11. (b) The output of E7,4.
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Figure 7: (a) The output of E7,11. (b) The output of J7,13.

2.2.3 Spine treatment

For each i ∈ SE we apply the following procedure (the final output will not depend on
the order in which we choose the elements of SE). Since the spine in T0 is a path, the
intersection Bi ∩ SB corresponds to the labels of the two black spine neighbors of the
white vertex i in the tree T0. We denote Bi ∩ SB = {x, y1} with x < y1. We run the
following loop over y ∈ Bi \ {x} (with the ascending order). If y = y1 or y < x then we
apply Ex,y; otherwise we apply Jx,y.

Example. We continue the example from Figure 3b. We recall that SE = {1, 2, 16}.
For i = 2 we have x = 1 and y1 = 11. Since B2 \ {1} = {11}, the internal loop is

applied once with y = 11. As a result we apply E1,11, see Figure 6a.
For i = 1 we have x = 7 and y1 = 11. Since B1 \ {7} = {4, 11, 13} the loop runs over:
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Figure 8: (a) The output of J7,10. (b) The output of E7,14.

• y = 4 and we apply E7,4, see Figure 6b; • y = 11 and we apply E7,11, see Figure 7a;
• y = 13 and we apply J7,13, see Figure 7b.

For i = 16 we have x = 7 and y1 = 14. Since B16 \ {7} = {10, 14} the loop runs over:
• y = 10 and we apply J7,10, see Figure 8a; • y = 14 and we apply E7,14, see Figure 8b.

2.2.4 Rib treatment

For each successive edge label i from the set L we apply the following procedure (the
final output depends on the order in which we choose the label of edges).

We run the following loop over y ∈ Bi \ {pi} (with the ascending order). If y < pi we
apply Epi,y; otherwise we apply Jpi,y.

Example. We continue the example from Figure 8b. We recall that L = (6, 15, 20, 21, 22).
For i = 6 we have p6 = 4. Since B6 \ {4} = {3, 6} the loop runs over: • y = 3 and we

apply E4,3, see Figure 9a; • y = 6 and we apply J4,6, see Figure 9a.
For i = 15 we have p15 = 7. Since B15 \ {7} = {2, 5} the loop runs over: • y = 2 and

we apply E7,2, see Figure 9b; • y = 5 and we apply E7,5, see Figure 9b.
For i = 20 we have p20 = 11. Since B20 \ {11} = {12}, the internal loop is applied

once with y = 12. As a result we apply J11,12, see Figure 10a.
For i = 21 we have p21 = 12. Since B21 \ {12} = {8}, the internal loop is applied once

with y = 8. As a result we apply E12,8, see Figure 10b.
For i = 22 we have p22 = 12. Since B22 \ {12} = {9}, the internal loop is applied once

with y = 9. As a result we apply E12,9, see Figure 11a.
Figure 11b gives the output of our algorithm applied to the minimal factorization

(2.1). The result is a Stanley tree of type (114).

Due to space restrictions, the explicit construction of the inverse of the bijection from
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Figure 9: (a) The output of E4,3 and J4,6. (b) The output of E7,2 and E7,5.
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Sections 2.1 to 2.2, as well as the proof of its correctness, is postponed to the forthcoming
paper [9].
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