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Abstract. Consider a lattice of n sites arranged around a ring, with the n sites occupied
by particles of weights {1, 2, . . . , n}; the possible arrangements of particles in sites
thus corresponds to the n! permutations in Sn. The inhomogeneous totally asymmetric
simple exclusion process (or TASEP) is a Markov chain on the set of permutations, in
which two adjacent particles of weights i < j swap places at rate xi − yn+1−j if the
particle of weight j is to the right of the particle of weight i. (Otherwise nothing
happens.) In the case that yi = 0 for all i, the stationary distribution was conjecturally
linked to Schubert polynomials by Lam-Williams, and explicit formulas for steady
state probabilities were subsequently given in terms of multiline queues by Ayyer-
Linusson and Arita-Mallick. In the case of general yi, Cantini showed that n of the n!
states have probabilities proportional to double Schubert polynomials. In this paper we
introduce the class of evil-avoiding permutations, which are the permutations avoiding

the patterns 2413, 4132, 4213 and 3214. We show that there are (2+
√

2)n−1+(2−
√

2)n−1

2 evil-
avoiding permutations in Sn, and for each evil-avoiding permutation w, we give an
explicit formula for the steady state probability ψw as a product of double Schubert
polynomials. We also show that the Schubert polynomials that arise in these formulas
are flagged Schur functions, and give a bijection in this case between multiline queues
and semistandard Young tableaux.
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1 Introduction

In recent years, there has been a lot of work on interacting particle models such as the
asymmetric simple exclusion process (ASEP), a model in which particles hop on a one-
dimensional lattice subject to the condition that at most one particle may occupy a given
site. The ASEP on a one-dimensional lattice with open boundaries has been linked
to Askey-Wilson polynomials and Koornwinder polynomials [7, 4, 8], while the ASEP
on a ring has been linked to Macdonald polynomials [5, 6]. The inhomogeneous totally
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asymmetric simple exclusion process (TASEP) is a variant of the exclusion process on the
ring in which the hopping rate depends on the weight of the particles. In this paper
we build on works of Lam-Williams [10], Ayyer-Linusson [2], and especially Cantini [3]
to give formulas for many steady state probabilities of the inhomogeneous TASEP on a
ring in terms of Schubert polynomials.

Definition 1.1. Consider a lattice with n sites arranged in a ring. Let St(n) denote the
n! labelings of the lattice by distinct numbers 1, 2, . . . , n, where each number i is called
a particle of weight i. The inhomogeneous TASEP on a ring of size n is a Markov chain with
state space St(n) where at each time t a swap of two adjacent particles may occur: a
particle of weight i on the left swaps its position with a particle of weight j on the right
with transition rate ri,j given by:

ri,j =

{
xi − yn+1−j if i < j
0 otherwise.

In what follows, we will identify each state with a permutation in Sn. Following [10,
3], we multiply all steady state probabilities for St(n) by the same constant, obtaining
“renormalized” steady state probabilities ψw, so that

ψ123...n = ∏
i<j

(xi − yn+1−j)
j−i−1. (1.1)

See Figure 1 for the state diagram when n = 3.
In the case that yi = 0, Lam and Williams [10] studied this model1 and conjectured

that after a suitable normalization, each steady state probability ψw can be written as a
monomial factor times a positive sum of Schubert polynomials, see Table 1 and Table 2.
They also gave an explicit formula for the monomial factor, and conjectured that under
certain conditions on w, ψw is a multiple of a particular Schubert polynomial. Subse-
quently Ayyer and Linusson [2] gave a conjectural combinatorial formula for the sta-
tionary distribution in terms of multiline queues, which was proved by Arita and Mallick
[1]. In [3], Cantini introduced the version of the model given in Definition 1.12 with yi
general, and gave a series of exchange equations relating the components of the stationary
distribution. This allowed him to give explicit formulas for the steady state probabilities
for n of the n! states as products of double Schubert polynomials.

In this paper we build on [3, 2, 1], and give many more explicit formulas for steady
state probabilities in terms of Schubert polynomials: in particular, we give a formula for
ψw as a product of (double) Schubert polynomials whenever w is evil-avoiding, that is, it

1However the convention of [10] was slightly different; it corresponds to labeling states by the inverse
of the permutations we use here.

2We note that in [3], the rate ri,j was xi − yj rather than xi − yn+1−j as we use in Definition 1.1.
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321
x1 + x2 − y1 − y2

213 x1 + x2 − y1 − y2132x1 + x2 − y1 − y2

312x1 − y1 231 x1 − y1

123

x1 − y1

x1 − y1

x2 − y1 x1 − y2

x1 − y1 x1 − y1

x1 − y2 x2 − y1

Figure 1: The state diagram for the inhomogeneous TASEP on St(3), with transition
rates shown in blue, and steady state probabilities ψw in red. Though not shown, the
transition rate 312→ 213 is x2 − y1 and the transtition rate 231→ 132 is x1 − y2.

State w Probability ψw
1234 (x1 − y1)

2(x1 − y2)(x2 − y1)
1324 (x1 − y1)S1432
1342 (x1 − y1)(x2 − y1)S1423
1423 (x1 − y1)(x1 − y2)(x2 − y1)S1243
1243 (x1 − y2)(x1 − y1)S1342
1432 S1423S1342

Table 1: The renormalized steady state probabilities for n = 4.

avoids the patterns 2413, 4132, 4213 and 3214.3 We show that there are (2+
√

2)n−1+(2−
√

2)n−1

2
evil-avoiding permutations in Sn, so this gives a substantial generalization of Cantini’s
previous result [3] in this direction. We also prove the monomial factor conjecture from
[10]. Finally, we show that the Schubert polynomials that arise in our formulas are
flagged Schur functions, and give a bijection in this case between multiline queues and
semistandard Young tableaux.

In order to state our main results, we need a few definitions. First, we say that two
states w and w′ are equivalent, and write w ∼ w′, if one state is a cyclic shift of the

3We call these permutations evil-avoiding because if one replaces i by 1, e by 2, l by 3, and v by 4, then
evil and its anagrams vile, veil and leiv become the four patterns 2413, 4132, 4213 and 3214. Note that Leiv
is a name of Norwegian origin meaning “heir.”
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State w Probability ψw

12345 x(6,3,1)

12354 x(5,2,0)S13452

12435 x(4,1,0)S14532

12453 x(4,1,1)S14523

12534 x(5,2,1)S12453

12543 x(3,0,0)S14523S13452

13245 x(3,1,1)S15423

13254 x(2,0,0)S15423S13452

13425 x(3,2,1)S15243

13452 x(3,3,1)S15234

13524 x(2,1,0)(S164325 +S25431)

13542 x(2,2,0)S15234S13452

14235 x(4,2,0)S13542

14253 x(4,2,1)S12543

14325 x(1,0,0)(S1753246 +S265314 +S2743156 +S356214 +S364215 +S365124)

14352 x(1,1,0)S15234S14532

14523 x(4,3,1)S12534

14532 x(1,1,1)S15234S14523

15234 x(5,3,1)S12354

15243 x(3,1,0)(S146325 +S24531)

15324 x(2,1,1)(S15432 +S164235)

15342 x(2,2,1)S15234S12453

15423 x(3,2,0)S12534S13452
15432 S15234S14523S13452

Table 2: The renormalized steady state probabilities for n = 5, when each yi = 0. In
the table, x(a,b,c) denotes xa

1xb
2xc

3.

other, e.g. (w1, . . . , wn) ∼ (w2, . . . , wn, w1). Because of the cyclic symmetry inherent in
the definition of the TASEP on a ring, it is clear that the probabilities of states w and w′

are equal whenever w ∼ w′. We will therefore often assume, without loss of generality,
that w1 = 1. Note that up to cyclic shift, St(n) contains (n− 1)! states.

Definition 1.2. Let w = (w1, . . . , wn) ∈ St(n). We say that w is a k-Grassmannian permu-
tation, and we write w ∈ St(n, k) if: w1 = 1; w is evil-avoiding, i.e. w avoids the patterns
2413, 3214, 4132, and 4213; and w−1 has exactly k descents, equivalently, there are exactly
k letters b in w such that b + 1 appears to the left of b in w.

Definition 1.3. We associate to each w ∈ St(n, k) a sequence of partitions Ψ(w) =
(λ1, . . . , λk) as follows. Write the Lehmer code of w−1 as code(w−1) = c = (c1, . . . , cn);
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since w−1 has k descents, c has k descents in positions we denote by a1, . . . , ak. We also
set a0 = 0. For 1 ≤ i ≤ k, we define λi = (n− ai)

ai − (0, · · · , 0︸ ︷︷ ︸
ai−1

, cai−1+1, cai−1+2, . . . , cai).

See Table 3 for examples of the map Ψ(w).

Definition 1.4. Given a positive integer n and a partition λ of length ≤ (n− 2), we define
an integer vector gn(λ) = (v1, . . . , vn) of length n as follows. Write λ = (µk1

1 , · · · , µ
kl
l )

where ki > 0 and µ1 > · · · > µl. We assign values to the entries (v1, . . . , vn) by perform-
ing the following step for i from 1 to l.

• (Step i) Set vn−µi equal to µi. Moving to the left, assign the value µi to the first
(ki − 1) unassigned components.

After performing Step l, we assign the value 0 to any entry vj which has not yet been
given a value.

Note that in Step 1, we set vn−µ1 , vn−µ1−1, · · · , vn−µ1−k1+1 equal to µ1.

Example 1.5.

g5((2, 1, 1)) = (0, 1, 2, 1, 0)
g6((3, 2, 2, 1)) = (0, 2, 3, 2, 1, 0)

g6((3, 1, 1)) = (0, 0, 3, 1, 1, 0).

The main result of this paper is Theorem 3.1. We state here our main result in the
case that each yi = 0. The definition of Schubert polynomial can be found in Section 2.

Theorem 1.6. Let w ∈ St(n, k) be a k-Grassmannian permutation, as in Definition 1.2, and let
Ψ(w) = (λ1, . . . , λk). Adding trailing 0’s if necessary, we view each partition λi as a vector in
Zn−2
≥0 , and set µ := ((n−1

2 ), (n−2
2 ), . . . , (2

2))−∑k
i=1 λi. Then when each yi = 0, the renormalized

steady state probability ψw is given by

ψw = xµ
k

∏
i=1

Sgn(λi),

where Sgn(λi) is the Schubert polynomial associated to the permutation with Lehmer code gn(λi),
and gn is given by Definition 1.4.

Equivalently, writing λi = (λi
1, λi

2, . . . ), we have that

ψw = xµ
k

∏
i=1

sλi(Xn−λi
1
, Xn−λi

2
, . . . ),

where sλi(Xn−λi
1
, Xn−λi

2
, . . . ) denotes the flagged Schur polynomial associated to shape λi, where

the semistandard tableaux entries in row j are bounded above by n− λi
j.
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k w ∈ St(5, k) Ψ(w) probability ψw

0 12345 ∅ x(6,3,1)

1 12354 (1, 1, 1) x(5,2,0)S13452

1 12435 (2, 2, 1) x(4,1,0)S14532

1 12453 (2, 2) x(4,1,1)S14523

1 12534 (1, 1) x(5,2,1)S12453

1 13245 (3, 2) x(3,1,1)S15423

1 13425 (3, 1) x(3,2,1)S15243

1 13452 (3) x(3,3,1)S15234

1 14235 (2, 1, 1) x(4,2,0)S13542

1 14253 (2, 1) x(4,2,1)S12543

1 14523 (2) x(4,3,1)S12534

1 15234 (1) x(5,3,1)S12354

2 12543 (2, 2), (1, 1, 1) x(3,0,0)S14523S13452

2 13254 (3, 2), (1, 1, 1) x(2,0,0)S15423S13452

2 13542 (3), (1, 1, 1) x(2,2,0)S15234S13452

2 14352 (3), (2, 2, 1) x(1,1,0)S15234S14532

2 14532 (3), (2, 2) x(1,1,1)S15234S14523

2 15342 (3), (1, 1) x(2,2,1)S15234S12453

2 15423 (2), (1, 1, 1) x(3,2,0)S12534S13452
3 15432 (3), (2, 2), (1, 1, 1) S15234S14523S13452

Table 3: Special states w ∈ St(5, k) and the corresponding sequences of partitions
Ψ(w), together with steady state probabilities ψw.

We illustrate Theorem 1.6 in Table 3 in the case that n = 5.

Proposition 1.7. The number of evil-avoiding permutation in Sn satisfies the recurrence e(1) =
1, e(2) = 2, e(n) = 4e(n− 1)− 2e(n− 2) for n ≥ 3, and is given explicitly as

e(n) =
(2 +

√
2)n−1 + (2−

√
2)n−1

2
. (1.2)

This sequence begins as 1, 2, 6, 20, 68, 232, and occurs in Sloane’s encyclopedia as sequence
A006012. The cardinalities | St(n, k)| also occur as sequence A331969.

Remark 1.8. Let w(n, h) := (h, h− 1, . . . , 2, 1, h + 1, h + 2, . . . , n) ∈ St(n). In [3, Corollary
16], Cantini gives a formula for the steady state probability of state w(n, h), as a trivial
factor times a product of certain (double) Schubert polynomials. Note that our main
result is a significant generalization of [3, Corollary 16]. For example, for n = 4, Cantini’s
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result gives a formula for the probabilities of three states – (1, 2, 3, 4), (1, 3, 4, 2), and
(1, 4, 3, 2). For n = 5, his result gives a formula for four states – (1, 2, 3, 4, 5), (1, 3, 4, 5, 2),
(1, 4, 5, 3, 2), and (1, 5, 4, 3, 2). On the other hand, Theorem 1.6 gives a formula for all six
states when n = 4 (see Table 1) and 20 of the 24 states when n = 5. Asymptotically,
since the number of special states in Sn is given by (1.2), Theorem 1.6 gives a formula for

roughly (2+
√

2)n−1

2 out of the (n− 1)! states of St(n).
Another point worth mentioning is that the Schubert polynomials that occur in the

formulas of [3] are all of the form Sσ(b,n), where σ(b, n) denotes the permutation (1, b +
1, b+ 2, . . . , n, 2, 3, . . . , b). However, many of the Schubert polynomials arising as (factors)
of steady probabilities are not of this form. Already we see for n = 4 the Schubert
polynomials S1432 and S1243, which are not of this form.

Note that it is common to consider a version of the inhomogeneous TASEP in which
one allows multiple particles of each weight i. This is the version studied in several of
the previous references, and also in [11] (which primarily considers particles of types 0,
1 and 2). We plan to work in this generality in our subsequent work. However, since our
focus here is on Schubert polynomials, we restrict to the case of permutations.

2 Background on permutations and Schubert polynomials

We let Sn denote the symmetric group on n letters, which is a Coxeter group generated
by the simple reflections s1, . . . , sn−1, where si is the simple transposition exchanging i
and i + 1. We let w0 = (n, n− 1, . . . , 2, 1) denote the longest permutation.

For 1 ≤ i < n, we have the divided difference operator ∂i which acts on polynomials
P(x1, . . . , xn) as follows:

(∂iP)(x1, . . . , xn) =
P(. . . , xi, xi+1, . . . )− P(. . . , xi+1, xi, . . . )

xi − xi+1
.

If si1 . . . sim is a reduced expression for a permutation w, then ∂i1 . . . ∂im depends only on
w, so we denote this operator by ∂w.

Definition 2.1. Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two sets of variables, and let

∆(x, y) = ∏
i+j≤n

(xi − yj).

To each permutation w ∈ Sn we associate the double Schubert polynomial

Sw(x, y) = ∂w−1w0
∆(x, y),

where the divided difference operator acts on the x-variables.
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Definition 2.2. A partition λ = (λ1, . . . , λr) is a weakly decreasing sequence of positive
integers. We say that r is the length of λ, and denote it r = length(λ).

Definition 2.3. The diagram or Rothe diagram of a permutation w is

D(w) = {(i, j) | 1 ≤ i, j ≤ n, w(i) > j, w−1(j) > i}.

The sequence of the numbers of the points of the diagram in successive rows is
called the Lehmer code or code c(w) of the permutation. We also define c−1(l) to be the
permutation whose Lehmer code is l. The partition obtained by sorting the components
of the code is called the shape λ(w) of w.

Example 2.4. If w = (1, 3, 5, 4, 2) then c(w) = (0, 1, 2, 1, 0) and λ(w) = (2, 1, 1).

Definition 2.5. We say that a permutation w is vexillary if and only if there does not exist
a sequence i < j < k < ` such that w(j) < w(i) < w(`) < w(i). Such a permutation is
also called 2143-avoiding.

Definition 2.6. We define the flag of a vexillary permutation w, starting from its code
c(w), in the following fashion. If ci(w) 6= 0, let ei be the greatest integer j ≥ i such that
cj(w) ≥ ci(w). The flag φ(w) is then the sequence of integers ei, ordered to be increasing.

Definition 2.7. Let Xi denote the family of indeterminates x1, . . . , xi. For d1, . . . , dn a
weakly increasing sequence of n integers, we define the flagged Schur function

sλ(Xd1 , . . . , Xdn) = ∑
T

xtype(T),

where the sum runs over the set of semistandard tableaux T with shape λ for which the
entries in the ith row are bounded above by di.

There is also a notion of flagged double Schur polynomials. One can define them in
terms of tableaux or via a Jacobi-Trudi type formula [12, Section 2.6.5].

Theorem 2.8 ([12, Corollary 2.6.10]). If w is a vexillary permutation with shape λ(w) and
with flags φ(w) = ( f1, . . . , fm) and φ(w−1) = (h1, . . . , hm), then we have

Sw(x; y) = sλ(w)(X f1 −Yhm , . . . , X fm −Yh1),

i.e. the double Schubert polynomial of w is a flagged double Schur polynomial.
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3 Main results

Let w ∈ Sn be a state. In what follows, we write a → b → c if the letters a, b, c appear in
cyclic order in w. So for example, if w = 1423, we have that 1→ 2→ 3 and 2→ 3→ 4,
but it is not the case that 3→ 2→ 1 or 4→ 3→ 2.

xyFact(w) =
n−2

∏
i=1

∏
k>i+1

i→i+1→k

(x1 − yn+1−k) · · · (xi − yn+1−k). (3.1)

The following is our main theorem; when each yi = 0, it reduces to Theorem 1.6. The
proof uses z-deformation of ψw and exchange equations introduced in [3].

Theorem 3.1. Let w ∈ St(n, k), and write Ψ(w) = (λ1, · · · , λk). Then the (renormalized)
steady state probability is given by

ψw = xyFact(w)
k

∏
i=1

Sgn(λi), (3.2)

where Sgn(λi) is the double Schubert polynomial associated to the permutation with Lehmer code
gn(λi), and gn is given by Definition 1.4.

We also prove the monomial factor conjecture from [10]. Suppose that yi = 0 for all i.
Given a state w, let ai(w) be the number of integers greater than (i + 1) on the clockwise
path from (i + 1) to i. Let η(w) be the largest monomial that can be factored out of ψw.
The following statement was conjectured in [10, Conjecture 2].

Theorem 3.2. Let w ∈ St(n). Then

η(w) =
n−2

∏
i=1

xai(w)+···+an−2(w)
i .

4 Multiline queues and semistandard tableaux

It was proved in [1] that when each yi = 0, the steady state probabilities ψw for the
TASEP on a ring can be expressed in terms of the multiline queues of Ferrari and Martin
[9]. On the other hand, we know from Theorem 1.6 that when w ∈ St(n, 1) (i.e. w−1 is
a Grassmann permutation and w1 = 1), ψw equals a monomial times a single flagged
Schur polynomial. In this section we will explain that result by giving a bijection between
the relevant multiline queues and the corresponding semistandard tableaux.

Definition 4.1. Fix positive integers L and n. A multiline queue Q is an L × n array in
which each of the Ln positions is either vacant or occupied by a ball. We say it has
content m = (m1, . . . , mn) if it has m1 + · · ·+ mi balls in row i for 1 ≤ i ≤ n. We number
the rows from top to bottom from 1 to L, and the columns from right to left from 1 to n.
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Definition 4.2. Given an L× n multiline queue Q, the bully path projection on Q is, for
each row r with 1 ≤ r ≤ L− 1, a particular matching of balls from row r to row r + 1,
which we now define. If ball b is matched to ball b0 in the row below then we connect b
and b0 by the shortest path that travels either straight down or from left to right (allowing
the path to wrap around the cylinder if necessary). Here each ball is assigned a class,
and matched according to the following algorithm:

• All the balls in the first row are defined to be of class 1.

• Suppose we have matched all the balls in rows 1, 2, . . . , r − 1 and have assigned a
class to all balls in rows 1, 2, . . . , r. We now consider the balls in rows r.

• Pick any order of the balls in row r such that balls with smaller labels come before
balls with larger labels. Consider the balls in this order; suppose we are considering
a ball b of class i in row r. If there is an unmatched ball directly below b in row
r + 1, we let M(b) be that ball; otherwise we move to the right in row r + 1 and let
M(b) be the first unmatched ball that we find (wrapping around from column 1 to
n if necessary). We match b to ball M(b) and say that M(b) is of class i.

• The previous step gives a matching of all balls in row r to balls below in row r + 1.
We assign class r + 1 to any balls in row r + 1 that were not yet assigned a class.
We now repeat the process and consider the balls in row r + 1.

After completing the bully path projection for Q, let w = (w1, · · · , wn) be the labeling
of the balls read from right to the left in row L (where a vacancy is denoted by L+ 1). We
say that Q is a multiline queue of type w and let MLQ(w) denote the set of all multiline
queues of type w. We also consider a type of row r in Q to be the labeling of the balls
read from right to the left in row r (where a vacancy is denoted by r + 1).

A vacancy in Q is called i− covered if it is traversed by a path starting on row i, but
not traversed by any path starting on row i′ such that i′ < i.

See Figure 2 for an example.

123

12

1

123 4 4

2

1

3

2

Figure 2: A multiline queue of type (1, 2, 4, 3, 5), and the corresponding semistandard
tableau under the bijection in Proposition 4.7.

We define a weight wt(Q) for multiline queues. It was first introduced in [2].
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Definition 4.3. Given an L× n multiline queue Q, let vr be the number of vacancies in

row r and let zr,i be the number of i− covered vacancies in row r. Set Vi =
L
∑

j=i+1
vj. We

define

wt(Q) =
L−1

∏
i=1

(xVi
i ) ∏

1≤i<r≤L
(

xr

xi
)zr,i .

Example 4.4. The multiline queue Q in Figure 2 has a 1− covered vacancy in row 2, a
2− covered vacancy in row 3 and a 3− covered vacancy in row 4. The weight of Q is

wt(Q) = x3+2+1
1 x2+1

2 x1
3(

x2

x1
)(

x3

x2
)(

x4

x3
) = x5

1x3
2x3x4.

The following result was conjectured in [2] and proved in [1].

Theorem 4.5 ([1]). Consider the inhomogeneous TASEP on a ring (with each yi = 0). We have

ψw = ∑
Q∈MLQ(w)

wt(Q).

We now give a (weight-preserving up to a constant factor) bijection between multiline
queues in MLQ(w) and certain semistandard tableaux, when w ∈ St(n, 1), i.e. w−1 is a
Grassmann permutation and w1 = 1.

Definition 4.6. Given a partition λ = (µb1
1 , · · · , µ

bk
k , 0c), such that µ1 > · · · > µk > 0

and bi > 0, c ≥ 0, we define a permutation w(λ) as follows. Identify λ with the lattice

path from (µ1,
k
∑

i=1
bi + c) to (0, 0) that defines the southeast border of its Young diagram.

Label the vertical steps of the lattice path from 1 to k from top to bottom, and then the
horizontal steps in increasing order from right to left starting from k + 1. Reading off
the numbers along the lattice path gives w(λ). See Figure 3.

1
2

3
4

5

Figure 3: The partition λ = (2, 2, 1) and w(λ) = (1, 2, 4, 3, 5).

Proposition 4.7. Given a partition λ = (µb1
1 , · · · , µ

bk
k , 0c) as in Definition 4.6, let the vector

d = (d1, · · · , dk) be the numbers assigned to horizontal steps right after vertical steps in the
construction of w(λ). For example, in Figure 3, d = (4, 5). Let d′ be the vector

d′ = (d1 − b1, · · · , d1 − 1︸ ︷︷ ︸
b1

, d2 − b2, · · · , d2 − 1︸ ︷︷ ︸
b2

, . . . , dk − bk, · · · , dk − 1︸ ︷︷ ︸
bk

).
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Then there exists a bijection f : MLQ(w) → SSYT(λ, d′) such that wt(Q) = Kxtype( f (Q))

for some monomial K, where SSYT(λ, d′) is the set of semistandard tableaux with shape λ for
which the entries in the i th row are bounded above by d′i. In particular, we have

ψw(λ) = ∑
Q∈MLQ(w(λ))

wt(Q) = K ∑
T∈SSYT(λ,d′)

xtype(T) = Ksλ(Xd′1
, Xd′2

, . . . ).
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