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Abstract. This extended abstract is a summary of a recent paper which studies the
enumeration of faces of subdivisions of cell complexes. Motivated by a conjecture
of Brenti and Welker on the real-rootedness of the h-polynomial of the barycentric
subdivision of the boundary complex of a convex polytope, we introduce a framework
for proving real-rootedness of h-polynomials for subdivisions of polytopal complexes
by relating interlacing polynomials to shellability via the existence of so-called stable
shellings. We show that any shellable cubical, or simplicial, complex admitting a stable
shelling has barycentric and edgewise subdivisions with real-rooted h-polynomials.
Such shellings are shown to exist for well-studied families of cubical polytopes, giving
a positive answer to the conjecture of Brenti and Welker in these cases. The framework
of stable shellings is also applied to answer to a conjecture of Mohammadi and Welker
on edgewise subdivisions in the case of shellable simplicial complexes.

Keywords: polytope, shellability, real-rooted, unimodality, barycentric subdivision,
edgewise subdivision

1 Introduction

Currently, there is interest in the inequalities that can be shown to hold amongst the
coefficients of a generating polynomial p = p0 + p1x + · · · + pdxd where the sequence
p0, . . . , pd encodes algebraic, geometric, and/or topological data [8, 11, 10, 24]. For
instance, p is called unimodal if p0 ≤ · · · ≤ pt ≥ · · · ≥ pd for some t ∈ {0} ∪ [d], and it is
called real-rooted (or (real) stable) if p ≡ 0 or p has only real zeros. A classic result states
that p is unimodal whenever it is real-rooted [10, Theorem 1.2.1]. Most proofs of real-
rootedness rely on interlacing polynomials [8], which are inherently tied to recursions
associated to the generating polynomials of interest.

In algebraic, geometric, and topological combinatorics, the generating polynomials
studied are typically the f - or h-polynomial associated to a cell complex. A foundational
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result in the field, known as the g-theorem, implies that the h-polynomial associated
to the boundary complex of a simplicial polytope is unimodal [24]. In [12], Brenti and
Welker strengthened this unimodality result by showing that the h-polynomial of the
barycentric subdivision of the boundary complex of a simplicial polytope is real-rooted.
They then asked if their result generalizes to all polytopes [12, Question 1].

While proofs of real-rootedness via interlacing polynomials typically rely on polyno-
mial recursions, proofs pertaining to the geometry of polytopal complexes often use the
recursive structure of the complex (when it exists). This recursive property of polytopal
complexes is called shellability. Here, shellability is related to interlacing polynomials so
as to provide a framework for proving real-rootedness of h-polynomials of subdivisions
of polytopal complexes. It is demonstrated that the existence of special shelling orders of
a polytopal complex implies real-rootedness of the h-polynomial of a given subdivision
of the complex. It is shown that a family of shellings, termed stable shellings, have this
property for simplicial and cubical complexes. Moreover, these stable shellings can be
applied to different subdivisions of the same complex, yielding multiple real-rootedness
results simultaneously. As one application of this framework, we positively answer the
question of Brenti and Welker for well-known families of cubical polytopes; namely, the
cuboids [17], the capped cubical polytopes [20], and the neighborly cubical polytopes [4]. We
also apply stable shellings to a problem proposed by Mohammadi and Welker [22] per-
taining to edgewise subdivisions of simplicial complexes. Moreover, the stable shelling
approach also yields a positive answer to their question in the case of cubical complexes.
See the full paper [18] for proofs of these results.

2 Preliminaries

This section contains the basic definitions and results on polytopal complexes and inter-
lacing polynomials needed to follow the remainder of the paper. Experts can likely skip
this section, using it mainly as a reference for notation. A finite collection C of polytopes
in Rn is called a polytopal complex if the empty polytope ∅ is in C, if when P ∈ C then all
faces of P are also in C, and if when P, Q ∈ C, then their intersection P ∩ Q is a face of
both P and Q. The elements of C are called its faces, and its maximal faces (with respect to
inclusion) are called its facets. When all facets of C are simplices, C is a simplicial complex,
and when all facets are cubes, it is a cubical complex. Given a polytopal complex we can
then work with its associated abstract cell complex (forgetting the embedding), whose
faces are abstract polytopes. Given an abstract polytope P, or convex polytope P ⊂ Rn,
C(P) denotes the complex consisting of all faces in P and C(∂P) is the complex of all
faces in ∂P, the boundary of P. The facets of the polytope P are the facets of the complex
C(∂P). Given a collection of polytopes P1, . . . , Pm, let C(P1 ∪ · · · ∪ Pm) = ∪i∈[m]C(Pi). We
refer to the difference C \ D = {P ∈ C : P /∈ D} as a relative (polytopal) complex, and we
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define the dimension of C \ D to be the largest dimension of a polytope in C \ D. When
D = ∅, note that C \ D = C.

The f -polynomial of a (d− 1)-dimensional polytopal complex C is the polynomial

f (C; x) := f−1(C) + f0(C)x + f1(C)x2 + · · ·+ fd−1(C)xd,

where f−1(C) := 1 when C 6= ∅ and fk(C) denotes the number of k-dimensional faces of
C for 0 ≤ k ≤ d− 1. Given a subcomplex D of C, the f -polynomial of the relative complex
C \ D is then

f (C \ D; x) := f (C; x)− f (D; x).

The h-polynomial of the (m− 1)-dimensional relative complex C \ D is the polynomial

h(C \ D; x) := (1− x)m f
(
C \ D;

x
1− x

)
.

We write h(C \ D; x) = h0(C \ D) + h1(C \ D)x + · · · + hm(C \ D)xm when expressing
h(C \ D; x) in the standard basis, and we similarly write f (C \ D; x) = f0(C \ D) + f1(C \
D)x + · · ·+ fm(C \ D)xm.

Let C be a pure d-dimensional polytopal complex. A shelling of C is a linear ordering
(F1, F2, . . . , Fs) of the facets of C such that either C is zero-dimensional (and thus the
facets are points), or it satisfies the following two conditions:

1. The boundary complex C(∂F1) of the first facet in the linear ordering has a shelling,
and

2. for j ∈ [s], the intersection of the facet Fj with the union of the previous facets is
nonempty and it is the beginning segment of a shelling of the (d− 1)-dimensional
boundary complex of Fj; that is,

Fj ∩
j−1⋃
i=1

Fi = G1 ∪ G2 ∪ · · ·Gr

for some shelling (G1, . . . , Gr, . . . , Gt) of the complex C(∂Fj) and r ∈ [t].

A polytopal complex is shellable if it is pure and admits a shelling.
Given a polytopal complex C, a (topological) subdivision of C is a polytopal complex

C ′ such that each face of F ∈ C is subdivided into a ball by faces of C ′ such that the
boundary of this ball is a subdivision of the boundary of F. The subdivision is further
called geometric if both C and C ′ admit geometric realizations, G and G′, respectively; that
is to say, each face of C and C ′ is realized by a convex polytope in some real-Euclidean
space such that G and G′ both have the same underlying set of vertices and each face of
G′ is contained in a face of G. When referring to a subdivision C ′ of C, we may instead
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refer to its associated inclusion map ϕ : C ′ → C. While the main result of this paper
applies to general topological subdivisions, the applications of these results will pertain
to some special families of subdivisions that are well-studied in the literature. These
include the barycentric subdivision and the edgewise subdivision of a complex.

2.1 Interlacing polynomials

Two real-rooted polynomials p, q ∈ R[x] are said to interlace if there is a zero of p be-
tween each pair of zeros of q (counted with multiplicity) and vice versa. If p and q are
interlacing, it follows that the Wronskian W[p, q] = p′q− pq′ is either nonpositive or non-
negative on all of R. We will write p ≺ q if p and q are real-rooted, interlacing, and the
Wronskian W[p, q] is nonpositive on all of R. We also assume that the zero polynomial
0 is real-rooted and that 0 ≺ p and p ≺ 0 for any real-rooted polynomial p. In this work,
we will use the fact that p ≺ q is equivalent to p and q being real-rooted and interlacing
when the leading coefficients of p and q are both positive.

Let (pi)
s
i=0 = (p0, . . . , ps) be a sequence of real-rooted polynomials. We say that the

sequence of polynomials (pi)
s
i=0 is an interlacing sequence if pi ≺ pj for all 1 ≤ i ≤ j ≤ s.

Any convex combination of polynomials in an interlacing sequence is real-rooted [7,
Lemma 2.6]. For a polynomial p ∈ R[x] of degree at most d, we let Id(p) := xd p(1/x).
In [9], it is characterized when a degree d real-rooted polynomial satisfies Id(p) ≺ p.

3 Stable Shellings of Polytopal Complexes

A shelling of a polytopal complex presents a natural way to decompose the complex into
disjoint, relative polytopal complexes. Given a shelling order (F1, . . . , Fs) of a polytopal
complex C, and a subdivision ϕ : C ′ → C, we can let

Ri := C ′
∣∣
Fi
\
(

i−1⋃
k=1

C ′
∣∣
Fk

)
,

to produce the decomposition of C ′ into disjoint relative complexes C ′ = ⊔s
i=1Ri, with

respect to the shelling (F1, . . . , Fs) of C. For a fixed shelling (F1, . . . , Fs) of a polytopal
complex C and subdivision ϕ : C ′ → C, for i ∈ [s], we call the relative complex Ri the
relative complex associated to Fi by (F1, . . . , Fs) and ϕ. If C is (d− 1)-dimensional, then so
is each Ri. Hence, h(C ′; x) = ∑s

i=1 h(Ri; x). The additive nature of the h-polynomials of
their associated relative simplicial complexes pairs nicely with the properties of interlac-
ing polynomials discussed in Subsection 2.1, leading to the following observation.

Theorem 3.1. Let C be a shellable polytopal complex with shelling (F1, . . . , Fs) and subdivision
ϕ : C ′ → C. If (h(Rσ(i); x))s

i=1 is an interlacing sequence for some permutation σ ∈ Ss, then
h(C ′; x) is real-rooted.
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A proof of Theorem 3.1 can be derived directly from the observations in Subsec-
tion 2.1. To apply Theorem 3.1, our goal becomes to find the right shelling of our com-
plex for a given subdivision. Ideally, we would identify a single shelling that applies to
numerous subdivisions, thereby yielding many real-rootedness results simultaneously.
To this end, we introduce the family of stable shellings, which are defined via a general-
ization of reciprocal domains for convex embeddings of polytopes, as studied by Ehrhart
[15, 16] and Stanley [23]. We then apply Theorem 3.1 to show that the existence of a sta-
ble shelling implies real-rootedness of, not just one but, multiple subdivisions of cubical
and simplicial complexes.

Let q ∈ Rn, and let P ⊂ Rn a d-dimensional convex polytope. A point p ∈ P is called
visible from q if the open line segment (q, p) in Rn does not meet the interior of P. Let
B ⊂ ∂P denote the collection of all points visible from q, and set D := ∂P \ B, the closure
of ∂P \ B. Given a facet F of P, the point q is said to be beyond F if q /∈ TF(P), the tangent
cone of F in P. It follows that q is beyond F if and only if the closed line segment [q, p]
satisfies [q, p] ∩ P = {p} for all p ∈ F [6, Section 3.7]. Otherwise, the point q is said to
be beneath F. Hence, B consists of all points in ∂P that lie in a facet which q is beyond;
that is, P \ B = P \ HB, where HB denotes the collection of facets which q is beyond.
Similarly, D consists of all points in ∂P that lie in a facet which q is beneath; that is,
P \ D = P \ HD, where HD denotes the collection of facets which q is beneath. In [15,
16], Ehrhart referred to the half-open polytopes P \ B and P \ D as reciprocal domains.

Let P = ([n],<P ) be a partially ordered set on elements [n] with partial order <P .
If P has a unique minimal element, which we will denote by 0̂, we can define its set
of atoms to be all elements i ∈ [n] such that 0̂ <P i and there is no j ∈ [n] for which
0̂ <P j <P i. Given a poset P with a unique minimal element, we will denote its set of
atoms by A(P). The dual poset of P is the poset P∗ on elements [n] with partial order
<P∗ in which i <P∗ j if and only if j <P i. Given i, j ∈ [n], the closed interval between i
and j in P is the set [i, j] := {k ∈ [n] : i ≤P k ≤P j}. Note that we can view the closed
interval [i, j] as a subposet of P by allowing it to inherit the partial order <P from P .

Let P be a d-dimensional polytope with face lattice L(P); that is, L(P) is the partially
ordered set whose elements are the faces of P and for which the partial order is given by
inclusion. Since L(P) is a lattice (see [25, Chapter 3.3]), it follows that L(P) has a unique
minimal and maximal element, corresponding to the faces ∅ and P of P. Let C(P) denote
the polytopal complex consisting of all faces of P. Given a face F of P we call the pair of
relative complexes

C(P) \ C(A([F, P]∗)) and C(P) \ C(A(L(P)∗) \ A([F, P]∗))

the reciprocal domains associated to F in P. We call a relative complex R stable if it is
isomorphic to one of the reciprocal domains associated to a face F in a polytope P, for
some polytope P. Using this terminology, we can now define the family of shellings, to
which we will apply Theorem 3.1.
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Figure 1: The eight possible relative complexes Ri for a facet Fi in a shelling order
(F1, . . . , Fs) if Fi is a 3-dimensional cube. All of the complexes are stable, excluding the
bottom-right complex.

Definition 3.1. Let C be a polytopal complex. A shelling (F1, . . . , Fs) of C is stable if for all
i ∈ [s] the relative complex Ri associated to Fi by the shelling (F1, . . . , Fs) and the trivial
subdivision ϕ : C → C is stable.

In Section 4, we demonstrate that the existence of a stable shelling can imply real-
rootedness of the h-polynomial for numerous subdivisions of a given complex. Any
shelling of a simplicial complex is stable. This observation coincides with our desired
goal given the recent results on F -uniform triangulations of simplicial complexes [3].

3.1 Stable shellings of cubical complexes

Unlike simplicial complexes, it is not the case that all shellings of a general polytopal
complex are stable. Already in the case of cubical complexes, stable shellings become a
proper subclass of the class of all shellings. Let �d denote the (abstract) d-dimensional
cube. When we consider a standard geometric realization of �d, such as the cube
[−1, 1]d ∈ Rd, we assign each facet F of �d to a facet-defining hyperplane xi = ±1
of [−1, 1]d. Given a facet F of �d we will say that F is opposite (or opposing) the facet
G of �d whenever their vertex sets are disjoint. In this case, we call the pair of facets
F, G an opposing pair. The following lemma gives a characterization of stable relative
subcomplexes of the cube in terms of opposing pairs of facets.

Lemma 3.2. Let �d be the d-dimensional (combinatorial) cube, and let D be a subcomplex of
C(�d). Then the following are equivalent:

1. The relative complex C(�d) \ D is stable,

2. The set of codimension one faces of C(�d) \ D or the set of facets of D does not contain an
opposing pair.
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Already in three dimensions there exist relative complexes that are not stable, and
hence are forbidden from being associated to a facet of a cubical complex in any stable
shelling. For example, the eighth relative complex in Figure 1, with its table-top shape, is
such that both the codimension one faces of C(�3) \ D (depicted in blue) and the facets
of D (depicted by their absence) contain an opposing pair. Given that not all relative
subcomplexes of the cube are stable, it is natural to ask which cubical complexes admit
stable shellings.

Question 3.1. Does the boundary complex of every polytope (cubical or otherwise) ad-
mit a stable shelling?

In the following section, we will observe that, for any cubical (or simplicial) complex,
real-rootedness of h-polynomials for multiple uniform subdivisions is implied by the
existence of a stable shelling. This suggests that the family of stable shellings is a good
one for applying Theorem 3.1. As one of the subdivisions to which our results will apply
is the barycentric subdivision, proving the existence of a stable shelling may well suffice
to prove the conjecture of Brenti and Welker for general polytopes.

4 Applications to Cubical and Simplicial Complexes

In this section, we show that if a cubical or simplicial complex admits a stable shelling
then the h-polynomial of both its barycentric subdivision and any of its edgewise sub-
divisions is real-rooted. The real-rootedness results will follow from an application of
Theorem 3.1, suggesting that the existence of a stable shelling is enough to imply real-
rootedness of the h-polynomial of the subdivided complex. As applications of these
results, we positively answer a question of Brenti and Welker [12, Question 1] for well-
known constructions of cubical polytopes ( i.e., polytopes whose facets are all cubes) by
showing that these polytopes admit a stable shelling. In its most general form, the
question is as follows:

Problem 4.1 ([12, Question 1]). Let C be the boundary complex of an arbitrary polytope. Is the
h-polynomial of the barycentric subdivision of C real-rooted?

We also apply these techniques to the edgewise subdivision of simplicial and cubical
complexes so as to solve a second problem of Mohammadi and Welker [22, Problem 27]
for shellable complexes.

Problem 4.2 ([22, Problem 27]). If C is a d-dimensional simplicial complex with hk(C) ≥ 0 for
all 0 ≤ k ≤ d + 1, is h(C〈r〉; x) real-rooted whenever r > d?
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4.1 The Barycentric and Edgewise Subdivisions

We now recall the definitions of the subdivisions to be considered. Given a polytopal
complex C, let L(C) denote its face lattice with partial order <C given by inclusion. The
barycentric subdivision of C is the simplicial complex sd(C) whose k-dimensional faces are
the subsets {F0, F1, . . . , Fk} of faces of C for which

∅ <C F0 <C F1 <C · · · <C Fk

is a strictly increasing chain in L(C).
The edgewise subdivision of a simplicial complex is another well-studied subdivision

that arises frequently in algebraic and topological contexts (see for instance [13]). Within
algebra, it is intimately tied to the Veronese construction, and it is considered to be the
algebraic analogue of barycentric subdivision [13, Acknowledgements]. For r ≥ 1, the
rth edgewise subdivision of a simplicial complex C is defined as follows: Identify the n
0-dimensional faces of C with the standard basis vectors in Rn, and consider the lattice
points in the rth dilation of the standard simplex ∆ := conv(e(1), . . . , e(n)) ⊂ Rn. For
x = (x1, . . . , xn) ∈ Zn, we let supp(x) := {i ∈ [n] : xi 6= 0}, and we define the linear
transformation ι : Rn → Rn by ι : x 7−→ (x1, x1 + x2, . . . , x1 + · · ·+ xn). The rth edgewise
subdivision of C is the simplicial complex C〈r〉 whose set of 0-dimensional faces are the
lattice points in r∆ ∩ Zn and for which F ⊂ r∆ ∩ Zn is a face of C〈r〉 if and only if⋃

x∈F supp(x) ∈ C, and for all x, y ∈ F either ι(x)− ι(y) ∈ {0, 1}n or ι(y)− ι(x) ∈ {0, 1}n.
Given a simplicial complex C, the rth edgewise subdivision of C can also be seen as

gluing together the rth edgewise subdivisions of each of its facets. This can be extended
in a natural way to cubical complexes. Let �d denote the (abstract) d-dimensional cube,
and consider its geometric realization [0, 1]d and r[0, 1]d = [0, r]d, the rth dilation of [0, 1]d.
The map ι then sends (x1, . . . , xd) ∈ [0, r]d ∩Zd to (x1, x1 + x2, . . . , x1 + · · · + xd). We
define the rth edgewise subdivision �〈r〉d of the d-dimensional cube in terms of a subdivision
of its geometric realization [0, 1]d as follows: Let A ⊂ [0, r]d ∩Zd. Then conv(A) is a face
of the subdivision if and only if ι(v − v′) or −ι(v − v′) is in {0, 1}d for all v, v′ ∈ A.
We first note that this a unimodular triangulation of [0, 1]d, as it splits the dilated cube
[0, r]d into unit cubes which are each triangulated according to (a rotated version of) the
standard unimodular triangulation of [0, 1]d; that is, the triangulation induced by the
hyperplanes xi = xj for all 1 ≤ i < j ≤ d. Given a cubical complex C, its rth edgewise
subdivision, denoted C〈r〉 is given by gluing together the rth edgewise subdivisions of each
of its facets. A priori, such a subdivision may not exist for an arbitrary cubical complex.
While we leave the general existence question open, we note that such a gluing can be
seen to exist for cubical subcomplexes of an n-cube by extending the definition of the rth

edgewise subdivision of a simplicial complex accordingly. Additionally, such a gluing
also exists for many examples of cubical complexes that are not subcomplexes of a cube,
including the complexes listed in Theorem 4.9.
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4.2 Stable shellings and real-rootedness

We now show that any simplicial or cubical complex that admits a stable shelling will
have real-rooted barycentric and edgewise subdivisions. To do so, we will make use of
some well-studied real-rooted polynomials, which can be defined as follows: For d, r ≥ 1
and 0 ≤ ` ≤ d, let A(r)

d,` be the polynomial defined by the relation

∑
t≥0

(rt)`(rt + 1)d−`xt =
A(r)

d,`

(1− x)d+1 . (4.1)

We call A(r)
d,` the dth r-colored `-Eulerian polynomial. The following lemma will play a key

role.

Lemma 4.3. For d, r ≥ 1 and 0 ≤ ` ≤ d, the polynomial A(r)
d,` has only simple, real zeros.

Moreover, for a fixed d, r ≥ 1,
(

A(r)
d,`

)d

`=0
is an interlacing sequence.

To establish the desired results it suffices, by Theorem 3.1, to show that the relative
complexes used in a stable shelling of a cubical or simplicial complex form an interlacing
sequence. Using techniques in Ehrhart theory and results from [5] and [9], the following
can be deduced:

Lemma 4.4. Let �d be the d-dimensional cube, and let D be a subcomplex of C(�d) such that
C(�d)\D is stable relative complex. Then h(sd(C(�d))\ sd(D), x) is either A(2)

d,` or xId A(2)
d,`

for some 0 ≤ ` ≤ d. Moreover, these polynomials form an interlacing sequence.

In the case of the rth edgewise subdivision of the cube, we can deduce the following.

Lemma 4.5. Let �d be the d-dimensional cube, and let D be a subcomplex of C(�d) such that
C(�d)\D is stable relative complex. Then h(C(�d)

〈r〉\D〈r〉; x) is either A(r)
d,` or xId A(r)

d,` for
some 0 ≤ ` ≤ d. Moreover, these polynomials form an interlacing sequence.

Similarly, in the case of simplicial complexes, one can prove the following.

Lemma 4.6. Let ∆d−1 be a (d − 1)-dimensional simplex, and let D be a (d − 2)-dimensional
subcomplex of C(∆d−1) with ` facets. Then, h(sd(∆d−1) \ sd(D); x) = A(1)

d,` .

As for the edgewise subdivision of a simplex, we need a different family of poly-
nomials than the colored Eulerian polynomials for which we can deduce an analogous
result. The necessary family of polynomials is described in Section 4.3 of the full paper
summarized by this extended abstract, [18].

Lemma 4.7. Let ∆d−1 be a (d− 1)-dimensional simplex and r > d. The polynomials h(∆〈r〉d−1 \
D〈r〉, x), for all (d− 2)-dimensional subcomplexes D of C(∆d−1), form an interlacing sequence.
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By combining Lemmas 4.3, 4.4, 4.5, 4.6, and 4.7 together with Theorem 3.1, we recover
following theorem.

Theorem 4.8. Let C be a cubical complex and S a simplicial complex of dimension d, and suppose
C and S each admit a stable shelling. Then the following polynomials are real-rooted:

1. h(sd(C); x),

2. h(sd(S); x),

3. h(C〈r〉; x) for r ≥ 2 (if C〈r〉 exists), and

4. h(S 〈r〉; x) for r > d.

Since all shellings of a simplicial complex are stable, Theorem 4.8 (4) gives a positive
answer to Problem 4.2 for shellable simplicial complexes. Moreover, Theorem 4.8 (3)
shows that the claim of Problem 4.2 can shown to hold for more general complexes than
simplicial complexes.

By a theorem of Bruggesser and Mani [14], the boundary complex of a polytope is
always shellable and, in the case that the polytope is simplicial, it therefore always has
a stable shelling. Hence, Theorem 4.8 (2) offers an alternative, geometric, proof of Brenti
and Welker’s original result that motivated Problem 4.1. Whereas Theorem 4.8 (1) gives
a positive answer to Problem 4.1 for a new family of complexes, namely the boundary
complexes of cubical polytopes admitting stable shellings. Indeed, it can be show that
such complexes exist. The most well-known constructions of cubical polytopes are the
cuboids, which were first introduced by Grünbaum in [17], the capped cubical polytopes [20],
which are a cubical generalization of stacked simplicial polytopes [21], and the neighborly
cubical polytopes [4]. Each of these constructions can be shown to admit a stable shelling.

Theorem 4.9. The following cubical complexes admit stable shellings:

1. the boundary complex of a cuboid,

2. the boundary complex of a capped cubical polytope,

3. the boundary complex of a neighborly cubical polytope, and

4. any pile of cubes.

It follows from Theorem 4.8 that the polynomials h(sd(C); x) and h(C〈r〉; x) for r ≥ 2
are real-rooted for any of the complexes listed in Theorem 4.9. Hence, the existence of a
stable shelling positively answers Problem 4.1 in each of these cases, while also yielding
additional real-rootedness results for other subdivisions.
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5 Discussion and Future Directions

Since [18], the paper summarized by this extended abstract was released, Athanasiadis
[2] gave a positive answer to Problem 4.1 for all cubical polytopes, the proof of which
made use of cubical h-polynomials and the nonnegativity of their coefficients. While this
result generalizes the results in Theorem 4.8 (1), the machinery used in the proof of [2]
does not exist for arbitrary polytopes. On the other hand, a result of Bruggesser and
Mani [14] states that the boundary complex of every polytope admits a so-called line
shelling. Hence, a natural question (given the results mentioned above) is whether or not
all boundary complexes of polytopes admit a stable line shelling. In general, it would be
interesting to see other families of polytopes (i.e. non-cubical and non-simplicial) that
admit stable shellings, and whether the existence of such shellings also implies the same
real-rootedness results for these polytopes. It could also be interesting to continue to
explore whether other classes of cubical polytopes admit a stable shelling, for e.g. the
constructions in [1]. In a related direction, it would also be interesting to know if the ex-
istence of stable shellings of cubical and simplicial polytopes implies real-rootedness for
other types of subdivisions (i.e., other than the barycentric and edgewise subdivisions).
Finally, we note that some recent results of [19] can be applied to give a full answer
to Problem 4.2 for simplicial complexes. As we saw above however, Theorem 4.8 (3)
demonstrates that the claim of Problem 4.2 also holds for shellable cubical complexes. It
would interesting to know if the same result holds for cubical complexes in general.
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