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Permutree sorting
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Abstract. Generalizing stack sorting and c-sorting for permutations, we define the
permutree sorting algorithm. Given two disjoint subsets U and D of {2, . . . , n − 1},
the (U, D)-permutree sorting tries to sort a permutation π ∈ Sn and fails if and only
if there are 1 ≤ i < j < k ≤ n such that π contains the subword jki with j ∈ U or kij
with j ∈ D. This algorithm is seen as a way to explore an automaton which either
rejects all reduced words of π, or accepts those reduced words for π whose prefixes
are all (U, D)-permutree sortable.
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1 Introduction

The motivation of this paper is the classical family of stack-sortable permutations intro-
duced by D. Knuth in his textbook [3, Sect. 2.2.1] and characterized by the following
equivalent conditions for a permutation π ∈ Sn:

(i) π is sent to the identity by the stack sorting S defined by S(τnρ) := S(τ)S(ρ)n.
(ii) π avoids the pattern 231 (i.e. there is no p < q < r such that πr < πp < πq).

(iii) π is minimal (minimal number of inversions) among all linear extensions of a bi-
nary tree on n nodes (seen as a poset, labeled in inorder, oriented towards its root).

(iv) For i < j < k, the inversion set inv(π) :=
{
(πp, πq)

∣∣ p < q and πp > πq
}

of π

contains the inversion (k, j) as soon as it contains the inversion (k, i).
(v) π admits a reduced word of the form π = cI1 · · · cIp with nested I1 ⊇ · · · ⊇ Ip,

where c{i1<···<ij} := sij · · · si1 is a product of the simple transpositions si := (i i + 1).
In his work on lattice congruences [7, 8, 6], N. Reading defined counterparts to con-

ditions (iii), (iv), and (v) above, parametrized by the choice of a Coxeter element c in a
finite Coxeter group W: the minimality in c-Cambrian classes, the c-alignment, and the c-
sortability. In the situation of the symmetric group Sn, we can think of a Coxeter element
on Sn as an orientation of an (n− 1)-path, or equivalently as a partition of {2, . . . , n− 1}
into two subsets U and D. The Cambrian analogues of the conditions (ii), (iii), (iv)
and (v) above are the following equivalent conditions for a permutation π ∈ Sn:
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(ii’) For i < j < k, the permutation π avoids the subword jki if j ∈ U and kij if j ∈ D.
(iii’) π is minimal among all linear extensions of a c-Cambrian tree on n nodes [1].
(iv’) For i < j < k, if inv(π) contains (k, i), it contains (k, j) if j ∈ U and (j, i) if j ∈ D.
(v’) π admits a reduced word of the form π = cI1 · · · cIp with nested I1 ⊇ . . . ⊇ Ip,

where cI := ci1 · · · ci|I| is the subword of c := c1 · · · cn−1 indexed by I := {i1< . . .< ij}.
These Cambrian combinatorics motivated the introduction of permutree combina-

torics [4]. Permutrees generalize and interpolate between permutations, binary trees,
and binary sequences, and explain the combinatorial, geometric, and algebraic similari-
ties between them. The data is now given by two subsets U and D of {2, . . . , n− 1} that
are not anymore required to form a partition of {2, . . . , n− 1} (they may intersect and
may not cover all the set). It was proved in [4] that the conditions (ii’), (iii’), and (iv’)
are still equivalent for a permutation π ∈ Sn. We call a permutation (U, D)-permutree
minimal when satisfying these conditions, i.e. when it is minimal (minimal number of
inversions) in its (U, D)-permutree class. The objective of this paper is to discuss char-
acterizations of the permutree minimal permutations in terms of their reduced words.
In other words, we aim at a condition playing the role of condition (v’) and equivalent
to conditions (ii’), (iii’), and (iv’) for arbitrary subsets U and D of {2, . . . , n− 1}.

We first focus on the case where U = ∅ and D = {j} for some j ∈ {2, . . . , n− 1},
or the opposite. To recognize the permutree minimal permutations in terms of their
reduced words, we use two automata U(j) and D(j) defined inductively in Section 2
(we assume the reader familiar with basic automata theory, see e.g. [2]). More precisely,
a permutation contains no subword jki (resp. kij) with i < j < k if and only if it admits
a reduced word accepted by the automaton U(j) (resp. D(j)). We moreover show in
Section 3 that the sets of reduced words for a permutation π accepted by the automa-
ton U(j) (resp. D(j)) have a rich combinatorial structure. This leads on the one hand to a
simple algorithm to construct a reduced word for π accepted by U(j) (resp. D(j)), and to
a tree structure on the permutations containing no subword jki (resp. kij) with i < j < k.

We then study the situation of arbitrary subsets U and D of {2, . . . , n− 1}. In general,
the reduced words accepted by the automata U(j) for each j ∈ U and by D(j) for
each j ∈ D are distinct. We prove however in Section 4 that there is a reduced word
simultaneously accepted by all these automata when U and D are disjoint. It implies
that given any permutation π avoiding jki if j ∈ U and kij if j ∈ D, we can sort π while
preserving these avoiding conditions. We call (U, D)-permutree sorting such a procedure,
as they generalize the classical stack sorting.

When the subsets U and D partition {2, . . . , n− 1}, we actually show in Section 5 that
the reduced word simultaneously accepted by the automata U(j) for j ∈ U and D(j)
for j ∈ D is the c-sorting word of π as defined in [8]. This yields in particular an
alternative proof that condition (v’) characterizes the Cambrian minimal permutations.

Finally, we discuss possible extensions to arbitrary finite Coxeter groups in Section 6.
All proofs and details omitted here for space reasons can be found in [5].
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2 Automata for reduced words

The symmetric group Sn is generated by simple transpositions si := (i i + 1) for i ∈ [n− 1].
Each permutation π decomposes as products of transpositions of the form π = si1 · · · sik .
The minimal number of transpositions in such a decomposition is the length `(π) of π

and the decompositions of length `(π) are the reduced words for π.
For a fixed j ∈ {2, . . . , n − 1}, we say that a permutation π avoids jki (resp. kij)

if for any i < j < k, the word jki (resp. kij) does not appear as a subword of the
one-line notation of π. We insist on the fact that while the value j is fixed, i and k
take all possible values such that 1 ≤ i < j < k ≤ n. This convenient notion here
should not be mixed up with the notion of pattern avoidance where j is not fixed. For
instance, the permutation 42135 avoids 2ki, 3ki, and 4ki (and therefore the pattern 231),
but contains ki3 (and therefore the pattern 312) because its one-line notation contains 423.

For j ∈ {2, . . . , n− 1}, we define inductively two automata U(j) and D(j) as shown
in Figure 1. The induction stops at U(n) and D(1), which are defined by deleting the
transitions sn and s0 respectively in Figure 1. For instance, Figure 2 shows the complete
automata U(2) and D(2) for n = 4. We call a state healthy, ill, or dead depending on
whether it belongs to the top, middle, or bottom row of the automata. Each state has
n− 1 possible transitions, one for each si for i ∈ [n− 1], but we only explicitly indicate
the ones between different states. The automata U(j) and D(j) take as entry a reduced
word si1 · · · si` for a permutation of Sn and read it from left to right. We start at the initial
state (marked with “start”), and at step t we follow the transition marked by the letter sit
if any, or stay in the current state otherwise. After ` steps, the reduced word si1 · · · si`
is accepted if the current state is accepting (doubly circled, healthy or ill states), and
rejected otherwise (dead states). The main tool of this paper is the following statement.

Theorem 2.1. Fix j ∈ {2, . . . , n− 1}. The following conditions are equivalent for π ∈ Sn:
• π admits a reduced word accepted by the automaton U(j) (resp. D(j)),
• π avoids jki (resp. kij).

U(j) =

start U(j + 1)

sj−1

sj

sj

D(j) =

start D(j− 1)

sj

sj−1

sj−1

Figure 1: Recursive definition of the automata U(j) and D(j).
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U(2) =

start

s1

s2

s2

s2

s3

s3

s3

D(2) =

start

s2

s1

s1

s1

Figure 2: The complete automata U(2) and D(2) for n = 4.

For example, the permutation π = 3412 avoids 2ki and s2 · s1 · s3 · s2 is a reduced
expression of π accepted by U(2). On the other hand, 3241 contains the subword 241
and all its reduced expressions (such as s2 · s1 · s2 · s3) are rejected by U(2).

3 Structure of accepted reduced words

3.1 The set of accepted reduced words

Observe that a given permutation π may admit both accepted and rejected reduced
words. For instance, the transposition (j− 1 j + 1) has reduced words sj · sj−1 · sj ac-
cepted by U(j) and sj−1 · sj · sj−1 rejected by U(j). However, the set of accepted reduced
words satisfies the following properties.

Proposition 3.1 (Who can do more can do less!). The set of reduced words accepted by U(j)
(resp. D(j)) is closed by taking prefix.

Proposition 3.2 (When health goes, everything goes!). If π admits an accepted reduced
expression, then π admits an accepted reduced expression starting with any descent that remains
in the healthy states. In other words, let ` ∈ [n− 1] distinct from j − 1 (resp. j). If π ∈ Sn
avoids jki (resp. kij) and reverses ` and ` + 1, it admits a reduced word starting with s` and
accepted by U(j) (resp. D(j)).

Proposition 3.3 (All roads lead to Rome!). Given a permutation π ∈ Sn, all the reduced
words for π accepted by U(j) (resp. D(j)) end at the same state.

3.2 Finding accepted reduced words

Proposition 3.2 has a strong algorithmic consequence. Imagine we want to test whether
a permutation π ∈ Sn is minimal in its permutree class for U = {j} and D = ∅. Of
course, the quickest way is to check for all i < j < k whether π contains the subword jki.
But since this interpretation will be lost beyond type A, let us impose the use of reduced
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words for π to make this test. While it would be a priori necessary to check all reduced
words on the automaton U(j), Proposition 3.2 enables us to construct without loss of
generality a reduced word for π and we will just need to check if this one is accepted
by U(j). Somewhat dually, one can also construct a reduced word accepted by U(j)
that is a reduced word for π if and only if π avoids jki. This is done in the following
algorithm, that we call ({j},∅)-permutree sorting.

Algorithm 1: ({j},∅)-permutree sorting
Input : a permutation π ∈ Sn and an integer j ∈ [n]
Output: a reduced word accepted by U(j), candidate reduced word for π

w := ε

repeat
if ∃ ` 6= j− 1 such that ` and `+ 1 are reversed in π then

π := s` · π, w :=w · s`
if ` = j then j := j + 1

if j− 1 and j are reversed in π then
π := sj−1 · π, w :=w · sj−1

w :=w · w′ · w′′ where w′ sorts π[j] and w′′ sorts π[n]r[j]

return w

Corollary 3.4. For any permutation π and j ∈ {2, . . . , n − 1}, Algorithm 1 returns a re-
duced word w accepted by U(j) such that w is a reduced word for π if and only if π avoids jki.

Example 3.5. Let us present the ({2},∅)-permutree sorting algorithm in action for the permu-
tations π1 := 3421 and π2 := 4231. The steps of the algorithm are presented in the table below.
Each row contains the states of the permutation π and of the word w and the current values of j
and ` in use at each step. Notice that for π1 := 3421 the algorithm ends with the identity, which
coincides with the fact that π1 := 3421 avoids 2ki. In contrast, for π2 := 4231 the algorithm ends
with the permutation 1243, which coincides with the fact that π2 := 4231 contains 2ki.

π1 w1 j1 `1
3421 ε 2 2
2431 s2 3 1
1432 s2 · s1 3 3
1342 s2 · s1 · s3 4 2
1243 s2 · s1 · s3 · s2 4 3
1234 s2 · s1 · s3 · s2 · s3 4

π2 w2 j2 `2
4231 ε 2 3
3241 s3 2 2
2341 s3 · s2 3 1
1342 s3 · s2 · s1 3 2
1243 s3 · s2 · s1 · s2 3
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3.3 Generating trees on accepted reduced words

Propositions 3.1 and 3.3 also have a relevant consequence, which is more combinatorial
this time. Namely, they naturally define generating trees for the ({j},∅)-permutree min-
imal permutations, following certain special reduced words for them. To construct these
trees, pick an arbitrary priority order ≺ on {s1, . . . , sn−1}. For a ({j},∅)-permutree min-
imal permutation π ∈ Sn, denote by π({j},∅,≺) the ≺-lexicographic minimal reduced
word for π that is accepted by U(j). Denote by R(n, {j},∅,≺) the set of reduced words
of the form π({j},∅,≺) for all ({j},∅)-permutree minimal permutations π ∈ Sn. The
following statement is an analogue of Proposition 3.1.

Proposition 3.6. The set R(n, {j},∅,≺) is closed by prefix.

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321
This yields a natural generating tree forR(n, {j},∅,≺)

where the parent of a reduced word w is obtained by
deleting its last letter. Replacing each reduced word by
the corresponding permutation, this provides a gener-
ating tree for the ({j},∅)-permutree minimal permuta-
tions of Sn. We have represented this tree on the right
for j = 2 with the priority order s1 ≺ s2 ≺ s3. It is nat-
ural to draw these trees on top of the Hasse diagram of
the right weak order on permutations. The edges of the
trees corresponding to the right multiplications by s1, s2
and s3 are colored by blue, red, and green respectively.

4 Intersection of automata

4.1 A common reduced word

We now consider arbitrary subsets U and D of {2, . . . , n− 1}. We already know from [4]
and Theorem 2.1 that the following conditions are equivalent for π ∈ Sn:

(i) the permutation π is minimal in its (U, D)-permutree class,
(ii) for i < j < k, the permutation π avoids the subword jki if j ∈ U and kij if j ∈ D,

(iii) for each j ∈ U (each j ∈ D), there is a reduced word for π accepted by U(j)
(resp. by D(j)).

A natural question is whether there is a reduced word simultaneously accepted by all
these automata. We start with an example showing that this is not always the case.

Example 4.1. For j ∈ {2, . . . , n− 1}, let U = {j} = D and π = sj−1 · sj · sj−1 = sj · sj−1 · sj.
Then, the word sj−1 · sj · sj−1 is accepted by D(j) but not by U(j), while the word sj · sj−1 · sj is
accepted by U(j) but not by D(j).
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This example clearly extends to all subsets U and D of {2, . . . , n − 1} with a non-
empty intersection. In contrast, this situation cannot occur when U and D are disjoint.

Theorem 4.2. Consider two disjoint subsets U and D of {2, . . . , n− 1}. The following condi-
tions are equivalent for π ∈ Sn:
• π admits a reduced word accepted by all automata U(j) for j ∈ U and D(j) for j ∈ D,
• π avoids jki for all j ∈ U and kij for all j ∈ D.

4.2 Intersection of automata

Theorem 4.2 can be rephrased in terms of intersection of automata. Recall that the
intersection of some automata A1, . . . , Ap is the automaton A =

⋂
i∈[p] Ai such that a

word is accepted by A if and only if it is accepted by all A1, . . . , Ap. A state of the
automaton A is p-tuple formed by states of the automata A1, . . . , Ap, and a transition t
simultaneously changes all entries of the p-tuple corresponding to states modified by t.
See [2, p. 59–60] for details. We denote by P(U, D) the intersection of the automata U(j)
for j ∈ U and D(j) for j ∈ D. We thus obtain the following statement.

Corollary 4.3. When U and D are disjoint, the following conditions are equivalent for π ∈ Sn:
• π admits a reduced word accepted by the automaton P(U, D),
• π contains no subword jki if j ∈ U and kij if j ∈ D with i < j < k.

We say that a state of P(U, D) is healthy (resp. ill, resp. dead) when the corresponding
states in U(j) for j ∈ U and D(j) for j ∈ D are all healthy (resp. contain at least one ill
state, but no dead one, resp. contains at least one dead state).

4.3 The set of accepted reduced words of P(U, D)

Applying the principles of Section 3.1 to each automaton U(j) for j ∈ U and D(j)
for j ∈ D, we derive similar principles for the automaton P(U, D).

Proposition 4.4. The set of reduced words accepted by P(U, D) is closed by prefix.

Proposition 4.5. If a permutation π avoids jki for j ∈ U and kij for j ∈ D, and admits a reduced
word starting with s` such that the transition s` leads to an healthy state of P(U, D), then it
admits a reduced word starting with s` and accepted by P(U, D).

Proposition 4.6. Given a permutation π ∈ Sn, all the reduced words for π accepted by P(U, D)
end at the same state.
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4.4 Permutree sorting

We now generalize Algorithm 1 to the following (U, D)-permutree sorting algorithm. As in
Algorithm 1, the algorithm will read the automaton P(U, D) without actually construct-
ing it. To virtually follow the edges of the automaton P(U, D), we use the following two
operations on our sets U and D:
• moveU(U, `) is U if ` /∈ U and (U r {`}) ∪ {`+ 1} if ` ∈ U,
• moveD(D, `) is D if `+ 1 /∈ D and (D r {`+ 1}) ∪ {`} if `+ 1 ∈ D.

In contrast to Algorithm 1, we have opted here for a recursive style.

Algorithm 2: (U, D)-permutree sorting

Function permutreeSort(π, U, D)
Input : a permutation π ∈ Sn and two disjoint subsets U and D of [n]
Output: a reduced word accepted by P(U, D), candidate reduced word for π

if ∃ ` ∈ [n− 1] such that ` and `+ 1 are reversed in π, and `+ 1 /∈ U and ` /∈ D then
return s` · permutreeSort(s` · π, moveU(U, `), moveD(D, `))

if ∃ ` ∈ [n− 1] such that ` and `+ 1 are reversed in π,
and (`+ 1 /∈ U or π([`+ 1]) = [`+ 1]) and (` /∈ D or π([`− 1]) = [`− 1]) then

return s` · permutreeSort(s` · π, moveU(U r {`+ 1}, `), moveD(D r {`}, `))
return ε

Note that in Algorithm 2, we could ignore n in the list U (resp. 1 in the list D)
since U(n) (resp. D(1)) accepts all reduced words. We have decided not to do it to be
coherent with our recursive definition of U(j) and D(j).

Corollary 4.7. For any permutation π and any disjoint subsets U and D of {2, . . . , n − 1},
Algorithm 2 returns a reduced word w accepted by P(U, D) such that w is a reduced word for π

if and only if π avoids jki for j ∈ U and kij for j ∈ D.

π1 w1 U1 D1 `1 k1
3214 ε {3} {2} 1 .
3124 s1 {3} {1} 2 3
2134 s1 · s2 ∅ {1} 1 0
1234 s1 · s2 · s1

π2 w2 U2 D2 `2 k2
1324 ε {3} {2} 2 1, 3
1234 s2

π3 w3 U3 D3 `3 k3
1342 ε {3} {2} 2 1, ��AA3

Example 4.8. The tables on the right present the
({3}, {2})-permutree sorting algorithm in ac-
tion for the permutations π1 := 3214, π2 := 1324
and π3 := 1342. Each row in these tables con-
tains the states of the permutation π and of the
word w, the current values of j and ` in use at
each step, and the values of k for which we have
to check that π([k]) = [k], crossed in red when
it fails. These tables show that π1 and π2 are
({3}, {2})-permutree sortable while π3 is not
(as it contains 3ki).
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4.5 Generating trees

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

As in Section 3.3, we can define natural generating
trees for the (U, D)-permutree minimal permutations.
Namely, fix an arbitrary priority order≺ on {s1, . . . , sn−1}.
For an (U, D)-permutree minimal permutation π, we
denote by π(U, D,≺) the ≺-lexicographic minimal re-
duced word for π that is accepted by P(U, D). We de-
note by R(n, U, D,≺) the set of reduced words of the
form π(U, D,≺) for all (U, D)-permutree minimal per-
mutations π ∈ Sn. As in Proposition 3.6, R(n, U, D,≺)
is closed by prefix. This yields a natural generating tree
on R(n, U, D,≺) where the parent of a reduced word w
is obtained by deleting its last letter. Replacing each re-
duced word by the corresponding permutation, this pro-
vides a generating tree for the (U, D)-permutree mini-
mal permutations of Sn. We have represented this tree
on the right for (U, D) = ({2, 3},∅) (top) and ({2}, {3})
(bottom) and the priority order s1 ≺ s2 ≺ s3. As in
Section 3.3, these trees are drawn on top of the Hasse di-
agram of the right weak order on permutations and the
edges are colored according to the simple transpositions.

5 Permutree sorting versus Coxeter sorting

In this section, we discuss the particular case when U and D partition {2, . . . , n− 1}. In
that situation, we connect the (U, D)-permutree sorting with the c-sorting of [9].

We consider a Coxeter element c of Sn, i.e. the product of all simple transpositions
{s1, . . . , sn−1} in an arbitrary order. For a permutation π ∈ Sn, the c-sorting word π(c) is
the lexicographically smallest reduced word for π in the infinite word c∞ = c · c · c · c · · · .
We let I1, . . . , Ip denote the subsets of [n− 1] such that π(c) = cI1 · cI2 · · · cIp where cI is
the subword of c obtained by keeping only the letters si for i ∈ I. The permutation π is
c-sortable if I1 ⊇ I2 ⊇ · · · ⊇ Ip.

A Coxeter element c of Sn defines a partition {2, . . . , n− 1} = Uc t Dc, where Uc
(resp. Dc) consists of the elements j ∈ {2, . . . , n− 1} such that sj appears before (resp. af-
ter) sj−1 in c. For instance, when c = s2 · s5 · s4 · s3 · s1 · s6, we obtain Uc = {2, 4, 5}
and Dc = {3, 6}. Said differently, j ∈ U (resp. j ∈ D) if c is accepted by U(j) but not
by D(j) (resp. by D(j) but not by U(j)). The c-sorting of [9] and the (Uc, Dc)-permutree
sorting are connected as follows.
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Theorem 5.1. The following are equivalent for any Coxeter element c and any permutation π:
(i) π is c-sortable,

(ii) the c-sorting word π(c) is accepted by the automaton P(Uc, Dc),
(iii) there exists a reduced word for π accepted by the automaton P(Uc, Dc),
(iv) for each j ∈ {2, . . . , n − 1}, there exists a reduced word for π that is accepted by the

automaton U(j) if j ∈ Uc and D(j) if j ∈ Dc,
(v) π avoids jki for j ∈ Uc and kij for j ∈ Dc.

We conclude this section with three negative observations and warnings about the
connection between c-sorting and (Uc, Dc)-permutree sorting.

Remark 5.2. Even if a permutation π avoids jki (resp. kij) for a given j, there might be no
Coxeter element c for which π is c-sortable and j ∈ Uc (resp. j ∈ Dc). For instance, 41325 avoids
2ki and ki4, but contains 352 and 413, so it is not c-sortable for any Coxeter element c.

Remark 5.3. When a permutation π is not c-sortable, there might exist j ∈ Uc (resp. j ∈ Dc) for
which the c-sorting word π(c) is not accepted by U(j) (resp. D(j)) even if π avoids jki (resp. kij).
For instance, consider c = s2 · s1 · s3 and π = 4213 = s3 · s1 · s2 · s1 = s3 · s2 · s1 · s2 =
s1 · s3 · s2 · s1. Then 2 ∈ Uc, and the c-sorting word π(c) = s1 · s3 · s2 · s1 is rejected by U(2)
while π contains no 2ki (and indeed s3 · s2 · s1 · s2 is accepted by U(2)).

Remark 5.4. Given a Coxeter element c, the word c∞ which is used to compute π(c) is a sorting
network. This means that we decide beforehand a list of transpositions to apply if appropriate.
On the other hand, the permutree sorting given in Algorithm 2 is not a sorting network. Indeed,
the order on transpositions depends on the permutation and more specifically on the state of the
automaton we are at. A natural question then occurs: can we replace the permutree sorting
algorithm by a sorting network? Or said differently, when U and D are disjoint but do not
cover {2, . . . , n− 1}, can we find a word c̃ which plays the role of c∞ in the sense that looking
at π(c̃) would be enough to check whether π is accepted by P(U, D)? The answer is negative in
general. A counter-example is found for n = 5, U = {2}, and D = {4}. In this case one can
check through computer exploration that no reduced word c̃ of the maximal permutation 54321
can be used as a sorting network.

6 Extensions to finite Coxeter groups

In this section we present possible extensions of our results to other finite Coxeter
groups. Remember that the c-sorting algorithm defined by Reading [7] works in all
types and defines the Cambrian lattices as certain lattice quotients of the weak order.
On the other hand, there is no definition of permutrees [4] beyond type A. The present
work can be used as a first step towards defining and studying such objects.

A Coxeter group is generated by a family (si)i∈[n] such that s2
i = 1 and (sisj)

mi,j = 1
for certain coefficients mi,j with 2 ≤ mi,j ≤ ∞ when i 6= j. In particular, this defines the
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Coxeter graph whose vertices are the si and edges are the pairs (si, sj) with mi,j > 2.
A Coxeter element c of a finite Coxeter group W defines an orientation of the Coxeter
graph of W: we orient the edge from si to sj if si appears before sj in c and reciprocally.
Each orientation defines a certain lattice congruence of the weak order: it is the smallest
lattice congruence such that sj ≡ sjsi ≡ · · · ≡ sjsisj . . . where the last element is of length
mi,j− 1. The c-sortable elements are the weak order minimal elements of the congruence
classes. See [6] for more details.

By allowing each edge of the Coxeter graph to be either non-oriented, right, left
or with both orientations, we define some new lattice congruences which we call the
permutree congruences. In type A, the Coxeter graph is a line (sj is connected to sj−1 and
sj+1) and the orientation is then entirely determined by our two sets U and D: j ∈ U
(resp. j ∈ D) means we orient the edge (sj, sj−1) from sj to sj−1 (resp. sj−1 to sj). The
case where U = ∅ and D = {j} or the opposite corresponds to choosing one edge and
orient it. Then the automaton D(j) is actually constructed recursively by following a
certain path in the graph from the oriented edge (in type A, this means decreasing j).
We conjecture that this principle can be somehow generalized to other types and give
two examples in type B and D.

6.1 Type B

The Coxeter graph of type B is similar to the one of type A with the exception that
mn−1,n = 4 (whereas mn−1,n = 3 in type A). We claim that the automata D(j) and
U(j) can be recursively constructed following Figure 3. The idea is to “unfold” the edge
(sn−1, sn) and use the type A construction on a linear graph s1, . . . , sn, sn−1, sn, . . . , s1.
Notice that D(j) has not been altered while U(j) is virtually as before except for when
j = n where it is now connected to D(n) as if it was “bouncing back”. These automata
capture completely the sorting process of type B permutations. It can also be checked for
small sizes that they indeed select the right elements in the lattice. In particular, the case
where U tD = {2, . . . , n} gives (2n

n ) permutree sortable permutations, i.e. the B-Catalan
numbers as expected from the Cambrian case.

U(j) =

start U(j + 1)
sj−1

sj

sj

U(n) =

start D(n)
sn−1

sn

sn

D(j) =

start D(j− 1)
sj

sj−1

sj−1

Figure 3: Recursive definition of the automata U(j) and D(j) in type B.
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6.2 Type D

Type D is an example of a simply-laced case, meaning that mi,j ≤ 3 for all i and j. In
this case, we see a “branching” phenomenon and it appears that a single oriented edge
leads to multiple automata which need to be intersected and follow a more technical
construction than for type A. As of yet, we know no general construction but we show
in Figure 4 a working example (checked by computer exploration) for the case D4.

D4 oriented U(j)1 U(j)2

1

4

3

2

start
s2

s1

s2

s3

s2

s3

s2 s1

s2

s1

s1

start
s2

s1

s2

s4

s2

s4

s2 s1

s2

s1

s1

Figure 4: A partial orientation of D4 and the corresponding automata that form U(2).
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