
Séminaire Lotharingien de Combinatoire 85B (2021) Proceedings of the 33rd Conference on Formal Power
Article #34, 12 pp. Series and Algebraic Combinatorics (Ramat Gan)

Critical varieties in the Grassmannian
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Abstract. We introduce a family of spaces called critical varieties. The positive part
of each critical variety is a subset of one of Postnikov’s positroid cells inside the to-
tally nonnegative Grassmannian. The combinatorics of positroid cells is captured by
the dimer model on a planar bipartite graph G, and the critical variety is obtained by
restricting to Kenyon’s critical dimer model associated to a family of isoradial embed-
dings of G. This model is invariant under square/spider moves on G, and we give an
explicit boundary measurement formula for critical varieties which does not depend
on the choice of G. Special cases include critical electrical networks and Baxter’s criti-
cal Z-invariant Ising model associated to rhombus tilings of polygons in the plane. In
the case of regular polygons, our formula yields new simple expressions for response
matrices of electrical networks and for correlation matrices of the Ising model.

This is an extended abstract summarizing the results of [4, 5]. See those papers for
the proofs and further details.

1 Dimer model

Let G be a planar bipartite graph embedded in a disk. We assume that G has n black
boundary vertices, each of degree 1, labeled b1, b2, . . . , bn in clockwise order. A strand (or
a zig-zag path) in G is a path that makes a sharp right turn at each black vertex and a
sharp left turn at each white vertex. Thus G gives rise to a strand permutation fG ∈ Sn:
for each 1 ≤ p ≤ n, the strand that starts at bp terminates at b fG(p). See Figure 1(b). We
say that G is reduced [20] if it has the minimal number of faces among all graphs with the
same strand permutation. It is known that a reduced graph contains no closed strands,
thus each strand starts and ends at the boundary of G. For simplicity, we always assume
that fG has no fixed points ( fG(p) = p), although the theory extends to that case in a
straightforward fashion.

Given a reduced planar bipartite graph G, one can consider the dimer model on it.
Let us assign a positive real weight wt(e) to each edge e of G. An almost perfect matching
A of G is a collection of edges of G that uses each interior vertex exactly once, and uses
some subset of boundary vertices. We denote by {bp}p∈IA for IA ⊂ [n] := {1, 2, . . . , n}
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Figure 1: (a) A (reduced) planar bipartite graph G; (b) strands in G; (c) edge weights
wtu, where the unmarked edges have weight 1 and we abbreviate |pq| := |uq − up|; (d)
the boundary measurements ∆I(G, wtu).

the set of boundary vertices used by A. It is easy to check that there exists an integer
0 ≤ k ≤ n such that any almost perfect matching of G satisfies |IA| = k. The number k
depends only on fG: we have

k = #{1 ≤ p ≤ n | fG(p) < p}. (1.1)

Denote the set of k-element subsets of [n] by ([n]k ), and for I ∈ ([n]k ), define

∆I(G, wt) := ∑
A: IA=I

wt(A), where wt(A) := ∏
e∈A

wt(e),

where the summation runs over almost perfect matchings of G. As we explain in Sec-
tion 4, the boundary measurements Meas(G, wt) := (∆I(G, wt))

I∈([n]k )
give rise to a point in

the totally nonnegative Grassmannian [17, 20]. We consider the tuple (∆I(G, wt))
I∈([n]k )

to

be defined up to multiplication by a common scalar.
One can apply certain moves to (G, wt) which preserve the boundary measurements.

The most interesting transformation is known as the square move: given a bipartite square
face F of G, one can uncontract some edges so that all vertices of F become trivalent,
then swap the colors of the vertices of F, and then contract the unicolored edges to
obtain a new planar bipartite graph G′; see Figure 2(a) for an example. The weights of
the edges are changed appropriately, and the resulting weighted graph (G′, wt′) satisfies
Meas(G, wt) = Meas(G′, wt′) and fG = fG′ . Conversely, any two reduced bipartite
graphs with the same strand permutation can be related by a sequence of square moves.

2 Critical dimer model

Let G be a reduced bipartite graph with strand permutation f . Choose n points u :=
(u1, u2, . . . , un) on the unit circle. For simplicity, assume that they are listed in counter-
clockwise order (more generally, see Definition 5.1). The main idea of critical varieties
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Figure 2: (a) A square move and its effect on wtu; (b) converting a plabic graph G into
a circular diagram of fG from Section 5.

defined below is to consider not just an arbitrary weight function wt : E(G) → R>0,
but a particular weight function wtu defined as follows. Observe that every edge e of G
belongs to exactly two strands. Suppose that one strand terminates at bp and the other
strand terminates at bq for some 1 ≤ p, q ≤ n. If e is not adjacent to a boundary vertex,
we let

wtu(e) := |uq − up| (2.1)

be the distance between up and uq. If e is adjacent to the boundary, we set wtu(e) := 1.
A crucial property of such a choice is that the result is invariant under square

moves: for any two reduced graphs G, G′ with the same strand permutation f , we have
Meas(G, wtu) = Meas(G′, wt′u). For instance, the two graphs in Figure 2(a) produce the
same boundary measurements (up to a common scalar). Thus Meas(G, wtu) depends
only on f and on u, therefore it makes sense to denote Meas( f , u) := Meas(G, wtu). Our
main result is an explicit simple formula for Meas( f , u) which depends only on f and
u, and does not involve choosing a reduced graph G.

Remark 2.1. The origin of (2.1) comes from the notion of a critical dimer model [11] as-
sociated to isoradial graphs [18]. An embedded planar graph G is called isoradial if each
interior face of G is inscribed in a circle of radius one. To a given reduced bipartite graph
G and a collection u of points on a circle one can associate a planar embedding of G (as
well as of its planar dual) known under the name plabic tiling [19]. This embedding is
easily seen to be isoradial. The assignment of weights [11] to the edges of G simplifies
considerably in the case of plabic tilings, giving rise to the expression (2.1) in terms of
strands. While the critical dimer model and its connections to electrical networks and
the Ising model are well known [11, 13], the specialization to plabic tilings and the totally
nonnegative Grassmannian appears to not have been studied before.
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Figure 3: (a) A rhombus tiling of an arbitrary polygon R; (b) a rhombus tiling of a
regular polygon RN for N = 6; (c) the associated isoradial graph GT consists of black
vertices and black solid edges; (d) a flip of a rhombus tiling resulting in a star-triangle
move on GT.

3 Electrical networks and the Ising model

We shall come back to the dimer model and explain our boundary measurement formula
for critical varieties in the next sections. First, as a warm up, we review two particularly
neat applications of the formula in the “cyclically symmetric” case.

Both critical electrical networks and the critical Ising model are defined on isoradial
graphs. To obtain an isoradial graph, take a rhombus tiling T of a polygonal region R,
such as the one in Figure 3(a), color its vertices black and white in a bipartite way, and let
GT be the graph consisting of all diagonals of rhombi that connect their black vertices;
see Figure 3(c). The graph GT is isoradial, with white vertices of T being the centers of
the corresponding unit circles. One then associates a weight to each edge e of GT that
depends on the geometry of the rhombus containing e, and treats this weight as either
the resistance (in the case of electrical networks) or as the interaction constant (in the
case of the Ising model) associated to e, as explained below.

Denote by b1, b2, . . . , bN the vertices of GT that belong to the boundary of R, listed
in clockwise order. We now give some background on electrical networks and the Ising
model, and explain how in each case one can apply natural boundary measurements to
pairs (bp, bq) of boundary vertices.

Electrical networks. We consider GT as an electrical resistor network, replacing every
edge by a resistor. Given a rhombus ABCD of T with black vertices A and C, the edge
AC of GT is treated as a resistor whose resistance equals the ratio of the diagonals |AC|

|BD| .
Let us apply the voltage of 1 to bp and the voltage of 0 to all other boundary vertices.
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Then the voltages at all interior vertices, as well as the currents through all edges, can be
computed from the Ohm’s and Kirchhoff’s laws. Denote by ΛT

p,q the current that flows
out of bq.1 The matrix ΛT

elec = (ΛT
p,q) is known as the response matrix of the electrical

network associated with GT.

Ising model. Denote by V := V(GT) and E := E(GT) the vertex and edge sets of GT.
A spin configuration is an assignment σ = (σv)v∈V ∈ {±1}V of spins to the vertices of GT,
where we have σv = ±1 for each v ∈ V. For an edge e ∈ E, we denote xe := cot(θe/2),
where 2θe ∈ (0, π) is the angle at a white vertex of the rhombus of T containing e. The
critical Z-invariant Ising model [1, 2] is a probability distribution on the set {±1}V of all
spin configurations: the probability of a given spin configuration σ equals

ProbT(σ) :=
1

ZT
∏

{u,v}∈E: σu=σv

x{u,v}, where ZT := ∑
σ∈{±1}V

∏
{u,v}∈E: σu=σv

x{u,v}

is the partition function. Given two boundary vertices bp, bq, we define their correlation as

〈σpσq〉T := ProbT(σp = σq)− ProbT(σp 6= σq).

The matrix MT
Ising = (〈σpσq〉T) is known as the boundary correlation matrix of the Ising

model on GT.

Star-triangle moves. It is known [12] that any two rhombus tilings of the same region
can be related by a sequence of flips as in Figure 3(d). Applying a flip to a rhombus tiling
results in applying a star-triangle move to the weighted graph GT. A very well known
property of the electrical response matrix ΛT

elec is that it is preserved by such moves.
The same property also holds for the critical Z-invariant Ising model: the boundary
correlation matrix MT

Ising is preserved when T changes by a flip. Therefore both ΛT
elec and

MT
Ising depend only on the region R itself, and not on the particular choice of a rhombus

tiling T. It is thus natural to denote ΛR
elec := ΛT

elec and MR
Ising := MT

Ising. A consequence
of our main results is a formula for ΛR

elec and MR
Ising that depends manifestly only on the

region R.

Regular polygons. For arbitrary regions R, our formula (Corollary 7.2) involves com-
puting the inverse of an N × N matrix. However, in the most symmetric case when the
region is a regular 2N-gon, the matrix can be inverted explicitly, which gives rise to the
following results. Let us denote the regular 2N-gon by RN.

1By linearity of the Ohm’s and Kirchhoff’s laws, knowing ΛT
p,q for all 1 ≤ p, q ≤ N allows one to solve

the more general problem: for any known voltages that are applied to the boundary vertices, one finds
the resulting currents flowing through each boundary vertex.
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Theorem 3.1. For 1 ≤ p, q ≤ N and d := |p− q|, we have

ΛRN
p,q =

sin(π/N)

N · sin((2d− 1)π/2N) · sin((2d + 1)π/2N)
. (3.1)

Example 3.2. Consider the star electrical network as in Figure 3(d) inside a regular
hexagon R3. Then the resistance of each edge equals 1√

3
. Applying the voltage of 1

to b1 and the voltage of 0 to b2 and b3, we calculate that the resulting voltage at the
unique interior vertex is 1

3 , and thus the currents through b2 and b3 are both equal to 1√
3
.

This agrees with (3.1) for N = 3 and d = 1, 2. For d = 0, we also obtain the correct value
− 2√

3
for the current through b1, the negative sign representing the fact that the current

flows into the network.

Theorem 3.3. For 1 ≤ p, q ≤ N and d := |p− q|, we have

〈σpσq〉RN
=

2
N

(
1

sin ((2d− 1)π/2N)
− 1

sin ((2d− 3)π/2N)
+ · · · ± 1

sin (π/2N)

)
∓ 1.

As explained in [4, Remark 1.15], the formula in Theorem 3.3 describes the unique N×N
boundary correlation matrix of the Ising model that is invariant under the Kramers–
Wannier duality [15].

Example 3.4. For the square R2, the graph GT consists of a single edge e with xe =
cot(π/8) =

√
2 + 1. By definition, we find 〈σ1σ2〉R2

=
√

2 − 1, which agrees with
Theorem 3.3 for N = 2 and d = 1.

Remark 3.5. Despite the simplicity of these two results, both of them are apparently
new. They also lead to new asymptotic consequences (including a convergence result
for the Ising model in a disk to a conformally invariant limit [4]) which fall outside the
scope of the present extended abstract.

4 The totally nonnegative Grassmannian

The Grassmannian Gr(k, n) is the space of k-dimensional linear subspaces of Rn. It can
also be identified with the set of full rank k × n real matrices modulo row operations,
via the bijection sending a matrix M to RowSpan(M). Given such a matrix M and a k-
element set I ∈ ([n]k ) of columns, let ∆I(M) denote the maximal minor of M with column
set I. The collection (∆I(M))

I∈([n]k )
of Plücker coordinates of M uniquely determines the

point RowSpan(M) ∈ Gr(k, n), and is defined up to a multiplication by a common
scalar. The totally nonnegative Grassmannian Gr≥0(k, n) is the subset of Gr(k, n) where all
nonzero Plücker coordinates have the same sign. Loosely speaking, we can write

Gr≥0(k, n) :=
{

X ∈ Gr(k, n)
∣∣∣∣∆I(X) ≥ 0 for all I ∈

(
[n]
k

)}
.
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The space Gr≥0(k, n) is naturally stratified into positroid cells according to which Plücker
coordinates are zero and which are strictly positive.

Given a reduced bipartite planar graph G with weight function wt, there exists a
(necessarily unique) point X ∈ Gr≥0(k, n) such that ∆I(X) = ∆I(G, wt) for all I ∈ ([n]k ).
By an abuse of notation, we also denote this point by Meas(G, wt). Fixing G and letting
wt ∈ R

E(G)
>0 vary over all possible assignments of positive real edge weights, we obtain

the positroid cell Π>0
G ⊂ Gr≥0(k, n) defined by

Π>0
G := {Meas(G, wt) | wt ∈ R

E(G)
>0 }.

The set Π>0
G depends only on fG and is denoted Π>0

fG
. The positroid cells give a cell

decomposition2 of Gr≥0(k, n).
Thus in particular we may take wt := wtu to come from the critical dimer model, in

which case we get a point Meas( fG, u) := Meas(G, wtu) ∈ Π>0
fG

.

Remark 4.1. Taking f to be the permutation sending p 7→ p + k modulo n for all p ∈
[n] (corresponding to the top-dimensional positroid cell), and taking the points in u to be
equally spaced on the circle, Meas( f , u) becomes the unique cyclically symmetric point
of Gr≥0(k, n) studied in [6, 9].

5 Critical cells

We have defined positroid cells above. Their Zariski closures in the complex Grassman-
nian are called positroid varieties [14]. Similarly, we will first introduce critical cells; critical
varieties will be their Zariski closures, and critical cells will be the totally positive parts
of critical varieties.

Let f ∈ Sn be a permutation (without fixed points), and let k ∈ [n] be defined by (1.1).
Place the points b1, b2, . . . , bn on a circle, and for each p ∈ [n], let p− (resp., p+) be the
point slightly before (resp., after) bp in clockwise order. The reduced strand diagram of f is
obtained by drawing a straight arrow a+ → p− whenever f (a) = p; see Figure 2(b). We
say that p 6= q ∈ [n] form an f -crossing if the arrows a+ → p− and b+ → q− cross, where
a := f−1(p) and b := f−1(q). For instance, in Figure 2(b), 1 and 2 form an f -crossing but
1 and 3 do not.

The critical cell Crit>0
f is parametrized by the following set.

Definition 5.1. A tuple θ = (θ1, θ2, . . . , θn) is called f -admissible if for all 1 ≤ p < q ≤ n
such that p and q form an f -crossing, we have θp < θq < θp + π.

2To obtain the whole Gr≥0(k, n), one needs to consider decorated permutations with fixed points [20].
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Thus in the case of Figure 2(b), θ is f -admissible if and only if θ1 < θ2 < θ3 < θ4 < θ1 +π.
Let now G be a reduced bipartite planar graph with strand permutation f and let

θ = (θ1, θ2, . . . , θn) ∈ Rn be a tuple of angles. We define a weight function wtθ on
the edges of G as follows. When e ∈ E(G) is adjacent to a boundary vertex, we set
wtθ(e) := 1, and otherwise we set

wtθ(e) := sin(θq − θp), (5.1)

where 1 ≤ p < q ≤ n are the indices such that the two strands passing through e
terminate at bp and bq. It turns out [5, Proposition 4.2] that all edge weights are positive
if and only if θ is f -admissible.

Remark 5.2. In Section 2, we worked with a tuple of n points u := (u1, u2, . . . , un) on
the unit circle. Let us regard these points as complex numbers of modulus 1. Then the
connection between (2.1) and (5.1) is obtained by setting uq := exp(2iθq) for all q ∈ [n].
Then we have |uq − up| = sin(θq − θp).

Recall from Section 2 that Meas(G, wtθ) depends only on fG and θ, and is denoted
Meas( fG, θ). The following is the main definition of this paper.

Definition 5.3. For a permutation f , the critical cell Crit>0
f ⊂ Π>0

f is given by

Crit>0
f := {Meas( f , θ) | θ = (θ1, θ2, . . . , θn) is an f -admissible tuple}.

The critical variety CritC
f is the Zariski closure of Crit>0

f inside the complex Grassmannian.

6 Boundary measurement formula

Currently, in order to compute Meas( f , θ), one needs to choose a reduced planar bipar-
tite graph G. And then the result does not depend on this choice. It is therefore natural
to look for an expression for Meas( f , θ) purely in terms of f and θ. Our main result
gives a solution to this problem.

Take the reduced strand diagram of f as in Figure 2(b). For each r ∈ [n], introduce
the set

Jr := {q ∈ [n] | br is to the left of the arrow p+ → q−}.
Here we assume p = f−1(q). Observe that we always have r /∈ Jr. The collection
(Jr t {r})r∈[n] is known as the Grassmann necklace [20] of f .

For an index r ∈ [n], let εr ∈ {±1} be given by εr := (−1)#{p∈[n]| f (p)<p<r}.

Definition 6.1. Let θ = (θ1, θ2, . . . , θn) be a tuple of angles. Consider a curve γ f ,θ : R→
Rn with coordinates γ f ,θ(t) = (γ1(t), γ2(t), . . . , γn(t)) given by

γr(t) := εr ∏
p∈Jr

sin(t− θp) for r ∈ [n].
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It is possible to give a formula for an arbitrary f -admissible tuple θ, but for simplicity,
we restrict to the case when θ is generic, that is, when all angles in θ are pairwise non-
congruent modulo π. We are ready to state our main result.

Theorem 6.2. Suppose that θ is a generic f -admissible tuple. Then the linear span Span(γ f ,θ) ⊂
Rn has dimension k and we have

Meas( f , θ) = Span(γ f ,θ) inside Gr(k, n).

Example 6.3. Let k = 2, n = 4, and f be the permutation sending p 7→ p + 2 modulo 4.
The boundary measurement map Meas( f , θ) was computed in Figure 1(d). Since the
Plücker coordinates are defined up to a common scalar, the term |24| cancels out. The
sets Jr are given by J1 = {2}, J2 = {3}, J3 = {4}, and J4 = {1}, so γ f ,θ has coordinates

γ f ,θ(t) = (sin(t− θ2), sin(t− θ3), sin(t− θ4),− sin(t− θ1)).

We can choose a basis consisting of e.g. γ f ,θ(0) and γ f ,θ(π/2), which we can write in the
rows of the following matrix:

A =

(
− sin(θ2) − sin(θ3) − sin(θ4) sin(θ1)
cos(θ2) cos(θ3) cos(θ4) − cos(θ1)

)
.

We see that the maximal minors of A coincide with the values computed in Figure 1(d).

A few remarks are in order.

• For a generic θ, an explicit basis of Span(γ f ,θ) can be chosen by taking any k distinct
points on the curve γ f ,θ.

• A more canonical (and computationally robust) way to produce a basis of Span(γ f ,θ)
is to observe that each coordinate γr(t) is a trigonometric polynomial of degree
k− 1. Therefore it has precisely k non-trivial Fourier coefficients. The rows of the
resulting k× n matrix of Fourier coefficients form a basis of Span(γ f ,θ) which does
not depend on anything besides f and the angles θ1, θ2, . . . , θn.

• After a change of variables Tp := exp(iθp), T := exp(it), our boundary measure-
ment formula becomes an algebraic expression in T1, T2, . . . , Tn. We have sin(θq −
θp) =

1
2i
(
Tq/Tp − Tp/Tq

)
, thus the edge weights of G are also algebraic. This can

be used to introduce open critical varieties Crit◦f ⊂ CritC
f ; see [5, Section 5].

• Let Crit≥0
f be the closure of Crit>0

f inside Gr≥0(k, n). An immediate next direction

is to determine the boundary cell structure of Crit≥0
f in the spirit of the positroid

cell decomposition of Gr≥0(k, n). This will be explored in a forthcoming paper.
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7 Back to electrical networks and the Ising model

We promised in Section 3 to give a formula for the electrical response matrix ΛR
elec and

the boundary correlation matrix MR
Ising associated to a rhombus tiling T of a polygonal

region R. Recall that N is the number of boundary vertices of GT, and let n := 2N
be the number of boundary edges of R. Suppose that the boundary vectors of R are
u1, u2, . . . , u2N, listed and directed in clockwise order (and treated as complex numbers
of modulus one). The tiling T gives rise to a fixed-point-free involution τR : [2N]→ [2N],
as follows. For each p ∈ [2N], the boundary vector up is contained in a unique rhombus.
The opposite side of that rhombus is contained in a unique other rhombus. We continue
in this fashion until we arrive at another boundary vector uq (which necessarily satisfies
uq = −up), and we set τR(p) := q and τR(q) := p. Clearly, τR depends only on R and
not on T.

Let f elec
R , f Ising

R : [2N] → [2N] be defined by f elec
R (p) := τR(p) + 1 (modulo 2N) and

f Ising
R (p) := τR(p). One can uniquely extract the square roots to obtain the tuple θR =

(θ1, θ2, . . . , θ2N) that is both f elec
R - and f Ising

R -admissible, such that up = exp(2iθp) for all
p ∈ [2N], and such that θτR(p) = θp + π/2 whenever p < τR(p).

Lam [16] has constructed an embedding φelec of the space of N × N electrical re-
sponse matrices into Gr≥0(N + 1, 2N).3 Together with Pylyavskyy [7], we constructed
an embedding φIsing of the space of N × N Ising boundary correlation matrices into
Gr≥0(N, 2N).

Theorem 7.1. For any region R, we have

φelec(ΛR
elec) = Meas( f elec

R , θR) and φIsing(MR
Ising) = Meas( f Ising

R , θR)

The matrices ΛR
elec and MR

Ising can be easily recovered from their respective images
inside the Grassmannian. Let us explain the Ising model case in detail, the case of
electrical networks being similar. Introduce a 2N × N matrix KN defined as

KN =
1
2



1 0 . . . 0
1 0 . . . 0
0 1 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1
0 0 . . . 1


.

3More precisely, Lam’s embedding lands in Gr≥0(N − 1, 2N). To get an element of Gr≥0(N + 1, 2N),
one needs to take the orthogonal complement and then change the sign of every second column.
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Corollary 7.2. Let R be a non-alternating region. Choose an N× 2N matrix A whose row span
equals Span(γR). Let B = (bp,q) be the N × 2N matrix given by

B := (AKN)
−1A.

Then, up to a sign, the entries of B are the boundary correlations: we have

〈σpσq〉R = 〈σpσq〉R = |bp,2q−1| = (−1)q−p+1bp,2q−1 for all 1 ≤ p < q ≤ N.

Part of the content of Corollary 7.2 is that the matrix AKN is always invertible.

Remark 7.3. Our formula involves inverting an N × N matrix AKN. There are other
celebrated matrix formulas for the dimer and Ising models, e.g., the Kasteleyn matrix or
the Kac–Ward matrix [8, 10]. However, these matrices are indexed by the vertices of GT,
and therefore have size O(N2 × N2). By contrast, the matrix AKN has size N × N.
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the conference (Sebastian Franco, Gregg Musiker, Richard Kenyon, David Speyer, and
Lauren Williams) for making such an interaction possible.
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