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A refinement of the Murnaghan–Nakayama rule
by descents for border strip tableaux
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Abstract. Lusztig’s fake degree is the generating polynomial for the major index of
standard Young tableaux of a given shape. Results of Springer and James & Kerber
imply that, mysteriously, its evaluation at a k-th primitive root of unity yields the num-
ber of border strip tableaux with all strips of size k, up to sign. This is essentially the
special case of the Murnaghan–Nakayama rule for evaluating an irreducible character
of the symmetric group at a rectangular partition.

We refine this result to standard Young tableaux and border strip tableaux with a
given number of descents. To do so, we introduce a new statistic for border strip
tableaux, extending the classical definition of descents in standard Young tableaux.
Curiously, it turns out that our new statistic is very closely related to a descent set for
tuples of standard Young tableaux appearing in the quasisymmetric expansion of LLT
polynomials given by Haglund, Haiman and Loehr.
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1 Introduction

Let SYT(λ) denote the set of all standard Young tableaux of shape λ and size n. An entry
i of a standard Young tableau T is a descent of T, if i + 1 appears in a strictly lower row
in T in English notation. Let DES(T) denote the set of descents of T and denote with
maj(T), the major index of T, the sum of all descents of T.

Our main result, Theorem 2.8, provides a natural combinatorial interpretation of

f λ(q, t) := ∑
T∈SYT(λ)

qmaj(T)t|DES(T)|

when λ has empty k-core and q is a primitive k-th root of unity. This refines the classical
interpretation of the evaluation of Lusztig’s fake degree polynomial f λ(q) := f λ(q, 1), as
we show below. The bivariate generating function itself was already considered by R.
Stanley [12, Proposition 8.13.] in the more general setting of (P, ω) partitions.
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Figure 1: A border strip tableau of height 7.

By a result of T. Springer [11, Proposition 4.5], f λ(q) coincides with the restriction
of the irreducible Sn-character χλ to the cyclic subgroup generated by the long cycle,
represented as the group of complex roots of unity. More precisely, for k | n, let ξ be a
primitive k-th root of unity and let ρ = (kn/k) be a rectangular partition, then we have
f λ(ξ) = χλ(ρ). In general, a practical way to compute the character value χλ(ρ) for an
arbitrary partition ρ is the Murnaghan–Nakayama rule [13, Theorem 7.17.3].

For a filling B of a Young diagram λ with weakly increasing rows and columns, let
Bi be the collection of cells in B containing i. We say that B is a border strip tableau of
type ρ = (ρ1, . . . , ρ`) ` n if, for all 1 ≤ i ≤ `, the cells Bi form a connected skew shape of
size ρi that does not contain a 2× 2 rectangle. In this case we call Bi a border strip of size
ρi and define the height ht(Bi) to be the number of rows it spans minus 1. Furthermore,
we define the height of B to be the sum of the heights of its strips. See Figure 1 for an
example of a border strip tableau of height 7.

The Murnaghan–Nakayama rule states that

χλ(ρ) = ∑
B
(−1)ht(B),

where the sum is taken over all border strip tableaux of shape λ and type ρ. In the
special case where ρ is a rectangular partition (kn/k) and all strips in B have the same
size k, this rule is cancellation free, due to a theorem by G. James and A. Kerber [4,
Theorem 2.7.27]. This means that the parity of ht(B) only depends on λ and the strip
size k. Thus we obtain

f λ(ξ) = ελ,k · |BST(λ, k)|, (1.1)

where BST(λ, k) is the set of all border strip tableaux of shape λ and type (kn/k), and
ελ,k = (−1)ht(B) for any border strip tableau B ∈ BST(λ, k).

Our main result, Theorem 2.8, refines this special case of the Murnaghan–Nakayama
rule as follows. Provided that the set BST(λ, k) is not empty, it turns out that f λ(ξ, t) is,
up to sign, a generating function for a very natural statistic on this set. That is,

f λ(ξ, t) = ελ,k · ∑
B∈BST(λ,k)

tdes+(B).
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0 1 2 3 4 5
-1 0 1 2 3
-2 -1 0 1
-3 -2
-4 -3
-5 -4 •

Figure 2: The Young diagram of the partition 654222, where each cell is filled with its
content and a border strip, where its tail is decorated with a bullet.

The statistic des+ (see Definition 2.7) extends the classical definition of descents for
standard Young tableaux.

The motivation to study f λ(ξ, t) comes from the desire to refine recent results by the
author in joint work with P. Alexandersson, M. Rubey, and J. Uhlin [1]. They used (1.1)
to show that (χλ)2 carries the action of a permutation representation of the cyclic group
of order n. Equivalently, there exists a cyclic group action τ of order n such that the
triple (SYT(λ) × SYT(λ), τ, ( f λ)2) exhibits the cyclic sieving phenomenon introduced
by V. Reiner, D. Stanton and D. White [9]. Note that the action τ remains unknown.
Refining their work may eventually lead to an explicit description of τ. See B. Sagan’s
survey article [10] for more background on the cyclic sieving phenomenon.

Albeit skipping details and proofs of intermediate results, this extended abstract
contains all important definitions and steps to prove our main result.

2 Definitions and main theorem

We begin by introducing relevant definitions and notation; for more details we refer to
the books by I. Macdonald [6] and R. Stanley [13]. A partition λ = (λ1, . . . , λ`) of n,
written as λ ` n, is a weakly decreasing sequence of positive integers that sum up to
n =: |λ|. The Young diagram of shape λ in English notation is the collection of n cells,
arranged in ` left-justified rows of lengths λ1, . . . , λ`. The rows of a Young diagram are
indexed from top to bottom starting with one, and the columns are indexed from left to
right starting with one. To each cell x we associate its content, c(x), which is its column
index minus its row index.

Let (λ, µ) be a pair of partitions such that the Young diagram µ is completely con-
tained in the Young diagram λ. The cells that are in λ but not in µ form the skew shape
λ/µ.

A border strip (or ribbon or rim hook) is a connected skew shape that does not contain
a 2× 2 square. The tail of a border strip is its unique cell with smallest content. The
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height ht(S) of a border strip S is the number of rows it spans minus one.

Definition 2.1. A border strip tableau of shape λ ` n with strip size k | n is a Young
diagram filled with the integers {1, . . . , n/k} such that

• the values in each row from left to right and each column from top to bottom are
weakly increasing and

• the cells containing the value i form a border strip of size k for all 1 ≤ i ≤ n/k.

The set of all such tableaux is denoted with BST(λ, k). The height ht(B) of a border
strip tableau B is the sum of the heights of its border strips.

Example 2.2. The Young diagram of 654222 is given in Figure 2 on the left. In the same
Figure on the right we see the skew shape 654222/43111. It is a border strip of size 11
and height 5. The tableau B in Figure 1 is a border strip tableau in BST(654222, 3) of
height 7.

Remark 2.3. A border strip tableau with all strips having size 1 corresponds to a standard
Young tableau. We also write SYT(λ) for BST(λ, 1).

One may also think of a border strip tableau B ∈ BST(λ, k) as a flag of partitions
∅ = ν0 ⊂ ν1 ⊂ · · · ⊂ νn/k = λ such that Bi := νi/νi−1 is a border strip of size k for all
1 ≤ i ≤ n/k. The cells in Bi are precisely the cells in B with label i.

More generally, we say that a partition ν is obtained from λ by removing a border strip
of size k, if λ/ν is a border strip of size k. Successively removing border strips of size k
from λ as long as possible gives a partition ν0 which turns out to be independent from
the order in which the strips are removed. Hence, ν0 is well defined and called the k-core
of λ. See also G. James and A. Kerber [4, Chapter 2.7] for further details.

Proposition 2.4. BST(λ, k) is not empty, if and only if λ has empty k-core.

From now on, we remove all labels in the graphical representation of a border strip
tableau that are not in the tail of a strip. We now define the descent set of a border strip
tableau, extending the classical definition for standard Young tableaux.

Definition 2.5. Let xi be the unique cell with smallest content in a border strip tableau
B that contains i. We call i a descent of B if xi+1 appears in a strictly lower row in B than
xi. DES(B) denotes the set of all descents of B.

For example, let B be the border strip tableau in Figure 1. Following our new con-
vention, B is depicted again in Figure 3 on the left hand side. Hence DES(B) = {2, 4, 5}.

Definition 2.6. The major index maj(T) of a standard Young diagram T is the sum of its
descents. We define the generating function

f λ(q, t) := ∑
T∈SYT(λ)

qmaj(T)t|DES(T)|.
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Note that f λ(q, 1) is also known as Lusztig’s fake degree polynomial. Also note that
f λ(1, t) is the generating function for the number of descents on SYT(λ).

Coming to our main definition, we introduce a new statistic on BST(λ, k).

Definition 2.7. Let B ∈ BST(λ, k), let B1 be the strip in B containing 1 and define

des+(B) := k · |DES(B)|+ ht(B1).

Observe that for T ∈ SYT(λ) = BST(λ, 1) this statistic equals the number of descents,
that is des+(T) = |DES(T)|. For example, the tableau B in Figure 1 has des+(B) = 10.

We can now state our main theorem.

Theorem 2.8. Let λ be a partition of n with empty k-core and let ξ be a primitive k-th root of
unity. Then, for some ελ,k ∈ {±1},

f λ(ξ, t) = ελ,k · ∑
B∈BST(λ,k)

tdes+(B). (2.1)

Furthermore, the sign ελ,k can be made explicit.

Proposition 2.9. Provided that BST(λ, k) is non-empty, the map

sgn : BST(λ, k)→ {±1}
B 7→ (−1)ht(B)

is constant, and ελ,k = sgn(B0), where B0 is any border strip tableau in BST(λ, k).

Remark 2.10. Let χλ be the irreducible character of the symmetric group corresponding
to λ and let ρ = (kn/k) be the rectangular partition of n with all parts equal to k. Then
ελ,k is the sign of the character value χλ(ρ).

Example 2.11. To illustrate Theorem 2.8 let us consider the partition λ = 222. There
are five standard Young tableaux, as depicted below. For each tableau we highlight the
descents and calculate its weight in f 222(q, t).

1 4
2 5
3 6

1 3
2 5
4 6

1 2
3 5
4 6

1 3
2 4
5 6

1 2
3 4
5 6

q12t4 + q9t3 + q10t3 + q8t3 + q6t2

We obtain
f 222(q, t) = q12t4 + (q10 + q9 + q8)t3 + q6t2.
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Substituting primitive roots of unity for q we obtain the following polynomials

primitive root 1st = 1 2nd = −1 3rd 6th

f 222(·, t) t4 + 3t3 + t2 t4 + t3 + t2 t4 + t2 t4 − 2t3 + t2︸ ︷︷ ︸
6-core not empty

.

For q = 1 we get the generating function for the number of descents on SYT(λ) =
BST(λ, 1). For q being a second or third root of unity we obtain the generating functions
for des+ on BST(λ, 2) and BST(λ, 3) respectively:

BST(λ, 2) : 3
2
1

32

1

3
21

t2·2+0 t2·1+0 t2·1+1

BST(λ, 3) : 21 2
1

t3·0+2 t3·1+1

The signs ελ,2 and ελ,3 are positive, as all border strip tableaux in this example have even
height. For a primitive sixth root of unity we obtain a polynomial in which the signs of
the nonzero coefficients do not coincide. Since the 6-core of λ = 222 is not empty, we do
not have a combinatorial interpretation of f λ(ξ, t) in this case.

In the following sections we present the strategy of the proof. The crucial steps are
as follows: first, we use the Littlewood quotient map to bijectively map border strip
tableaux to standard Young tableau tuples, and apply this to the right hand side of
Equation (2.1). Next we express f λ(q, t) in terms of principal specialisations of the Schur
function sλ. For a primitive root of unity ξ, a generalisation of a theorem by V. Reiner,
D. Stanton and D. White allows us to regard f λ(ξ, t) as generating function over the set
of tuples of semistandard Young tableaux. Finally, a bijection links the two resulting
expressions.

3 The Littlewood quotient map

We start this section by introducing the k-quotient of a partition λ using a graphical
description.

Interpret the lower-right contour of the Young diagram λ as path with vertical and
horizontal steps and append empty rows (vertical steps) to the bottom, such that the
total number of rows is divisible by k. Starting with the leftmost step in the lowest row,
we label each step of the path in incremental order, starting with 0. For 0 ≤ s ≤ k− 1 let
λs be the partition one obtains from the steps whose label is congruent to s modulo k.
The tuple (λ0, λ1, . . . , λk−1) is called the k-quotient of λ.

Example 3.1. We construct the 3-quotient of λ = 654222. For a nicer display we put the
labels for the horizontal steps on top of each step and the labels for each vertical step
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to its right. As the number of rows is already divisible by 3, we do not append empty
rows.

0 1 2
3
4
5 6 7

8 9
10 11

7→
0 3

6 9
1 4

7
10

2
5 8 11

We obtain the 3-quotient (21, 11, 2).

Some fundamental properties of the quotient are the following.

Proposition 3.2 (G. James & A. Kerber [4, Chapter 2.7]). (i) The function that maps a par-
tition λ ` n to its k-quotient is a bijection between the set of partitions with empty k-core
and the set of k-tuples of partitions (λ0, λ1, . . . , λk−1) with |λ0|+ |λ1|+ · · ·+ |λk−1| = n

k .

(ii) Let λ and µ be two partitions with empty k-core such that λ/µ is a border strip of size
k. Let (λ0, . . . , λk−1) and (µ0, . . . , µk−1) be the corresponding k-quotients for λ and µ,
respectively. Then there exists an index 0 ≤ s ≤ k− 1 such that |λs/µs| = 1 and λt = µt

for all t 6= s.

Alternatively, the k-quotient of λ can be obtained from the k-quotient of µ by adding a
single cell to one of the partitions.

Let Λ = (λ0, . . . , λk−1) be a tuple of Young diagrams and let |Λ| be the total number
of cells in Λ. A standard Young tableau tuple of shapes Λ is a bijective filling of the cells of
Λ with the values {1, . . . , |Λ|} such that entries in each diagram strictly increase along
rows from left to right and along columns from top to bottom. We denote the set of all
such fillings with SYT-tuples(Λ).

There exists a bijection between BST(λ, k) and SYT-tuples(Λ), where Λ is the k-
quotient of λ. Regarding a border strip tableau B of shape λ as a flag of partitions
∅ = ν0 ⊂ ν1 ⊂ · · · ⊂ νn/k = λ, we denote with Λi the k-quotient of νi. By Proposition 3.2
(∅, . . . , ∅) = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λn/k = Λ is a flag of tuples of Young diagrams, such
that two consecutive tuples differ by precisely one cell. For 1 ≤ i ≤ n/k denote with xi
the unique cell in Λ which is contained in Λi but not Λi−1. By filling xi with i, we obtain
a standard Young tableau tuple of shapes Λ.

This bijection is called Littlewood quotient map by J. Haglund [2] or rim hook bijection
by I. Pak [8]. An example is given in Figure 3.

We now describe how descents are transported via this bijection.

Definition 3.3. Let T = (T0, . . . , Tk−1) be a standard Young tableau tuple and let c(x)
be the content of an entry x within its Young diagram.

Assume now that i ∈ Ts and (i + 1) ∈ Tt. Then i is a descent of T , if either s ≤ t and
c(i) > c(i + 1), or s > t and c(i) ≥ c(i + 1). DES(T ) denotes the set of all descents of T .
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B =

7

6
5

43
21

↔ 3 4
6

1
5

2 7 = T

B as flag: ∅ ⊂ 21 ⊂ 33 ⊂ 333 ⊂ 444 ⊂ 44421 ⊂ 444222 ⊂ 654222
l l l l l l l l

T as flag: (∅, ∅, ∅) ⊂ (∅, 1, ∅) ⊂ (∅, 1, 1) ⊂ (1, 1, 1) ⊂ (2, 1, 1) ⊂ (2, 11, 1) ⊂ (21, 11, 1) ⊂ (21, 11, 2)

Figure 3: The Littlewood quotient map applied to B. The descents of B and T are
highlighted. We have DES(B) = DES(T ) = {2, 4, 5}.

3
4

6
1

5
2

7

Figure 4: The standard Young tableau tuple in "Austrian notation". On each dotted
horizontal line are cells with the same content.

Lemma 3.4. Let B ∈ BST(λ, k) be a border strip tableau and let T = (T0, . . . , Tk−1) be
the standard Young tableau tuple corresponding to B via the Littlewood quotient map. Then
DES(B) = DES(T ).

Furthermore, let s be the index of the unique Young diagram in T containing 1 and let B1 be
the strip in B containing 1. Then ht(B1) = k− 1− s =: idx1(T ).

The following graphical description may be helpful for understanding Definition 3.3:
Tilt the Young diagrams in T by 45 degrees in counter-clockwise direction and align
them such that cells with the same content lay on a horizontal line. We call this the
"Austrian notation". Then i is a descent in T if and only if (i + 1) is

• in a tableau to the left and weakly below i, or

• in the same tableau or a tableau to the right and strictly below i.

An example of the graphical description is given in Figure 4.

Remark 3.5. Definition 3.3 agrees with the definition of descents using the content read-
ing order in the Bylund–Haiman model [3, Equations (77) and (80)], which is used in
the quasisymmetric expansion of LLT-polynomials. B. Westbury made us aware of this
relation when we first presented our results to a broader audience.
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We conclude this section by applying the Littlewood quotient map to the right hand
side of Equation (2.1).

Lemma 3.6. Let λ be a partition with empty k-core and let Λ = (λ0, . . . , λk−1) be its k-quotient,
then

∑
B∈BST(λ,k)

tk·|DES(B)|+ht(B1) = ∑
T ∈SYT-tuples(Λ)

tk·|DES(T )|+idx1(T ). (3.1)

4 Schur functions

In this section we express f λ(q, t) in terms of Schur functions and evaluate it at roots of
unity.

Definition 4.1. A semistandard Young tableau of shape λ is a filling of the Young diagram
with positive integers such that the rows are weakly increasing from left to right and
the columns are strictly increasing from top to bottom. Let SSYT(λ) be the set of all
semistandard Young tableaux of shape λ.

For a semistandard Young tableau T we associate the monomial xT = ∏i≥1 xti
i where

ti is the number of occurrences of the number i in T. The Schur function sλ associated
with λ is the generating function

sλ(x1, x2, x3, . . . ) = ∑
T∈SSYT(λ)

xT.

When specialising precisely m variables with 1 and the rest with zero, one obtains the
number of semistandard Young tableaux of shape λ with entries bounded from above
by m. We also denote this with

sλ(1, . . . , 1︸ ︷︷ ︸
m

, 0, 0, . . . ) = sλ(1m) = #SSYT of shape λ with all entries ≤ m.

The following identity relates f λ(q, t) to the principal specialisations of the the Schur
function sλ.

Theorem 4.2 (R. Stanley [12, Proposition 8.3]). Let λ ` n and let (t; q)n+1 = (1− t)(1−
tq) . . . (1− tqn) be the q-Pochhammer-symbol, then

f λ(q, t)
(t; q)n+1

=
∞

∑
m=0

tmsλ(1, q, . . . , qm).

This identity is particularly useful for us because the q-Pochhammer-symbol, as well
as the principal specialisations of the Schur functions, can be easily evaluated at roots of
unity.
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Proposition 4.3. Given k | n and a primitive k-th root of unity ξ, we have that

(t; ξ)n+1 = (1− t)(1− tk)n/k.

Theorem 4.4. Let λ ` n be a partition with empty k-core and with k-quotient (λ0, . . . , λk−1),
and let ξ be a primitive k-th root of unity. If m = ` · k + r for 0 ≤ r < k, then

sλ(1, ξ, . . . , ξm−1) = ελ,k · sλ0(1`) · · · sλk−r−1(1`) · sλk−r(1`+1) · · · sλk−1(1`+1), (4.1)

where ελ,k is the sign from Proposition 2.9.

Remark 4.5. The case r = 0 in Theorem 4.4 is a theorem due to V. Reiner, D. Stanton and
D. White [9, Theorem 4.3].

The right hand side of Equation (4.1) can, up to sign, be interpreted combinatorially
as the number of tuples of semistandard Young diagrams (T0, T1, . . . , Tk−1) such that

• the tableau Ti has shape λi,

• the tableaux T0, T1, . . . , Tk−r−1 have entries between 2 and `+ 1, and

• the tableaux Tk−r, Tk−r+1, . . . , Tk−1 have entries between 1 and `+ 1.

Keeping the notation of Theorem 4.4, this yields:

Lemma 4.6. Denote with SSYT-tuples(Λ) the set of all tuples of semistandard Young tableaux
with shapes Λ = (λ0, . . . , λk−1) that contain at least one 1. For such a tuple T, let max(T) be
the maximal entry. Let s be the index of the leftmost tableau containing 1 and set idx1(T) :=
k− 1− s. Then

1
(1− tk)n/k−1 f λ(ξ, t) =(1− t)(1− tk)

∞

∑
m=0

tmsλ(1, ξ, . . . , ξm) =

ελ,k · ∑
T∈SSYT-tuples(Λ)

tk·(max(T)−1)+idx1(T). (4.2)

5 The final bijection

In this section we discus the bijection that links together Equation (3.1) and Equation (4.2)
and proves our main result Theorem 2.8.

Denote with Cp the set of weak compositions with precisely p parts, that is the set of
p-tuples of non negative integers. Let Λ = (λ0, . . . , λk−1) be a k-tuple of partitions and
let ` = |λ0|+ · · ·+ |λk−1|. We now present a bijection

φ : C`−1 × SYT-tuples(Λ)→ SSYT-tuples(Λ).
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(0, 0, 0, 1, 2, 2), 3
4

6
1

5
2

7
φ↔ 2

2

7
1

4
1

9

Figure 5: Bijectively mapping a composition and a standard Young tableau tuple to a
tuple of semistandard Young tableaux.

Fix α = (α1, . . . , α`−1) ∈ C`−1 and T ∈ SYT-tuples(Λ). For 1 ≤ s ≤ `, let xs be the unique
cell in T that contains s and let ds be the number of descents in T that are strictly smaller
than s. Let T be the tuple of semistandard Young tableaux obtained by filling the cell xs
with 1 + ds + ∑s−1

i=1 αi and set φ(α, T ) = T. An example is given in Figure 5.

Remark 5.1. This map fits into the setting of the MacMahon Verfahren (see [7] and [5,
Chapter 10]) and the theory of P-partitions developed by R. Stanley [12].

Proposition 5.2. The function φ : C`−1 × SYT-tuples(Λ) → SSYT-tuples(Λ) is a bijection
and for φ(α, T ) = T, we have

|α|+ |DES(T )|+ 1 = max(T) and idx1(T ) = idx1(T),

where |α| = α1 + · · ·+ α`−1 is the sum of its parts.

From this proposition we get:

Lemma 5.3. Let λ ` n be a partition with empty k-core and let Λ = (λ0, . . . , λk−1) its k-
quotient. Then

1
(1− tk)n/k−1 ∑

T ∈SYT-tuples(Λ)

tk·|DES(T )|+idx1(T ) = ∑
T∈SSYT-tuples(Λ)

tk·(max(T)−1)+idx1(T).

Now we can conclude our main theorem.

Proof of Theorem 2.8. Combining Lemma 3.6, Lemma 4.6 and Lemma 5.3 yields the de-
sired identity.
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